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The viscous-convective subrange in nonstationary turbulence
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The similarity form of the scalar-variance spectrum at high Schmidt numbers is investigated for
nonstationary turbulence. Theoretical arguments show that Batchelor scaling may apply only at high
Reynolds numbers. At low Reynolds numbers, Batchlor scaling is not possible unless the turbulence
is stationary or the enstrophy decays asymptotically & When this latter condition is satisfied,

it is shown from an analysis using both the Batchelor and Kraichnan models for the scalar-variance
transfer spectrum that the * power law in the viscous-convective subrange is modified. Results of
direct numerical simulations of high Schmidt number passive scalar transport in stationary and
decaying two-dimensional turbulence are compared to the theoretical analysis. For stationary
turbulence, Batchelor scaling is shown to collapse the spectra at different Schmidt numbers and a
k! viscous-convective subrange is observed. The Kraichnan model is shown to accurately predict
the simulation spectrum. For nonstationary turbulence decaying at constant Reynolds number for
which the enstrophy decays &s?, scalar fields for different Schmidt numbers are simulated in
situations with and without a uniform mean scalar gradient. The Kraichnan model is again shown
to predict the spectra in these cases with different anomalous exponents in the viscous-convective
subrange. ©1998 American Institute of Physids$$1070-663(98)01205-7

I. INTRODUCTION Early experiments using grid turbulenteocean
measuremenisand pipe turbulence yielded reasonable

than the diffusivityD of a scalar contaminant so that the agreement with the ! viscous-convective subrange spec-
Schmidt(or Prandt] numbero=v/D is large, then fluctua- trun_1. A more recen'_[ ex_penmen_t measuring thickness fluc-
tions in the scalar field will persist to much smaller lengthtuations of a soap film in two-dimensional turbulence also
scales than those of the velocity. Almost forty years agoyielded ak™ spectral'slopé.Howgv.er, other recent experi-
Batchelof considered the physics of a high Schmidt numbefMents in a turbulent jdtand in mixing in two-dimensional
fluid, and derived the now well-knowrk ! viscous- turbulence?’ both at very high Schmidt numbers, show no
convective subrange spectrum for wave numbers over whichdication of ak™* subrange. Numerical experiments in
the velocity fluctuations are strongly damped by viscosityforced statistically stationary turbulerice*®support the ex-
but diffusivity has not yet effectively smoothed the scalaristence of ak™* subrange, although decaying flow simula-
fluctuations. Subsequent notable theoretical investigations ¢fons do nof:* Part of the purpose of this present paper is to
this subrange can be found in the papers of Saffreard  €stablish conditions for which nonstationary turbulence may
Kraichnan®* exhibit Batchelor'sk~! viscous-convective subrange spec-
Batchelot argued that the effect of the large-scale veloc-trum.
ity fluctuations on the small-scale scalar field could be rep- ~ Batchelor's seminal work on the large Schmidt number
resented as a persistent uniform strain. By further assumingassive scalar and also subsequent theoretical AWbek-
that the scalar-variance spectrum was kept steady by the coplicitly assumed a steady scalar-variance spectrum in the vis-
tinual resupply of scalar-variance from lower wave numbersgous subrange. In light of the contradictory experimental evi-
he derived the form of the spectrum for wave numbers lyingdence, an important question arises as to just how stationary
within the viscous subrange of the velocity field. Kraichhan the flow statistics must be for an assumption of steadiness to
extended this investigation by considering the effects of fluche reasonable. For instance, the concept of a universal statis
tuations in the rates of strain in space and time. He showetical equilibrium of the small scales of a high Reynolds num-
that Batchelor's spectral form in the viscous-diffusive sub-ber three-dimensional turbulence is well-knoWrThe char-
range, for which the smoothing effects of diffusivity are im- acteristic time of inertial range eddies at high Reynolds
portant, is substantially modified but tkeé* spectral formin  numbers can be written a&3g(k,t)) Y2 whereE(k,t) is
the viscous-convective subrange remains unchanged. The ithe usual three-dimensional energy spectrum, and in the in-
sensitivity of thek ™! spectral law to the underlying repre- ertial subrangeExk 2 so that the characteristic time de-
sentation of the velocity field suggests that this theoreticatreases ak~ 2. At high Reynolds number, the inertial range
result may be exact. is of lengthy extent so that one can expect that the short time
scale of the inertial range eddies relative to that of the overall
9phone: (852 23587448; Fax: (852 23581643; electronic mail: €Nergy decay makes an equilibrium assumption reasonable.
chasnov@math.ust.hk The above argument can be made more quantitative, and

If the kinematic viscosityr of a fluid is much greater
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it is useful to do so here for later comparison with the scalasection, where we derive an explicit criterion which must be
result. For wave numbers lying within the equilibrium sub- satisfied before the scalar-variance spectrum can be assumed
range, external sources of energy production may be neguasi-steady.

glected and the energy spectrum evolution equation can be

written as

9 Il. STATISTICAL EQUILIBRIUM OF THE SCALAR
—E(K,1)=T(k,t)—2vk?E(K,1), (1) _ o

gt The passive scalar transport equation is given by
whereT(k,t) represents the nonlinear transfer spectrum. The ¢ )

Kolmogorov similarity hypothesis for three-dimensional tur- 5 +V-(U)=DV=0+f,, (7)
bulence supposes that the energy and transfer spectrum

scales with the energy dissipation ratand the viscosity, whereu is the turbulent velocity field antl, represents some

alone. One has dimensionally generic source of scalar fluctuations. The time-evolution
equation for the spherically-integrated scalar-variance spec-
E(k,t)=(er®)ME(K), T(k,t)=(er)¥*T(k), (20  trumE4(k,t) obtained from(7) may be written as
with d
—Eo(k,t) =Ty(k,t) — 2DK2E 4(k,t) + F 4(K, 1), (8)
R=kiky, ky=(elv®) 3) 4

where Ty(k,t) is the scalar-variance transfer spectrum,

gherekdfs the folm?g%rov, otrhdlls:sma_ltlon, wave m:mbftrr']Fg(k,t) is the production spectrum of scalar variance, and
IScous Torces strongly damp the FFourier components o ?Eg has been defined so that the scalar variance is twice its

velocity fluctuations folk>k,. The similarity spectrfﬁ(k) integral:

and T(k) are assumed to be stationary in the rescaled coor- .

dinates. <92>=J 2E 4(k,t)dk. 9
Changing independent variables () from (k,t) to 0

(k,t"), with t'=t, using We also define here the scalar-variance dissipation and pro-
. f .
9 i1, de . o duction ratesg, and e,,, respectively, by

—=———€ "— , 4 o %
gt ot 4 dt' gk e(,=2DJO K2E (k,t)dk, €= fo F ktdk (10
Eq. (1) is transformed into o .
so that3d( #%)/dt= eﬁ,— €,. The dissipation and production
~d . L. . PO rates are unequal if the scalar statistics are nonstationary. For
X[k — E(k)—E(k) [ =T(k)—2k*E(k), (5 the remainder of this work, we assume that the production
dk spectrumF 4(k,t) is negligible in the viscous subrange.
with Following Batchelor, we suppose that for large Schmidt
numbers the scalar-variance and transfer spectra in the vis-
X = } E(V/E)l/z 6) cous subrange of the velocity field can be made stationary in
2 dt ' coordinates scaled by the scalar-variance dissipatioregate

the diffusivity D, and a rate-of-strain parameter that we take
here to be & v)*2, which completely characterizes the effect

of the large-scale velocity field on the small-scale scalar
Yeld.

