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The similarity form of the scalar-variance spectrum at high Schmidt numbers is investigated for
nonstationary turbulence. Theoretical arguments show that Batchelor scaling may apply only at high
Reynolds numbers. At low Reynolds numbers, Batchlor scaling is not possible unless the turbulence
is stationary or the enstrophy decays asymptotically ast22. When this latter condition is satisfied,
it is shown from an analysis using both the Batchelor and Kraichnan models for the scalar-variance
transfer spectrum that thek21 power law in the viscous-convective subrange is modified. Results of
direct numerical simulations of high Schmidt number passive scalar transport in stationary and
decaying two-dimensional turbulence are compared to the theoretical analysis. For stationary
turbulence, Batchelor scaling is shown to collapse the spectra at different Schmidt numbers and a
k21 viscous-convective subrange is observed. The Kraichnan model is shown to accurately predict
the simulation spectrum. For nonstationary turbulence decaying at constant Reynolds number for
which the enstrophy decays ast22, scalar fields for different Schmidt numbers are simulated in
situations with and without a uniform mean scalar gradient. The Kraichnan model is again shown
to predict the spectra in these cases with different anomalous exponents in the viscous-convective
subrange. ©1998 American Institute of Physics.@S1070-6631~98!01205-7#
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I. INTRODUCTION

If the kinematic viscosityn of a fluid is much greater
than the diffusivityD of a scalar contaminant so that th
Schmidt~or Prandtl! numbers5n/D is large, then fluctua-
tions in the scalar field will persist to much smaller leng
scales than those of the velocity. Almost forty years a
Batchelor1 considered the physics of a high Schmidt numb
fluid, and derived the now well-knownk21 viscous-
convective subrange spectrum for wave numbers over w
the velocity fluctuations are strongly damped by viscos
but diffusivity has not yet effectively smoothed the sca
fluctuations. Subsequent notable theoretical investigation
this subrange can be found in the papers of Saffman2 and
Kraichnan.3,4

Batchelor1 argued that the effect of the large-scale velo
ity fluctuations on the small-scale scalar field could be r
resented as a persistent uniform strain. By further assum
that the scalar-variance spectrum was kept steady by the
tinual resupply of scalar-variance from lower wave numbe
he derived the form of the spectrum for wave numbers ly
within the viscous subrange of the velocity field. Kraichna3

extended this investigation by considering the effects of fl
tuations in the rates of strain in space and time. He sho
that Batchelor’s spectral form in the viscous-diffusive su
range, for which the smoothing effects of diffusivity are im
portant, is substantially modified but thek21 spectral form in
the viscous-convective subrange remains unchanged. Th
sensitivity of thek21 spectral law to the underlying repre
sentation of the velocity field suggests that this theoret
result may be exact.4

a!Phone: ~852! 23587448; Fax: ~852! 23581643; electronic mail:
chasnov@math.ust.hk
1191070-6631/98/10(5)/1191/15/$15.00
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Early experiments using grid turbulence,5 ocean
measurements6 and pipe turbulence7 yielded reasonable
agreement with thek21 viscous-convective subrange spe
trum. A more recent experiment measuring thickness fl
tuations of a soap film in two-dimensional turbulence a
yielded ak21 spectral slope.8 However, other recent experi
ments in a turbulent jet9 and in mixing in two-dimensiona
turbulence,10 both at very high Schmidt numbers, show n
indication of a k21 subrange. Numerical experiments
forced statistically stationary turbulence11–13 support the ex-
istence of ak21 subrange, although decaying flow simul
tions do not.14 Part of the purpose of this present paper is
establish conditions for which nonstationary turbulence m
exhibit Batchelor’sk21 viscous-convective subrange spe
trum.

Batchelor’s1 seminal work on the large Schmidt numb
passive scalar and also subsequent theoretical work2–4 ex-
plicitly assumed a steady scalar-variance spectrum in the
cous subrange. In light of the contradictory experimental e
dence, an important question arises as to just how statio
the flow statistics must be for an assumption of steadines
be reasonable. For instance, the concept of a universal s
tical equilibrium of the small scales of a high Reynolds nu
ber three-dimensional turbulence is well-known.15 The char-
acteristic time of inertial range eddies at high Reyno
numbers can be written as (k3E(k,t))21/2, whereE(k,t) is
the usual three-dimensional energy spectrum, and in the
ertial subrangeE}k25/3 so that the characteristic time de
creases ask22/3. At high Reynolds number, the inertial rang
is of lengthy extent so that one can expect that the short t
scale of the inertial range eddies relative to that of the ove
energy decay makes an equilibrium assumption reasona