Now from dimensional analysis, one obtains

If x=x(t) depends explicitly on time as would commonly be
expected for a nonstationary turbulence, ti@ncontradicts
the assumption that the similarity spectra are stationar
However, if one supposes that the dissipation eaite inde-
pendent of viscosity in the limit— 0 as is usually assumed
for three-dimensional turbulence, thergoes to zero ag/? Ey(k,t)=e,DY ,,/6)3/4;;0(@),

so that the time-dependent left-hand sidé%fbecomes neg- . (12)
ligible with respect to the right-hand side at sufficiently high  T,(k,t)= e,DY3(v/€)Y*T ,(k),

Reynolds numbers. A stationary similarity state can then eXith

ist, and a quasi-steady assumption for the spectsusQ() is

appropriate. k=kikg; kg=(e/vD?)¥, (12)

However, the physics of the viscous-convective SUb_Wherek is called the Batchelor wave number. Diffusion
: ; B .
range for large Schmidt numbers differs notably from the trongly damps the scalar fluctations forkg . Again, the

inertial subrange. The characteristic time scale of a scala?_ I - n oA )
blob in this subrange is independent of wave number, bein§imilarity spectréE (k) andT (k) are assumed to be station-
set by the time scale associated with the large-scale strainirdfy- Although we use the same symlxdior the scaled wave
of the velocity field. A statistical equilibrium for the scalar number as previously, the two definitions differ by a factor
field may not occur even if the diffusivit) goes to zero if  Of o',

the Reynolds number of the turbulence is not sufficiently  Changing variables if8) from (k,t) to (k,t’) using(4),

large. This point will be made quantitative in the following Eq. (8) (with F, negligible is transformed into
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o d . .. o Using the Batchelor form for the transfer spectrum and
(Y+3X)Eq(k) +xk — Eq(k)=To(k) —2k?E4(k), (13 (11), Eq. (13) becomes
dk

~d Lo PR
with x defined in(6) and (a+x)k = Eg(k)=—(a+3x+y+2k)E4k), (17)
d
y=(v/e)1’ze;1ﬁ. (14 which may be integrated i andy are constants. The solu-
dt tion is
For a general nonstationary flow=x(t) andy=y(t) Ee(k)zck,(lﬂ) exr[—RZ/(a+x)], (19)

are explicit functions of time an@l3) contradicts the as-

sumption of stationary similarity spectra. We encounteredvhere

Fhis difficglty before \_/\{h(a_n considering the energy spectrum 2= (2x+y)/(a+X). (19)

in the universal equilibrium subrang®). There we noted

that an assumption of high Reynolds numbers~0) in A nonzero constant value afresults in a deviation from the

three-dimensional turbulence was sufficient to permit the exBatchelork™* viscous-convective subrange spectrum. The

istence of a similarity state. Again we find that high Rey-constant may be determined by imposing the normalization

nolds numbers are required forandy to be negligibly small ~ condition

in nonstationary flow since in three dimensions they are both |

proportional to»*?. Both x andy are independent of the f K?E ,(k)dk= > (20)

diffusivity D asD—0 so large Schmidt numbers by them-

selves are insufficient to admit a similarity state solution. one finds

For conditions of a nonstationary turbulence at low-to- _ _

moderate Reynolds numbers, we must conclude that in gen- c=[(a+x)"*2(1-212)] ", @D

eral Batchelor’s similarity state of the for(fil) cannot occur whereI' is the usual gamma function, add(1)=1. For

even though the Schmidt number may be large. However, atationary flow,x=y=z=0, c=a"!, and (18) reduces to

special situation could arise ¥ andy in (6) and (14) are  the original Batchelor spectruhnin the viscous subrange of a

constant in time. This is possible only in one of two ways.large Schmidt number fluid.

First, the enstrophye/v, is constant in time so that=0, and The form of the spectrum in the viscous-convective sub-

€, decays exponentially so thgtis a nonzero constant. Sec- range for which the effects of molecular diffusivity are neg-

ond, the enstrophy becomes asymptotically proportional tgigible may be recovered frorfi8) in the limit of smallk,

t~2 during the turbulence decay so thats a nonzero con- for which the exponential factor approaches unity. The di-

stant, ande, evolves as a power law in2time so thatis  mensional form is

constant(possibly zerp Interestingly, at™ < decay law for _ _

the enstrophy was recently foulfdfor decaying two- Eg(k,t)=ceq(v/€) V% (K/kg) 7, (22)

dimensional turbulence at constant Reynolds number. Thugherekg is given by (12). Equation(22) differs from the

this two-dimensional decaying flow provides a good way toBatchelork ! spectral form by a factor ofk(kg) 2.

test the above theoretical analysis, and it is of use to under- The viscous-convective subrange fof@2) presents a

stand the theoretical consequences of nonzero constant v@aradox in that this subrange should be independent of the

ues ofx andy, which we do now in the next section. diffusivity D, whereasg depends o. A resolution of this
paradox is obtained by assuming that the scalar-variance dis-
sipation ratee, remains an explicit function oD even as

0

lIl. APPLICATION OF THE BATCHELOR AND D—0. That is, forD to cancel from(22), €, must scale like
KRAICHNAN TRANSFERS TO NONSTATIONARY €)= 0_2/2)(1 (23
FLOW
as o—, where y is independent ofr in this limit. This

A. The Batchelor transfer explicit scaling ofe, on o is simply a dimensional conse-

Implicit in Batchelor's work on high Schmidt number quence of Ifatchelor scaling and a spectral power law differ-
fluids is a form forT ,(k,t) in the viscous subrange ent thank™".