The above argument can be made more quantitative,
1 © 1998 American Institute of Physics
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it is useful to do so here for later comparison with the sca
result. For wave numbers lying within the equilibrium su
range, external sources of energy production may be
glected and the energy spectrum evolution equation can
written as

]

]t
E~k,t !5T~k,t !22nk2E~k,t !, ~1!

whereT(k,t) represents the nonlinear transfer spectrum. T
Kolmogorov similarity hypothesis for three-dimensional tu
bulence supposes that the energy and transfer spec
scales with the energy dissipation ratee and the viscosityn,
alone. One has dimensionally

E~k,t !5~en5!1/4Ê~ k̂!, T~k,t !5~en!3/4T̂~ k̂!, ~2!

with

k̂5k/kd , kd5~e/n3!1/4, ~3!

wherekd is the Kolmogorov, or dissipation, wave numbe
Viscous forces strongly damp the Fourier components of
velocity fluctuations fork@kd . The similarity spectraÊ( k̂)
and T̂( k̂) are assumed to be stationary in the rescaled c
dinates.

Changing independent variables in~1! from (k,t) to
( k̂,t8), with t85t, using

]

]t
5

]

]t8
2

1

4
e21

de

dt8
k̂

]

] k̂
, ~4!

Eq. ~1! is transformed into

xF k̂
d

dk̂
Ê~ k̂!2Ê~ k̂!G5T̂~ k̂!22k̂2Ê~ k̂!, ~5!

with

x5
1

2

d

dt
~n/e!1/2. ~6!

If x5x(t) depends explicitly on time as would commonly b
expected for a nonstationary turbulence, then~5! contradicts
the assumption that the similarity spectra are station
However, if one supposes that the dissipation ratee is inde-
pendent of viscosity in the limitn→0 as is usually assume
for three-dimensional turbulence, thenx goes to zero asn1/2

so that the time-dependent left-hand side of~5! becomes neg-
ligible with respect to the right-hand side at sufficiently hi
Reynolds numbers. A stationary similarity state can then
ist, and a quasi-steady assumption for the spectrum (x50) is
appropriate.

However, the physics of the viscous-convective su
range for large Schmidt numbers differs notably from t
inertial subrange. The characteristic time scale of a sc
blob in this subrange is independent of wave number, be
set by the time scale associated with the large-scale strai
of the velocity field. A statistical equilibrium for the scala
field may not occur even if the diffusivityD goes to zero if
the Reynolds number of the turbulence is not sufficien
large. This point will be made quantitative in the followin
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section, where we derive an explicit criterion which must
satisfied before the scalar-variance spectrum can be assu
quasi-steady.

II. STATISTICAL EQUILIBRIUM OF THE SCALAR

The passive scalar transport equation is given by

]u

]t
1“–~uu!5D¹2u1 f u , ~7!

whereu is the turbulent velocity field andf u represents some
generic source of scalar fluctuations. The time-evolut
equation for the spherically-integrated scalar-variance sp
trum Eu(k,t) obtained from~7! may be written as

]

]t
Eu~k,t !5Tu~k,t !22Dk2Eu~k,t !1Fu~k,t !, ~8!

where Tu(k,t) is the scalar-variance transfer spectru
Fu(k,t) is the production spectrum of scalar variance, a
Eu has been defined so that the scalar variance is twice
integral:

^u2&5E
0

`

2Eu~k,t !dk. ~9!

We also define here the scalar-variance dissipation and
duction rates,eu andeu

f , respectively, by

eu52DE
0

`

k2Eu~k,t !dk, eu
f 5E

0

`

Fu~k,t !dk; ~10!

so that 1
2 d^u2&/dt5eu

f 2eu . The dissipation and productio
rates are unequal if the scalar statistics are nonstationary
the remainder of this work, we assume that the product
spectrumFu(k,t) is negligible in the viscous subrange.

Following Batchelor,1 we suppose that for large Schmid
numbers the scalar-variance and transfer spectra in the
cous subrange of the velocity field can be made stationar
coordinates scaled by the scalar-variance dissipation rateeu ,
the diffusivity D, and a rate-of-strain parameter that we ta
here to be (e/n)1/2, which completely characterizes the effe
of the large-scale velocity field on the small-scale sca
field.

Now from dimensional analysis, one obtains

Eu~k,t !5euD1/2~n/e!3/4Êu~ k̂!,
~11!