J B. The Kraichnan transfer
T8=— a(e/v)mﬁ(kE@), (15)

Considering the effect of fluctuations in the rate of strain
where @ ! is the nondimensional proportionality constantin space and time, Kraichn& proposed a model for the
appearing in thé ! viscous-convective subrange spectrum.transfer spectrum in the viscous-convective subrange which
For three-dimensional turbulence, Batchelor originally esti-differs from the Batchelor forn{15), yet still satisfies Batch-
mateda ~ 1~ 2, while Gibson® by considering the root mean elor scaling,(11). Kraichnan’s transfer spectrum for turbu-
square of the local values of the least principle rate of strainlence inN spatial dimensions can be writterf*as
proposed the bounds P

K_ 129
V3<a~1<2v3. (16) To=—alelv)™2p

k o
kEH—N%(kEg)}. (24)
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As observed directly fron{24), the Batchelor form for the We will make use of such a numerical solution fom Sec.
transfer(15) is recovered as the number of spatial dimen-IV when we compare the Kraichnan spectrum to our forced
sions N approaches infinity. Here, we will consider the two-dimensional numerical simulations.

physically interesting valuesl=2 and 3, corresponding to For nonstationary flow with constartandy, the change
two- and three-dimensional turbulence. The Kraichnan transef variables given by26) transforms(13) into

fer vanishes both in th& ! viscous-convective subrange N(2X+Y)

and whenE ,(k)=kN™1, corresponding to an equipartition r2f" — r2+—y
distribution of scalar-variance. Batchelor's transfer only van- «
ishes for thek™* spectrum. The&kN™* spectrum appears in with boundary conditiorf(«)=0 and normalization condi-
numerical simulations of the scalar equation when the diffution (28). The viscous-convective subrange behaviceQ)
sivity is taken to be identically zero and all the Fourier com-of the spectrum is found froni32) by neglecting ther2f

ponents of the scalar field with wave number magnitudediffusion term. Equatior(32) then becomes an Euler equa-
greater than some givek,, are truncated. The Kraichnan tjon with solution

transfer has the potential to predict the scalar-variance spec- s

trum resulting from thiSunphysical numerical experiment fryeer ==, (33)

while the Batchelor transfer does not. In this sense, one cagorresponding to a viscous-convective subrange of the form

view the Kraichnan model as providing additional physicsk~(**$), Obtaining the quadratic equation fsr and choos-

which is missing from the original Batchelor model. ing the root so that the Batchelor transfer solutésnz, with
Analytical solution of the equations using the Kraichnanz given by (19), is obtained a?\— =, one determines

form for the transfer spectrum is somewhat more compli-

N X
N—1+7rf’— f=0, (32

1/2

cated than that for the Batchelor form and it is worthwhile 5= M + 4az -1/, (34)
first to review the results for stationary fldt! Using (11), 2a N(a+X)
(13), and(24) with x=y=0, one has Kraichnan’s transfer spectrum thus predicts for nonzeco

y a modification to the viscous-convective subrange spec-

d|.. ~ kd .. . P .
— I REAK) = — — (KE (k) | +2K2E () =0. (25 trum different than the Batchelor transfer spectris®e(18)
“ D oK) N d“k( oK) oK) @9 and (19)), though both yield & ! spectrum for stationary

flow.
Simplification of (25) is possible by changing variables to The asymptotic solution of32) asr—« is given by
r=(2Na H¥%, E,=a k (1), (26) f(r)yocr W2 (N=1+ M) e —r), (35)
after which(25) is transformed to which reduces to the asymptotic forms obtained fr(2f)
and (31 whenx=0 andN=3 or 2, respectively.
£ (N-1) fr_f=0 27) A complete solution forf(r) requires numerical integra-
r ' tion of (32) from some large value af using initial condi-

tions obtained from35), into zero, with known values af,
x andy. The proportionality constant i(85) is obtained by
requiringf(r) to satisfy the normalization condition given by
(28). Such a numerical solution will be obtained in Secs. VI

* and VI, when we compare the above theoretical results to

JO ri(rydr=N. (28 humerical simulation data.
The following sections test the theoretical ideas just de-

Multiplying (27) by r, integrating, and applying the bound- veloped. In Sec. IV, numerical simulations of forced two-
ary condition at infinity, the normalization conditioi8)  dimensional turbulence with quasi-stationary velocity and

where the prime denotes differentiation with respect to
Boundary conditions are given bf(~)=0, and from the
normalization conditior{20), which becomes

above is determined to be equivalentf@)=1. scalar statistics are presented and compared to the Batchelor
ForN=3, the unique solution t@7) which satisfies the and Kraichnan theoretical results. The Kraichnan result is

above boundary conditions is given by found to be superior, and a numerical value égrthe only
f(r)=(1+r)exg—r):; (29) free parameter in the model, is determined. In Secs. V-VII,

the theoretical results are compared to numerical simulations
for N=2, a correspondingly simple analytical solution is un-of nonstationary, decaying two-dimensional turbulence at
obtainable. However, asymptotic solutions for small andconstant Reynolds number.
larger can be determined to be

f(r)=(1+ r2Inr+0(r?), r—o0: (30) V. PASSIVE SCALAR TRANSPORT BY QUASI-
STATIONARY TWO-DIMENSIONAL TURBULENCE

f(r)=r2exp—r), r—o. 31 . . .
() A=) - (3Y) We now present results from numerical simulations of

Numerical solution forf(r) over the full range of is most  passive scalar transport by forced two-dimensional turbu-
easily obtained by integratin@27) from a sufficiently large lence at low Reynolds numbers to assess the accuracy of
value ofr so that(31) is valid, to zero, and adjusting the Batchelor scaling and to attempt and exhibit explicitly the
unknown proportionality constant i(81) to makef(0)=1. spectral formk ! in the viscous-convective subrange. These
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present calculations confirm and supplement previous work 10 F
by Holzer and Siggi#t which found ak~! subrange for a
forced passive scalar field dissipated by hyperdiffusion and
transported by a two-dimensional velocity field evolved by
solving a restricted Euler equation.

The pseudo-spectral numerical method used here to if; oy
simulate a two-dimensional turbulent velocity field in a pe- =
riodic square of length 2 is described in Chasnd¥.The = v
Fourier transforms of théorced vorticity and scalar equa- &
tions are integrated in time using 100 |

Jd . 2 2 — ~

Sile expvkt)]= —expvk [V -(uw) +1,], (36 ol

g 10° 10 1‘02

E[b exp(Dk?t)]=—expDK2)[V-(ug)+f,], (37 k

. . FIG. 1. Enstrophy and scalar-variance spectra for forced two-dimensional

wherek= ki+kj; and the carets denote the Fourier coeffi-tyrbulence. The enstrophy spectrum is represented by the dashed line and

cients at wave numbet. The Fourier transforms of the vor- the scalar-variance spectra by the solid lines, labeled by their respective

ticity forcing term f,(k,t) and scalar forcing ternfi,(k,t) ~ Schmidt numbers.
are taken to be delta-function correlated in time. Their nu-

merical implementation are given b . . .
P g y long-time scales. Schmidt numbers simulated correspond to