Tu~k,t !5euD1/2~n/e!1/4T̂u~ k̂!,

with

k̂5k/kB ; kB5~e/nD2!1/4, ~12!

where kB is called the Batchelor wave number. Diffusio
strongly damps the scalar fluctations fork@kB . Again, the
similarity spectraÊu( k̂) andT̂u( k̂) are assumed to be station
ary. Although we use the same symbolk̂ for the scaled wave
number as previously, the two definitions differ by a fact
of s1/2.

Changing variables in~8! from (k,t) to (k̂,t8) using~4!,
Eq. ~8! ~with Fu negligible! is transformed into
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~y13x!Êu~ k̂!1xk̂
d

dk̂
Êu~ k̂!5T̂u~ k̂!22k̂2Êu~ k̂!, ~13!

with x defined in~6! and

y5~n/e!1/2eu
21 deu

dt
. ~14!

For a general nonstationary flow,x5x(t) and y5y(t)
are explicit functions of time and~13! contradicts the as
sumption of stationary similarity spectra. We encounte
this difficulty before when considering the energy spectr
in the universal equilibrium subrange~5!. There we noted
that an assumption of high Reynolds numbers (n→0) in
three-dimensional turbulence was sufficient to permit the
istence of a similarity state. Again we find that high Re
nolds numbers are required forx andy to be negligibly small
in nonstationary flow since in three dimensions they are b
proportional ton1/2. Both x and y are independent of the
diffusivity D as D→0 so large Schmidt numbers by them
selves are insufficient to admit a similarity state solution.

For conditions of a nonstationary turbulence at low-
moderate Reynolds numbers, we must conclude that in g
eral Batchelor’s similarity state of the form~11! cannot occur
even though the Schmidt number may be large. Howeve
special situation could arise ifx and y in ~6! and ~14! are
constant in time. This is possible only in one of two way
First, the enstrophy,e/n, is constant in time so thatx50, and
eu decays exponentially so thaty is a nonzero constant. Sec
ond, the enstrophy becomes asymptotically proportiona
t22 during the turbulence decay so thatx is a nonzero con-
stant, andeu evolves as a power law in time so thaty is
constant~possibly zero!. Interestingly, at22 decay law for
the enstrophy was recently found18 for decaying two-
dimensional turbulence at constant Reynolds number. T
this two-dimensional decaying flow provides a good way
test the above theoretical analysis, and it is of use to un
stand the theoretical consequences of nonzero constant
ues ofx andy, which we do now in the next section.

III. APPLICATION OF THE BATCHELOR AND
KRAICHNAN TRANSFERS TO NONSTATIONARY
FLOW

A. The Batchelor transfer

Implicit in Batchelor’s work on high Schmidt numbe
fluids is a form forTu(k,t) in the viscous subrange:1,2

Tu
B52a~e/n!1/2

]

]k
~kEu!, ~15!

where a21 is the nondimensional proportionality consta
appearing in thek21 viscous-convective subrange spectru
For three-dimensional turbulence, Batchelor originally e
mateda21'2, while Gibson,16 by considering the root mea
square of the local values of the least principle rate of str
proposed the bounds

),a21,2). ~16!
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Using the Batchelor form for the transfer spectrum a
~11!, Eq. ~13! becomes

~a1x!k̂
d

dk̂
Êu~ k̂!52~a13x1y12k̂2!Êu~ k̂!, ~17!

which may be integrated ifx andy are constants. The solu
tion is

Êu~ k̂!5ck̂2~11z! exp@2 k̂2/~a1x!#, ~18!

where

z5~2x1y!/~a1x!. ~19!

A nonzero constant value ofz results in a deviation from the
Batchelor k21 viscous-convective subrange spectrum. T
constantc may be determined by imposing the normalizati
condition

E
0

`

k̂2Êu~ k̂!dk̂5
1

2
; ~20!

one finds

c5@~a1x!12 z/2G~12z/2!#21, ~21!

where G is the usual gamma function, andG(1)51. For
stationary flow,x5y5z50, c5a21, and ~18! reduces to
the original Batchelor spectrum1 in the viscous subrange of
large Schmidt number fluid.

The form of the spectrum in the viscous-convective su
range for which the effects of molecular diffusivity are ne
ligible may be recovered from~18! in the limit of small k̂,
for which the exponential factor approaches unity. The
mensional form is

Eu~k,t !5ceu~n/e!1/2k21~k/kB!2z, ~22!

where kB is given by ~12!. Equation~22! differs from the
Batchelork21 spectral form by a factor of (k/kB)2z.

The viscous-convective subrange form~22! presents a
paradox in that this subrange should be independent of
diffusivity D, whereaskB depends onD. A resolution of this
paradox is obtained by assuming that the scalar-variance
sipation rateeu remains an explicit function ofD even as
D→0. That is, forD to cancel from~22!, eu must scale like

eu5s2z/2x, ~23!

as s→`, wherex is independent ofs in this limit. This
explicit scaling ofeu on s is simply a dimensional conse
quence of Batchelor scaling and a spectral power law dif
ent thank21.