N LR o=1, 10, 100 and 1000. The largest Schmidt number simu-
fo(k)= ak( 6t) expizmRy), (38) lation was performed using 1024yrid points and 16 inde-

s pendent realizations of the velocity and scalar fields. The
- Fo(k i
(k)= o(K) expli27Ry), (39 Reynolds number of the turbulence, defined as

’7Tk( 5’[) 2
L Re o) (42)
where t is the time-interval over which,, andf, are kept (0?2’

constant, andR, andR, are random uniform deviates chosen had values lying between 25R<65, corresponding to a
independently at the beginning of each time interval SUbjecFelatively low Reynolds number turb,ulence. The rang®in

to the complex conjugate symmetry ©f andf,. The forc-  corresponds to a drift upwards in the Reynolds number over

ing spectraF (k) andF (k) are specified to be long time scales. The higher Schmidt number scalars were
" simulated by restarting the calculations using interpolated
F (k)= mexp{—(k—kf)ZIZcrz], (40)  fields saved at lower Schmidt numbeiand lower resolu-
tions), so that the net effect is that the lower Schmidt number
EL runs were performed in the lower range of Reynolds num-
Fo(k)= mexl{—(k— kt)?1207], (41 Dbers and the higher Schmidt number runs in the upper range.

The lack of exact stationarity of the energy statistics does not
where 7' ande!, are the average production rates of one-halfseem to have had a major impact on our results, apparently
the mean-square vorticity and scalar variarges the forc-  because the viscous subrange of the scalar-variance spectrum
ing wave number, and is the width of the forcing in wave is quasi-stationary due to the smallness of the nondimen-
space. In the computations presented h@l‘eefg ando are  sional groups(t) andy(t) as discussed in Sec. Il.
taken to be unity, an#;=4. In Fig. 1, a representative enstrophy spectrittashed

The time integration is performed using the standardine) and the scalar-variance spectsalid lineg for the dif-
fourth-order four-step Runge—Kutta method, so that the ranferent Schmidt numbers are plotted. It is evident that as the
dom numbers generated in the second step are used withdBthmidt number increases, the scalar-variance containing
change in the third stefboth steps occurring at the middle of scales extend to much larger wave numbers than the enstro-
the time interval, and the random numbers regenerated aphy containing scales. Far=1, the enstrophy and scalar-
the fourth step are used again in the first step of the nextariance spectra are comparable, though it is to be noted that
integration. The time intervalt is given bydt=At/2, where the enstrophy spectrum is larger than the scalar-variance
At is the time step associated with each integration stepspectrum at the smallest wave numbers. This is presumably a
determined at the beginning of each step using a Couranteonsequence of the inverse energy cascade of two-
Friedrichs—Lewy conditiofisee Ref. 18 for detailsMultiple ~ dimensional turbulence without an analagous inverse cas-
realizations of the vorticity and scalar fields are evolved sicade of scalar variance. The finite size of the periodic com-
multaneously until the statistics become quasi-stationary, afputational box prevents the inverse cascade of energy to ever
ter which time averaging is performed. It was difficult to larger-and-larger scaléf.In an infinite box, the energy of
obtain truely stationary two-dimensional turbulence and thehe turbulence would increase indefinitely, and it is likely
turbulent energy was observed to slowly drift upwards ovethat the difficulty in attaining statistically-stationary energy
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single free parametew in the Kraichnan model. Only the
data for wave numbers greater than eight were sede-
sponding to the eighth point in Fig).3We have determined
that the best fit to this particular simulation spectrum occurs
for the valuea ™ *=6.0. In the figure, the resulting Kraichnan
scalar-variance dissipation spectrgsolid line) is compared

to the numerical simulation spectrufpointy, and excellent
agreement is observed. For comparison, the Batchelor spec-
trum (dashed ling with «~1=6.0 is also plotted, and it is
evident that the Kraichnan spectrum provides a much better
fit to the data. Lowering the value af can reduce the error
between the Batchelor spectrum and simulation results, but
the fit remains relatively poor.

(= 10F

N o o o A comparison between numerical simulations and theo-
z retical spectra was recently presented by Bogetkil = for

three-dimensional turbulence with rather similar results. In
FIG. 2. Batchelor-scaled scalar-variance spectra for forced two-dimensionghat work, a least-squares fit of the Kraichnan spectrum to
turbulence. Ak~* spectrum is seen to appear fo<1. the simulation data resulted in a value®f'=5.26, which

is not much different than the value of 6.0 obtained here. The
L . . Batchelor spectrum was also observed to give a relatively
statistics is due_ to the inverse Casca_de. The scalar field at ﬂb%orer fit. We also note that the best fit valuecst! from
P;gsgﬁlsetd Schmidt numbewr=1000 is somewhat under- our simulation data depends slightly on the Reynolds number

. . of the flow field. This is presumably a low Reynolds number
In Fig. 2, the wave numbers and scalar-variance spectr

: : Bffect.
a][e tre;caled u5|rt1g Batcltlze_lor sca:|?g:t)h. Notet that the rate- For simplicity, in the remainder of this paper we take as
o-strain parame ere(v) is equal to the root-mean-square- e oretical model the Kraichnan form of the transfer
vorticity (w*)™'%, which is a more meaningful representation

in twoodi . | turbul Apart f b spectrum(24), with o~ 1=6.0. In the following sections, we
In two-dimensional turbu’ence. Apart from wave numbers,, ;, compare the results of this model to the transport of high
less than or close to the forced wave numbers, a reasonal

. ; ~Sthmidt number scalar fields in nonstationary flow situa-
collapse of the spectra for the different Schmidt numbers Sions y
observed. A%—0, an approximate inertial-convective sub-

range proportional t&~! is seen as expected for stationary
V. DECAYING TWO-DIMENSIONAL TURBULENCE AT

turbulence.
In Fig. 3, we display a fit of the Kraichnan theoretical CONSTANT REYNOLDS NUMBER
scalar-variance spectrum discussed in Sec. lll to #he We begin our numerical study of nonstationary flow by

=100 numerical results obtained by minimizing the mean-irst reviewing the physics of two-dimensional turbulence de-
squared error between the theoretical and simulation scalacay at constant Reynolds number. Previotfslye showed
variance dissipation spectrd?zég) as a function of the that for an initial two-dimensional flow field less than a tran-
sitional, or critical, Reynolds numbét,, linear final period
of decay solutions result for which the Reynolds number
R(t), defined in(42), decreases to zero asymptotically. For
initial Reynolds numbers greater thaR,., the flow field
evolves with asymptotically increasin®(t). Exactly at
R(0)=R. the turbulence decays asymptotically at constant
Reynolds number, denoted BS. The main purpose of this
section will be to show that this decay takes place with a
constant and nonzero value for the parametedefined in
(6).