B. The Kraichnan transfer

Considering the effect of fluctuations in the rate of stra
in space and time, Kraichnan3,4 proposed a model for the
transfer spectrum in the viscous-convective subrange wh
differs from the Batchelor form,~15!, yet still satisfies Batch-
elor scaling,~11!. Kraichnan’s transfer spectrum for turbu
lence inN spatial dimensions can be written as4

Tu
K52a~e/n!1/2

]

]k FkEu2
k

N

]

]k
~kEu!G . ~24!
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As observed directly from~24!, the Batchelor form for the
transfer~15! is recovered as the number of spatial dime
sions N approaches infinity. Here, we will consider th
physically interesting valuesN52 and 3, corresponding to
two- and three-dimensional turbulence. The Kraichnan tra
fer vanishes both in thek21 viscous-convective subrang
and whenEu(k)}kN21, corresponding to an equipartitio
distribution of scalar-variance. Batchelor’s transfer only va
ishes for thek21 spectrum. ThekN21 spectrum appears in
numerical simulations of the scalar equation when the di
sivity is taken to be identically zero and all the Fourier co
ponents of the scalar field with wave number magnitu
greater than some givenkm are truncated. The Kraichna
transfer has the potential to predict the scalar-variance s
trum resulting from this~unphysical! numerical experimen
while the Batchelor transfer does not. In this sense, one
view the Kraichnan model as providing additional phys
which is missing from the original Batchelor model.

Analytical solution of the equations using the Kraichn
form for the transfer spectrum is somewhat more com
cated than that for the Batchelor form and it is worthwh
first to review the results for stationary flow.4,17 Using ~11!,
~13!, and~24! with x5y50, one has

a
d

dk̂
F k̂Êu~ k̂!2

k̂

N

d

dk̂
~ k̂Êu~ k̂!!G12k̂2Êu~ k̂!50. ~25!

Simplification of ~25! is possible by changing variables to

r 5~2Na21!1/2k̂, Êu5a21k̂21f ~r !, ~26!

after which~25! is transformed to

f 92
~N21!

r
f 82 f 50, ~27!

where the prime denotes differentiation with respect tor .
Boundary conditions are given byf (`)50, and from the
normalization condition~20!, which becomes

E
0

`

r f ~r !dr5N. ~28!

Multiplying ~27! by r , integrating, and applying the bound
ary condition at infinity, the normalization condition~28!
above is determined to be equivalent tof (0)51.

For N53, the unique solution to~27! which satisfies the
above boundary conditions is given by

f ~r !5~11r !exp~2r !; ~29!

for N52, a correspondingly simple analytical solution is u
obtainable. However, asymptotic solutions for small a
large r can be determined to be

f ~r !5~11 1
2 r 2 ln r 1O~r 2!!, r→0; ~30!

f ~r !}r 1/2 exp~2r !, r→`. ~31!

Numerical solution forf (r ) over the full range ofr is most
easily obtained by integrating~27! from a sufficiently large
value of r so that~31! is valid, to zero, and adjusting th
unknown proportionality constant in~31! to make f (0)51.
-
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e
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We will make use of such a numerical solution forf in Sec.
IV when we compare the Kraichnan spectrum to our forc
two-dimensional numerical simulations.

For nonstationary flow with constantx andy, the change
of variables given by~26! transforms~13! into

r 2f 92FN211
Nx

a G r f 82F r 21
N~2x1y!

a G f 50, ~32!

with boundary conditionf (`)50 and normalization condi-
tion ~28!. The viscous-convective subrange behavior (r→0)
of the spectrum is found from~32! by neglecting ther 2f
diffusion term. Equation~32! then becomes an Euler equ
tion with solution

f ~r !}r 2s, ~33!

corresponding to a viscous-convective subrange of the f
k2(11s). Obtaining the quadratic equation fors, and choos-
ing the root so that the Batchelor transfer solutions5z, with
z given by ~19!, is obtained asN→`, one determines

s5
N~a1x!

2a F S 11
4az

N~a1x! D
1/2

21G . ~34!

Kraichnan’s transfer spectrum thus predicts for nonzerox or
y a modification to the viscous-convective subrange sp
trum different than the Batchelor transfer spectrum~see~18!
and ~19!!, though both yield ak21 spectrum for stationary
flow.

The asymptotic solution of~32! as r→` is given by

f ~r !}r ~1/2! ~N211 Nx/a! exp~2r !, ~35!

which reduces to the asymptotic forms obtained from~29!
and ~31! whenx50 andN53 or 2, respectively.

A complete solution forf (r ) requires numerical integra
tion of ~32! from some large value ofr using initial condi-
tions obtained from~35!, into zero, with known values ofa,
x andy. The proportionality constant in~35! is obtained by
requiring f (r ) to satisfy the normalization condition given b
~28!. Such a numerical solution will be obtained in Secs.
and VII, when we compare the above theoretical results
numerical simulation data.

The following sections test the theoretical ideas just
veloped. In Sec. IV, numerical simulations of forced tw
dimensional turbulence with quasi-stationary velocity a
scalar statistics are presented and compared to the Batc
and Kraichnan theoretical results. The Kraichnan resul
found to be superior, and a numerical value fora, the only
free parameter in the model, is determined. In Secs. V–V
the theoretical results are compared to numerical simulat
of nonstationary, decaying two-dimensional turbulence
constant Reynolds number.

IV. PASSIVE SCALAR TRANSPORT BY QUASI-
STATIONARY TWO-DIMENSIONAL TURBULENCE

We now present results from numerical simulations
passive scalar transport by forced two-dimensional tur
lence at low Reynolds numbers to assess the accurac
Batchelor scaling and to attempt and exhibit explicitly t
spectral formk21 in the viscous-convective subrange. The
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present calculations confirm and supplement previous w
by Holzer and Siggia11 which found ak21 subrange for a
forced passive scalar field dissipated by hyperdiffusion
transported by a two-dimensional velocity field evolved
solving a restricted Euler equation.

The pseudo-spectral numerical method used here
simulate a two-dimensional turbulent velocity field in a p
riodic square of length 2p is described in Chasnov.18 The
Fourier transforms of the~forced! vorticity and scalar equa
tions are integrated in time using

]

]t
@v̂ exp~nk2t !#52exp~nk2t !@“–~ ûv)1 f̂ v#, ~36!

]

]t
@ û exp~Dk2t !#52exp~Dk2t !@“–~ ûu)1 f̂ u#, ~37!

wherek5Ak1
21k2

2 and the carets denote the Fourier coe
cients at wave numberk. The Fourier transforms of the vor
ticity forcing term f̂ v(k,t) and scalar forcing termf̂ u(k,t)
are taken to be delta-function correlated in time. Their n
merical implementation are given by

f̂ v~k!5F Fv~k!

pk~dt !G
1/2

exp~ i2pR1!, ~38!

f̂ u~k!5F Fu~k!

pk~dt !G
1/2

exp~ i2pR2!, ~39!

wheredt is the time-interval over whichf̂ v and f̂ u are kept
constant, andR1 andR2 are random uniform deviates chose
independently at the beginning of each time interval sub
to the complex conjugate symmetry off̂ v and f̂ u . The forc-
ing spectraFv(k) andFu(k) are specified to be

Fv~k!5
h f

~2p!1/2s
exp@2~k2kf !

2/2s2#, ~40!

Fu~k!5
eu

f

~2p!1/2s
exp@2~k2kf !

2/2s2#, ~41!

whereh f andeu
f are the average production rates of one-h

the mean-square vorticity and scalar variance,kf is the forc-
ing wave number, ands is the width of the forcing in wave
space. In the computations presented here,h f eu

f and s are
taken to be unity, andkf54.

The time integration is performed using the stand
fourth-order four-step Runge–Kutta method, so that the r
dom numbers generated in the second step are used wi
change in the third step~both steps occurring at the middle o
the time interval!, and the random numbers regenerated
the fourth step are used again in the first step of the n
integration. The time intervaldt is given bydt5Dt/2, where
Dt is the time step associated with each integration s
determined at the beginning of each step using a Coura
Friedrichs–Lewy condition~see Ref. 18 for details!. Multiple
realizations of the vorticity and scalar fields are evolved
multaneously until the statistics become quasi-stationary
ter which time averaging is performed. It was difficult
obtain truely stationary two-dimensional turbulence and
turbulent energy was observed to slowly drift upwards o
rk
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e
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long-time scales. Schmidt numbers simulated correspon
s51, 10, 100 and 1000. The largest Schmidt number sim
lation was performed using 10242 grid points and 16 inde-
pendent realizations of the velocity and scalar fields. T
Reynolds number of the turbulence, defined as

R5
^u2&

^v2&1/2n
, ~42!

had values lying between 25,R,65, corresponding to a
relatively low Reynolds number turbulence. The range inR
corresponds to a drift upwards in the Reynolds number o
long time scales. The higher Schmidt number scalars w
simulated by restarting the calculations using interpola
fields saved at lower Schmidt numbers~and lower resolu-
tions!, so that the net effect is that the lower Schmidt numb
runs were performed in the lower range of Reynolds nu
bers and the higher Schmidt number runs in the upper ra
The lack of exact stationarity of the energy statistics does
seem to have had a major impact on our results, appare
because the viscous subrange of the scalar-variance spec
is quasi-stationary due to the smallness of the nondim
sional groupsx(t) andy(t) as discussed in Sec. II.