The decay of the turbulence at constant Reynolds num-
ber R; allows exact analytical solution for the asymptotic
evolution of the energy and enstrophy, related by

d
a<u2>= —21{w?). (43

107 10°

k Replacing(w?) in favor of (u?) and R, by means 0f(42),
, — one obtains the closed evolution equation

FIG. 3. Batchelor-scaled scalar-variance dissipation spectrum for force

two-dimensional turbulence witlr=100. Numerical simulation results d 2

(pointg are compared to the Kraichnan spectr(sulid line) and Batchelor —(u¥)=— —(u?? (44)
spectrum(dashed lingwith o~ 1=6.0. dt VR
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which has analytical solution. The asymptotic solution of
(44) at large times is given B§

(W)= 3vR*Y (0%)= iR, (45)

where the solution for the enstrophy is determined fd8). 14k
The only unknown parameter i@5) is R, and its computa- R(0) =154
tion is easily obtained from relatively low resolution numeri- & %[
cal simulations. ol
Although the precise value of the asymptotically con- 13
stant Reynolds numbeR; depends on the particular choice of
of initial conditions for the flow field, there is another non-
dimensional group which takes a unique value. Taking the
time derivative of the Reynolds numbgt2), and using43)
and the corresponding time-evolution equation for the en-
strophy in two-dimensional turbulence, given by

T

FIG. 4. Time evolution of the Reynolds numbB(t) for initial values

d =13, 15. d 18.

one determines the following evolution equation Ryt):

1 k 2n+1 1 k 2
d E(k,O)z—anuékl(—> exp —(n+— (—) }
b 2_ 2\1/2 2 Pk 2/\k
dtR (p°—2)(w)™%, (47 p p 52
where the nondimensional groypis defined by with a,=(2n+1)""Y2"n! and n=3. The initial values of
2 2 H
(DYV2((V )2) 112 (u%) and{w*) are determined froni52) to be
= 2 : (48)
(%) 9 2 2 5 2n+2
(WP)(0)=uj, wj=(w?)(0)=5—udki, (53
From (47), two-dimensional turbulence decay at constant
Reynolds number is observed to occur when 2. so that the initial Reynolds numbé#2) of the turbulence

The parametex, defined in(6), is now easily deter- wijth n=3 is given by
mined. Using the identitg/ v={»?) and(45), one finds that
X is nonzero during the decay with constant value 7 Ug
R(O): gm (54)
x=1/R(. (49 P
In Fig. 4, the evolution of the Reynolds numbig(t)
versusr(t) is shown for initial values above and below the

critical valueR., and atR.=15.4, where

It is also clear thay, defined in(6), will be constant for the
transport of a passive scalar field provideglevolves as a
power law in time.

Furthermore, at the critical Reynolds number the energy t
spectrumE(k,t) decays self-similarly over all wave num- T:f dt(w?)"2. (55
bers. If we impose the normalization of the self-similar spec- 0

trum E(R) to be The value forR; obtained here is slightly less than that re-
ported earlief® due to the better resolution of the initial con-
Jmé(k)df@ meZE(R)dAk= E (50) ditions in the present simulations. In Fig. 5, the decay of the
0 0 2 energy and enstrophy are compared to the analytical results
(45), with R;=12.0 obtained from Fig. 4. Excellent agree-
thent between the simulation and the theoretical scaling laws
is observed. As seen from Fig. 4, the analytical solution
ol L R given by(45) is unstable to perturbations R(0)=R., with
E(kt)=— vPR2 Y2E(k); k=(2vt)¥%k.  (51)  values slightly lower or higher resulting in asymptotically
decreasing or increasing Reynolds numbers, respectively. In
We note here that the factors &f in this scaling differ from  other words,p= 2 is an unstable fixed point ¢#7).
that obtained using the Kolmogorov scaling @ and (3), In Fig. 6, the time evolution of the energy spectrum
though this is of little importance. E(k,t)/ujlo versus wave numbekly, with Io=Uo/w,, at
We now demonstrate these results by numerical simulathe times 7=0,5,10, ..,30 is plotted. The spectra are
tion. The initial conditions of the flow field are the same assmoother than those computed eatfiers a consequence of
used previously® with the initial energy spectrum specified ensemble-averaging over a large numigal) of independent
in general by realizations. In Fig. 7, the self-similar spectrurk) versus

then the scaling of the spectrum and wave number is give
explicitly by
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FIG. 5. Time evolution of the energy and enstrophy R{0)=15.4 com-  FIG. 7. Rescaling of the energy spectrum of Fig. 6. The times plotted
pared to the analytical resultdashed lings correspond tar=10,15,. . ., 30.

k is plotted at the times=10,15, ..,30. A near-perfect We thus consider in this section only the situation for
collapse of the spectra is found indicating that the scalingyhich g0, its precise value being unimportant. In the next

given by (51) is exact. section we consider further the freely-decaying scalar prob-

lem with 8=0.
VI. PASSIVE SCALAR TRANSPORT WITH UNIEORM T.he scglar equation?) introduces a single ag:idmonal
MEAN GRADIENT nondimensional group to the problem: the Schmidt number

o. Our study of the viscous-convective subrange is con-
cerned with the asymptotic statistical laws of the scalar de-
We now consider the transport of a passive scalar fiel§ay at largeo. _ _
with nonzero uniform mean gradient. The transport equation An equation for the scalar variance may be determined
for the fluctuating scalar field is given b§7), where the from (7) using(56) to be

source of scalar variance is d( 62)

fy=pu;. (56) T:25<U10>_2501 (57)

A. Theoretical considerations

In (56), B is the negative of the gradient of the mean scalafynere the scalar-variance dissipation rate is defined as
field in thex, direction, assumed here to be constant in space

and time. The scalar fluctuations are taken to be zero at the €y=D{((V6)?). (59)

initial |pstant and are subsequeptly generated by veIocm(Ne will later see that a closure ¢7) is possible for turbu-
fluctuations along the mean gradient.

lence decay at constant Reynolds numbeiDas0, but at
this point we ascertain the asymptotic evolution of the scalar
, ' ' variance by dimensional arguments alone.

i ] From the scalar equatiof¥) combined with(56), it is
evident that the scalar field itself is proportional@olf we
further assume that, asymptotically, the only other dimen-
sional quantities of relevance are the viscosityr diffusiv-

ity D) and the timet, then the only dimensionally correct
form for the scalar variance is

(6% B2, (59

where the coefficient of proportionality can depend only on
the two nondimensional groups of our problem, nanfely
which is a fixed constant, angl

It is reasonable to suppose that the three separate terms
in the budget equation for the scalar varian&s), have the
same time dependence so that fr@®8), the scalar-variance
cascade rate, must become constant, asymptotically. Thus
FIG. 6. Evolution of the energy spectrum in time wi(0)=15.4. The ~We have determined that the parametedefined in(14), is
times plotted correspond te=0,5,10, . . ,30. identically zero for this flow.