In Fig. 1, a representative enstrophy spectrum~dashed
line! and the scalar-variance spectra~solid lines! for the dif-
ferent Schmidt numbers are plotted. It is evident that as
Schmidt number increases, the scalar-variance contai
scales extend to much larger wave numbers than the en
phy containing scales. Fors51, the enstrophy and scala
variance spectra are comparable, though it is to be noted
the enstrophy spectrum is larger than the scalar-varia
spectrum at the smallest wave numbers. This is presumab
consequence of the inverse energy cascade of t
dimensional turbulence without an analagous inverse c
cade of scalar variance. The finite size of the periodic co
putational box prevents the inverse cascade of energy to
larger-and-larger scales.19 In an infinite box, the energy o
the turbulence would increase indefinitely, and it is like
that the difficulty in attaining statistically-stationary energ

FIG. 1. Enstrophy and scalar-variance spectra for forced two-dimensi
turbulence. The enstrophy spectrum is represented by the dashed lin
the scalar-variance spectra by the solid lines, labeled by their respe
Schmidt numbers.
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statistics is due to the inverse cascade. The scalar field a
highest Schmidt numbers51000 is somewhat under
resolved.

In Fig. 2, the wave numbers and scalar-variance spe
are rescaled using Batchelor scaling,~11!. Note that the rate-
of-strain parameter (e/n)1/2 is equal to the root-mean-squar
vorticity ^v2&1/2, which is a more meaningful representatio
in two-dimensional turbulence. Apart from wave numbe
less than or close to the forced wave numbers, a reason
collapse of the spectra for the different Schmidt number
observed. Ask̂→0, an approximate inertial-convective su
range proportional tok̂21 is seen as expected for stationa
turbulence.

In Fig. 3, we display a fit of the Kraichnan theoretic
scalar-variance spectrum discussed in Sec. III to thes
5100 numerical results obtained by minimizing the mea
squared error between the theoretical and simulation sc
variance dissipation spectra (k̂2Êu) as a function of the

FIG. 2. Batchelor-scaled scalar-variance spectra for forced two-dimens

turbulence. Ak̂21 spectrum is seen to appear fork̂!1.

FIG. 3. Batchelor-scaled scalar-variance dissipation spectrum for fo
two-dimensional turbulence withs5100. Numerical simulation results
~points! are compared to the Kraichnan spectrum~solid line! and Batchelor
spectrum~dashed line! with a2156.0.
the

ra

s
ble
is

-
ar-

single free parametera in the Kraichnan model. Only the
data for wave numbers greater than eight were used~corre-
sponding to the eighth point in Fig. 3!. We have determined
that the best fit to this particular simulation spectrum occ
for the valuea2156.0. In the figure, the resulting Kraichna
scalar-variance dissipation spectrum~solid line! is compared
to the numerical simulation spectrum~points!, and excellent
agreement is observed. For comparison, the Batchelor s
trum ~dashed line! with a2156.0 is also plotted, and it is
evident that the Kraichnan spectrum provides a much be
fit to the data. Lowering the value ofa can reduce the erro
between the Batchelor spectrum and simulation results,
the fit remains relatively poor.

A comparison between numerical simulations and th
retical spectra was recently presented by Boguckiet al.13 for
three-dimensional turbulence with rather similar results.
that work, a least-squares fit of the Kraichnan spectrum
the simulation data resulted in a value ofa2155.26, which
is not much different than the value of 6.0 obtained here. T
Batchelor spectrum was also observed to give a relativ
poorer fit. We also note that the best fit value ofa21 from
our simulation data depends slightly on the Reynolds num
of the flow field. This is presumably a low Reynolds numb
effect.

For simplicity, in the remainder of this paper we take
our theoretical model the Kraichnan form of the trans
spectrum,~24!, with a2156.0. In the following sections, we
will compare the results of this model to the transport of hi
Schmidt number scalar fields in nonstationary flow situ
tions.

V. DECAYING TWO-DIMENSIONAL TURBULENCE AT
CONSTANT REYNOLDS NUMBER

We begin our numerical study of nonstationary flow
first reviewing the physics of two-dimensional turbulence d
cay at constant Reynolds number. Previously18 we showed
that for an initial two-dimensional flow field less than a tra
sitional, or critical, Reynolds numberRc , linear final period
of decay solutions result for which the Reynolds numb
R(t), defined in~42!, decreases to zero asymptotically. F
initial Reynolds numbers greater thanRc , the flow field
evolves with asymptotically increasingR(t). Exactly at
R(0)5Rc the turbulence decays asymptotically at const
Reynolds number, denoted asRc8 . The main purpose of this
section will be to show that this decay takes place with
constant and nonzero value for the parameterx, defined in
~6!.

The decay of the turbulence at constant Reynolds nu
ber Rc8 allows exact analytical solution for the asymptot
evolution of the energy and enstrophy, related by

d

dt
^u2&522n^v2&. ~43!

Replacing^v2& in favor of ^u2& and Rc8 by means of~42!,
one obtains the closed evolution equation

d

dt
^u2&52

2

nRc8
2 ^u2&2, ~44!

al

d
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which has analytical solution. The asymptotic solution
~44! at large times is given by18

^u2&5 1
2 nRc8

2t21, ^v2&5 1
4 Rc8

2t22, ~45!

where the solution for the enstrophy is determined from~43!.
The only unknown parameter in~45! is Rc8 and its computa-
tion is easily obtained from relatively low resolution nume
cal simulations.

Although the precise value of the asymptotically co
stant Reynolds numberRc8 depends on the particular choic
of initial conditions for the flow field, there is another no
dimensional group which takes a unique value. Taking
time derivative of the Reynolds number~42!, and using~43!
and the corresponding time-evolution equation for the
strophy in two-dimensional turbulence, given by

d

dt
^v2&522n^~“v!2&, ~46!

one determines the following evolution equation forR(t):

d

dt
R5~r222!^v2&1/2, ~47!

where the nondimensional groupr is defined by

r5
^u2&1/2^~“v!2&1/2

^v2&
. ~48!

From ~47!, two-dimensional turbulence decay at consta
Reynolds number is observed to occur whenr5A2.

The parameterx, defined in ~6!, is now easily deter-
mined. Using the identitye/n5^v2& and~45!, one finds that
x is nonzero during the decay with constant value

x51/Rc8 . ~49!

It is also clear thaty, defined in~6!, will be constant for the
transport of a passive scalar field providedeu evolves as a
power law in time.

Furthermore, at the critical Reynolds number the ene
spectrumE(k,t) decays self-similarly over all wave num
bers. If we impose the normalization of the self-similar sp
trum Ê( k̂) to be

E
0

`

Ê~ k̂!dk̂5E
0

`

k̂2Ê~ k̂!dk̂5
1

2
, ~50!

then the scaling of the spectrum and wave number is gi
explicitly by

E~k,t !5
&

2
n3/2Rc8

2t2 1/2Ê~ k̂!; k̂5~2nt !1/2k. ~51!

We note here that the factors ofRc8 in this scaling differ from
that obtained using the Kolmogorov scaling of~2! and ~3!,
though this is of little importance.

We now demonstrate these results by numerical sim
tion. The initial conditions of the flow field are the same
used previously,18 with the initial energy spectrum specifie
in general by
f

-

e

-

t

y

-

n

a-

E~k,0!5
1

2
anu0

2kp
21S k

kp
D 2n11

exp F2S n1
1

2D S k

kp
D 2G ,

~52!

with an5(2n11)n11/2nn! and n53. The initial values of
^u2& and ^v2& are determined from~52! to be

^u2&~0!5u0
2 , v0

2[^v2&~0!5
2n12

2n11
u0

2kp
2 , ~53!

so that the initial Reynolds number~42! of the turbulence
with n53 is given by

R~0!5A7

8

u0

kpn
. ~54!

In Fig. 4, the evolution of the Reynolds numberR(t)
versust(t) is shown for initial values above and below th
critical valueRc , and atRc515.4, where

t5E
0

t

dt^v2&1/2. ~55!

The value forRc obtained here is slightly less than that r
ported earlier18 due to the better resolution of the initial con
ditions in the present simulations. In Fig. 5, the decay of
energy and enstrophy are compared to the analytical res
~45!, with Rc8512.0 obtained from Fig. 4. Excellent agre
ment between the simulation and the theoretical scaling l
is observed. As seen from Fig. 4, the analytical solut
given by~45! is unstable to perturbations inR(0)5Rc , with
values slightly lower or higher resulting in asymptotical
decreasing or increasing Reynolds numbers, respectively
other words,r5A2 is an unstable fixed point of~47!.