E(k‘, t)/u%lo

klo
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TABLE I. For B#0, resolutionN? and realizationsM for scalar with 2
Schmidt number. The wave numbek,, is that for which the initial energy
spectrum is maximum. Lol
o NZXM Ky %
1 512%64 64 g " ]
10 512x64 64 &
10 1024x16 64 R
106 1024x16 16 g
10 4096 2 16 " .
g 12} 10
Q
a,
oo N ST =
In summary, for decaying two-dimensional turbulence at
constant Reynolds number transporting a passive scalar field o=1 ‘ . . . .
with nonzero uniform mean gradient, the paramexeasndy *% s 1 s 2 2 % 3
introduced in Secs. | and Il are constants, independent of T

time. The results of Sec. Il are thus applicable. In particular£iG. 8. Time evolution of the power-law exponent of the scalar-variance for
with x given by (49) andy=0, the Kraichnan transfer spec- nonzerog. The solid lines are the results of the simulations for Schmidt
trum predicts ak~(1*9) viscous-convective subrange spec- numbers 1,10...,1¢ and the dashed line is the theoretical result.

trum, with s given by[see(34)]

1+aR, 4aR] |12
=——— 2| 1 ~0.56, (60)

becomes sufficiently well-resolved at the latest times. The
’ + !
aR/ (1+ aR¢

times plotted correspond te=5,1Q .. .,35, with 7 defined
in (55). The largest scales of the flow are still well captured

r_ —-1_ ; _
where ¥ye ha\:)e useﬂfh— 12.0 g.n(tjad ‘ —?HQ.f;I'hehwscous by the computational box at the last time computed.
convective subrange thus predicted for this flow has approxi-~ 1 . ¢ 15r-variance spectra at the times

mate power-law formk 18 significantly different than the —20.25 35 armormalized using Batchelor scalifig)

. Y
stationary solutiork . and plotted versus the normalized wave numberk/kg in
Fig. 10. The spectra are observed to collapse over all wave
numbers, indicating that the scalar-variance spectrum
We now present numerical results for the scalar statisevolves in a completely self-similar fashion together with the
tics. The number of grid pointhl in the two directions and  energy spectrum. This self-similar evolution in time was ob-
the number of independent realizatiohs over which an  served for all simulated Schmidt numbers.
ensemble average is taken is shown in Table | for the simu-  Of primary interest to us here is the plot of the different
lated Schmidt numbers. Also shown is the valu&pthosen  Schmidt number scalar-variance spectra normalized by
for which the initial energy spectruitb2) is maximum. For  Batchelor scaling. This is shown in Fig. 11, where the results
large o, better small-scale resolution is necessary so that effor o=1,10,16,10°, 10" are plotted at the times correspond-
ther the number of grid pointsl must be increased or the ing to r=35,35,35,30,20, respectively. A reasonable col-
value ofk, decreased. The simulations fer=1 and 10 were |apse of all the spectra, excepting the lowest wave numbers

performed with 64 independent realizations running simultanot contained in the viscous subrange, is observed. Also
neously on 64 processors of a parallel machine, with the

statistical averaging performed across processors. This al-
lowed for the writing of a very efficient numerical code. The
higher resolution calculations were performed with single
realizations spread out on multiple processors, and with all
the realizations done in parallel.
The logarithmic derivative in timgower-law exponent
of the scalar variance versus the normalized ting5), for
all of the different Schmidt numbers is plotted in Fig. 8. The
logarithmic derivative is two at the smallest times indicating
a t? initial growth of scalar fluctuations due to a constant
fluid motion along the mean scalar gradigisee (7) and
(56)). Asymptotically, the power-law exponent becomes one
(indicated by a dashed linéor all Schmidt numbers, as pre-
dicted in (59). The large fluctuations in the curve fer
=10* are due to the poor statistical average. This calculation
was too expensive to make additional averaging worthwhile.
For 0=100, the time evolution of the scalar-variance

213y ; - ot t
SpeCtrU”Ef)/(B lo) is ShO_Wn n Flg. 9. At the earliest times G, 9. Evolution of the scalar-variance spectrum in time with 100. The
of evolution, the scalar field is slightly under-resolved, buttimes plotted correspond te=5,10.. . . ,35.

B. Numerical simulations

Ey(k,t)/8%13

ko
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FIG. 10. Rescaling of the scalar-variance spectrum of Fig. 9. The time€IG. 12. Time evolution of the scalar-variance dissipation egtéor all o.
plotted correspond te=20,25,. . . ,35. The asymptotic theoretical predictions are plotted as dashed lines, obtained
using as a reference value the numerical resuliofer100.

shown in Fig. 11 by the dashed line is the spectrum obtained

ing the Kraichnan f f the transfe4), with o~ ! _ _ :
using the Kraichnan form of the transfe@4), with « simulation asymptotic resultol(ﬁzlgwo)zo.w when o

=6.0,x=1/R;, andy=0. Good(but not perfegtagreement ~ AN
between the simulation and theoretical results is observed, 100. Exceptingr=1, it is observed tha(61) agrees rea-

including the prediction of a viscous-convective subrange 01S°niablg We]JfI.W'thtlthT dat?. TT.: 10|4 computanto?_ Wai nto :h
approximate power-law forrk~ 156 evolved sufficiently long to attain clear asymptotics, but the

A secondary prediction of the theoretical analysis is thetrend IS 1n figreement Wlth the theoretical predllct_lon._
It is evident from Fig. 12 that the scalar dissipation ap-

dependence of the scalar-variance dissipation ¢aten the roaches zero as—s . The scalar-variance evolution equa
anomalous power-law exponent of the viscous-convectivé T e S q
tion (57) becomes in this limit

subrange.(For a discussion with respect to the Batchelor

form for the transfer, see the paragraph preceeh) The d( 6%
prediction using Kraichnan’s form for the transfer is dt =2p(u,0). (62)
_ sl
ey=0 (61) |t thus becomes possible to clo®) with a simple hypoth-
wherey is independent ofr, ands is given by(60). In Fig.  €sis on the scalar-velocity correlation; namely,
12, the scalar-variance dissipation ra‘tﬁ(,@zléwo) versus (u16>=a<u§>1’2< 02>1/2 (63)

time wgt is plotted for all the Schmidt numbers. Also shown
by the dashed lines are the predictions (6fl) with s  with a constant agr—«. Since the two-dimensional turbu-
=0.56, obtained by using as a reference value the numericégnce is statistically isotropic in space, we also have

(ud)= 3(u?), (64)

with (u?) given asymptotically by45). The correlation co-
efficient @ may be found numerically, and Fig. 13 provides a
plot for the differento simulations. An asymptotic value of
a~0.45 asoc— seems reasonable, though the statistics of
the computations become noticeably poorerdor 10° and

—_ 10%.
<i:; Thus combining(62)—(64), one obtains the differential
(X equation
10 d 02
<dt > :‘/iaﬁ<u2>l/2< 02)1/2, (65)
which may be solved analytically usirig5). The asymptotic
10 solution is
7 (6% =a?B?vR.%, (66)

FIG. 11. Batchelor-scaled scalar-variance spectra foralhe dashed line N agreement with t_he prediction Q59_)1_determ'ned using
is the theoretical result obtained using the Kraichnan form for the transferdimensional analysis. Here, we exhibit the proportionality

For comparison, the power laiv 18 is shown by the dotted line. constants explicitly.
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1 T T T T T T T T T TABLE II. For Cy#0, resolutionN? and realizationd for scalar with
Schmidt number. The wave numbek,, is that for which the initial spectra
oo} 1 are maximum.
08 | o NZx M Kp
1 1024x32 128
07 " 10 2048x 8 128
s L o=1 102 2048% 8 64
06 1
10
0s s 10?
4 (6—27)
10° ] =——, Co#0; y=———-", Co=0. (71
104 y Ré ’ 0 Y Ré ’ 0 . ( )
%0 m me w6 40 o eo 7w w0 100 Together with x=1/R,, o *=6.0, R,=12.0, the ano-
wot molous exponens in the viscous-convective subrange spec-
G 15 T \tion of the scalar-velocity correla o, UM k~(1+9) derived in(34) from the Kraichnan model, is
. . lime evolution o € ScCalar-velocCity correlation coetficienor
all o found to be
1+aR.[ ) 4aR. |2 . Lo
"~ aR! (1+aR})? D
VIl. PASSIVE SCALAR TRANSPORT WITHOUT MEAN Cot0- 72
GRADIENT 0T (72)
. . . rr ’ /
A. Theoretical considerations 1+aR; 4aR{(2—y)\*?
s=——— |1~ 57| 1
Decaying scalar fluctuations with3=0 in two- aRe (1+aRc)
dimensional turbulence was considered by Lesieur and ~ 1[(~7.0+8.0y)12-3.0], Cy=0. (73)

Herring?® and the decay laws were shown to depend on the
form of the initial scalar-variance spectrum at low wave For Cy# 0, the viscous-convective subrange spectrum is ap-
numbers. Here, we assume that an asymptotic expansion pfoximately independent of wave number, i.e., the spectrum
the scalar-variance spectrum can be written as is proportional tok®C. For Cy=0, if y<7/8 thens is com-
lex. Recalling(32) and(33), a complexs implies a solution
Ey(ki)=mk(Cot+k*Cot....) 67 For f(r) whicﬁ( is oscillatory asrjo, takir?g on negative
ask—0. It is known that the low wave number coefficient values. This would result in the unrealizable situation of a
Co is an invariant® and if zero initially, thenC, is neces- negative scalar-variance spectrum, implying a breakdown of
sarily nonzero and time dependent due to nonlinear transferur theoretical analysis. On the other hand, a vajeer/8
of scalar variance from small-to-large scatés. results ins being real, and also implies froifY0) a decay
Asymptotic decay laws of the scalar variance can bdaw of the scalar variance less steep thaf®. We know of
determined from a dimensional analySidy postulating a no way to accurately estimatg other than by numerical
linear dependencg@lue to the linearity of the scalar transport simulations.
equation on the leading-order coefficient 667), and a de-
pendence ow (or D) andt, only. ForC,+0, the decay law

is determined to be
_ The form of our initial scalar-variance spectrum is taken
(6%)xColrt) %, (68) to be the same as for the energy spectr(ﬁﬁ)f)replacinguo
where the proportionality constant can depend?dn which by 6,. Here, we considen= 0 corresponding to a low wave
is fixed, ando. number scalar-variance spectrum proportionar@yk, with
For Cy=0, the asymptotic time behavior &, is un- the invariantC, given by
known and we postulate it to be of power-law form 9(2)

Cat)=ct?, (69) Co=2mie: (74)

B. Numerical simulations: Cy#0

wherey>0 is an unknown exponent amdis a dimensional  The case of,=0 initially will be treated in Part C. Table Il
constant which could depend on initial conditions. The decayhows the resolution, number of realizations, and valtle, of
law of the scalar variance is thus determined by dimensionalsed in the present calculations. A numerical simulation of a
analysis to be decaying scalar field without mean gradient requires more

(62 Cy ) "2=Cr~ 22+, (70) resolution for a give_n valug af Fhan those performed with _

nonzero mean gradient, primarily because of the more rapid

The evolution equation for the scalar variance is givenloss of statistical sample of the largest scales. We have thus
by (57) with 8=0, and using(45), (68), and (70) one can only been able to obtain reasonably accurate results to a
determine the parametgr defined in(14): maximum Schmidt number af=100.
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FIG. 14. Time evolution of the power-law exponent of the scalar-variance ) ) )
for Co#0. The solid lines are the results of the simulations for SchmidtFIG. 16. Batchelor scaling of the scalar-variance spectrum of Fig. 15. The
numbers 1, 10, Foand the dashed line is the theoretical result. times plotted correspond to=20,25,30.

In Fig. 14, the logarithmic derivative in time of the sca-

lar variance versus is p_Iotted with the dashed line s.howmg exponent and that obtained from the simulations.
the expected a_lsymptonc power-law exponent obt:_;uned from All three Schmidt number spectra at times corresponding
(68). At large times, the power-law exponent obtained fromto =30 are rescaled according to Batchelor scaling and

the simulation data deviates about 10% from the prediCte%Iotted in Fig. 17. A reasonable collapse of the three spectra

exponent. This is FO be cpmpared to galculations done with & opserved. Also shown by the dashed line is the spectrum
mean scalar gradient, Fig. 8, for which agreement betweeBbtained using the Kraichnan form of the transfer with!
the simulations and theoretical scalings was noticeably bet- ¢ 4\ _ 1/r’ y=—4/R., R.=12.0. Reasonabléout not

- L Cc! C C . .

ter.
In Fig. 15, the time evolution of the scalar-variance

account for the discrepancy between the theoretical decay

perfecy agreement between the simulations and the theoret-
. . ical result is observed, including the prediction of a viscous-
:'spectrum fgr Schmidt number=10 1S shown, correspond- convective subrange which is approximately independent of
ing to the timesr=0,5,10, . .,30. It isevident that the low wave number.

wave number coefficient is an invariant, but that there is little A secondary prediction of the theoretical analysis is that
large scale sample remaining at the last time plotted. In Figthe scalar-variance dissipation scales likg= o2y (from

16, the times corresponding te=20,25,30 are rescaled ac- (61)

di Batchel ind11). Th and(72)). In Fig. 18, the dissipation rate is plotted ver-
cording to Batchelor scalind11). The spectrum appears to sus time together with the theoretical predictions, obtained

decay self-similarly, with some deviation from self-similarity by using as a reference value the asymptotic decay of the
occurring at the smallest wave numbers. We suspect that th alar variance whemr=100. The agreement between the
is due to the adverse influence of the periodic boundary con- '

ditions on the largest scales of the flow. This error may also

Ey(k,t)/6%13

klo

FIG. 17. Batchelor-scaled scalar-variance spectra fos.allhe dashed line
FIG. 15. Evolution of the scalar-variance spectrum in time W@t 0 and is the theoretical result obtained using the Kraichnan form for the transfer.
o=10. The times plotted correspond te-0,5,10.. . . ,30. The asymptotic form of the theoretical spectrunf(% ask—0.
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FIG. 19. Time evolution of the power-law exponent of the scalar variance
FIG. 18. Time evolution of the scalar-variance dissipation igtdor ¢ for C,=0. The solid lines are the results of the simulations for Schmidt
=1,10,100. The asymptotic theoretical predictions are plotted as dashegumbers 1,10,7010° and the dashed line separates theoretically predicted
lines, obtained using as a reference value the numerical resuit=fdr00. real from complex values .

predicted and observed behavior is reasonablerfed O but
has substantial error far= 1, for which the Schmidt number
is most likely too small.

wave number scalar-variance spectrum proportion&ts
evident. In Fig. 21, the times correspondingste 20,25,30
are rescaled according to Batchelor scalifid). The spec-
trum is observed to decay self-similarly over all wave num-
bers.

We now consider an initial scalar-variance spectrum  All four Schmidt number spectra at time=25 are res-
with form (52) andn=3. The low wave number coefficients caled according to Batchelor scaling and plotted in Fig. 22.
Co andC, in (67) are initially zero;C, remains zero an@,  The spectra are observed to collapse in the diffusion sub-
increases in time. Table Il shows the resolution, number ofange, but not in the convective subrange or at the largest
realizations, and value &, used in the present calculations. scales. Also shown by the dashed lines are the spectra ob-

In Fig. 19, the logarithmic derivative in time of the sca- tained from the Kraichnan model with~*=6.0, x=1/R.,
lar variance versus is plotted. There does not appear to bey= —(6—2y)/R,, R.=12.0, and inferred values ofy
a universal asymptotic decay exponent for this flow, and thehown in Table IV. All of the theoretical results collapse in

magni_tude of the decay exponent decreases vyith incre_asiqge diffusive subrange at larde but differ at small wave
Schmldt number. 1(69) aqd (70) are tp be bel!eved, this numbers. This collapse of the theoretical spectra at Iﬁrge
implies that the exponent increases with Schmidt number. can be shown from the results of Sec. Ill. where the

From a rough estimate of the asymptotic power-law eXpo'asymptotic form of the spectrum given kg5) is seen to be

nents of the scalar-variance decay, a valueyaian be de- .
) ) o ) ndependent of, and thereforey. The form of the spectrum

termined for the different Schmidt numbers. The estlmated P y 4 P

. , n the convective subrange, however, does depeng. on
Id\?cay exponents and inferred valuesyaire shown in Table There is little direct numerical evidence from Fig. 22 for

- . a power-law form of the spectrum in the viscous-convective
. Alsp 5*.“"’.“” in Fig. 19 for future reference is a anhedsubrange. Nevertheless, it is interesting to observe that the
line Wh!Ch indicates the value of the decay law for which theKraichnan model for the transfer agrees reasonably well with
theoretical exponerﬁ_ N (73) changes from real .to-complex; the simulation data for relatively small values @fdespite
(below the dashed Im_s IS complgx and above it is reall predicting a complex value for the anomalous exporgent
In Fig. 20, the time evolution of the scalar-variance

. S (see Fig. 19 Apparently, for o less than about 100, a
;pectrum fqr Schmidt number=10 is shown_, correspond- viscous-convective subrange has not yet developed so that
ing to the timesr=0,5,10, ..,30. Theformation of a low

the range of wave numbers over which the theoretical spec-

C. Numerical simulations: Cy=0

TABLE Ill. For C,=0, resolutionN? and realizationdv for scalar with
Schmidt number. The wave numbek,, is that for which the initial spectra  TABLE IV. For C,=0, estimated exponents of the scalar-variance and the

are maximum. inferred values of the exponent
o NZx M Ky o Decay exponent %
1 1024x16 128 1 -1.8 0.2
10 2048x 8 128 10 —1.45 0.55
107 2048 8 64 107 -1.2 0.8

10° 4094% 2 64 10° -1.0 1.0
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FIG. 20. Evolution of the scalar-variance spectrum in time W@ 0 and FIG. 22. Batchelor-scaled scalar-variance spectra far.allhe dashed lines
o=10. The times plotted correspond te-0,5,10.,. . . ,30. are the theoretical results obtained using the Kraichnan form for the transfer.

trum is oscillatory is not part of the universal subrange. Fomolds numbet® and we have investigated in detail the trans-
o greater than about 10G; is large enough so that the ex- port of passive scalars by this type of decaying turbulence.
ponents is real; apparently for these larger valuesofa Being unstable to small perturbations, decaying two-
viscous-convective subrange of power-law form will begindimensional turbulence at constant Reynolds number is un-
to develop. It is reasonable to expect that as>, the likely to be observed in nature. Nevertheless, this flow pro-
power-law exponent of the scalar-variance decay will apvides us an interesting numerical test of Batchelor scaling in
proach some limiting value as will the exponentlt seems  high Schmidt number fluids, and in particular a test of the
a value ofc much large than 1000 is required to observeaccuracy of the model scalar-variance transfer spectrum pro-

approximate asymptotic behavior. posed by Kraichnaf There are some laboratdrf and nu-
merical experiment§ in which Batchelor'sk™* spectrum is
VIIl. CONCLUSIONS not observed and this has led to suggestions that Batchelor’s

_ - result may not be universalor may be fundamentally
~ We have derived necessary conditions so that a nonst@awed** The present work at least provides additional nu-
tionary high Schmidt number passive scalar field may followmerical support in favor of Batchelor scaling, and further

Batchelor scaling in the viscous-convective subrange. Ifjemonstrates the accuracy of Kraichnan’s model for station-
three dimensions, these conditions can be approximately sary and nonstationary flow situations.

isfied for large Reynolds numbers. However, Batchelor scal-
ing is also possible if the enstrophy of the turbulence decays
ast~2. Just such a decay was recently discovered in a stud‘fl‘CKNOWLEDGMENTS

of two-dimensional turbulence decaying at constant Rey- | wish to thank A. Wray and R. Rogallo for allowing me
use of their simulation software. The support of the Hong
Kong Research Grant Council is gratefully acknowledged.
The computations presented here were performed on an Intel
wl ] Paragon at The Hong Kong University of Science & Tech-
nology.
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