In Fig. 6, the time evolution of the energy spectru
E(k,t)/u0

2l 0 versus wave numberkl0 , with l 05u0 /v0 , at
the times t50,5,10,. . . ,30 is plotted. The spectra are
smoother than those computed earlier18 as a consequence o
ensemble-averaging over a large number~64! of independent
realizations. In Fig. 7, the self-similar spectrumÊ( k̂) versus

FIG. 4. Time evolution of the Reynolds numberR(t) for initial values
R(0)513, 15.4 and 18.
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k̂ is plotted at the timest510,15,. . . ,30. A near-perfect
collapse of the spectra is found indicating that the sca
given by ~51! is exact.

VI. PASSIVE SCALAR TRANSPORT WITH UNIFORM
MEAN GRADIENT

A. Theoretical considerations

We now consider the transport of a passive scalar fi
with nonzero uniform mean gradient. The transport equa
for the fluctuating scalar field is given by~7!, where the
source of scalar variance is

f u5bu1 . ~56!

In ~56!, b is the negative of the gradient of the mean sca
field in thex1 direction, assumed here to be constant in sp
and time. The scalar fluctuations are taken to be zero at
initial instant and are subsequently generated by velo
fluctuations along the mean gradient.

FIG. 5. Time evolution of the energy and enstrophy forR(0)515.4 com-
pared to the analytical results~dashed lines!.

FIG. 6. Evolution of the energy spectrum in time withR(0)515.4. The
times plotted correspond tot50,5,10,. . . ,30.
g
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We thus consider in this section only the situation f
which bÞ0, its precise value being unimportant. In the ne
section we consider further the freely-decaying scalar pr
lem with b50.

The scalar equation~7! introduces a single additiona
nondimensional group to the problem: the Schmidt num
s. Our study of the viscous-convective subrange is c
cerned with the asymptotic statistical laws of the scalar
cay at larges.

An equation for the scalar variance may be determin
from ~7! using ~56! to be

d^u2&
dt

52b^u1u&22eu , ~57!

where the scalar-variance dissipation rate is defined as

eu5D^~“u!2&. ~58!

We will later see that a closure of~57! is possible for turbu-
lence decay at constant Reynolds number asD→0, but at
this point we ascertain the asymptotic evolution of the sca
variance by dimensional arguments alone.

From the scalar equation~7! combined with~56!, it is
evident that the scalar field itself is proportional tob. If we
further assume that, asymptotically, the only other dim
sional quantities of relevance are the viscosityn ~or diffusiv-
ity D! and the timet, then the only dimensionally correc
form for the scalar variance is

^u2&}b2nt, ~59!

where the coefficient of proportionality can depend only
the two nondimensional groups of our problem, namelyRc8
which is a fixed constant, ands.

It is reasonable to suppose that the three separate t
in the budget equation for the scalar variance,~57!, have the
same time dependence so that from~59!, the scalar-variance
cascade rateeu must become constant, asymptotically. Th
we have determined that the parametery, defined in~14!, is
identically zero for this flow.

FIG. 7. Rescaling of the energy spectrum of Fig. 6. The times plot
correspond tot510,15,. . . ,30.
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In summary, for decaying two-dimensional turbulence
constant Reynolds number transporting a passive scalar
with nonzero uniform mean gradient, the parametersx andy
introduced in Secs. I and II are constants, independen
time. The results of Sec. III are thus applicable. In particu
with x given by~49! andy50, the Kraichnan transfer spec
trum predicts ak2(11s) viscous-convective subrange spe
trum, with s given by @see~34!#

s5
11aRc8

aRc8
F S 11

4aRc8

~11aRc8!2D 1/2

21G'0.56, ~60!

where we have usedRc8512.0 anda2156.0. The viscous-
convective subrange thus predicted for this flow has appr
mate power-law formk21.56, significantly different than the
stationary solutionk21.

B. Numerical simulations

We now present numerical results for the scalar sta
tics. The number of grid pointsN in the two directions and
the number of independent realizationsM over which an
ensemble average is taken is shown in Table I for the si
lated Schmidt numbers. Also shown is the value ofkp chosen
for which the initial energy spectrum~52! is maximum. For
larges, better small-scale resolution is necessary so tha
ther the number of grid pointsN must be increased or th
value ofkp decreased. The simulations fors51 and 10 were
performed with 64 independent realizations running simu
neously on 64 processors of a parallel machine, with
statistical averaging performed across processors. This
lowed for the writing of a very efficient numerical code. Th
higher resolution calculations were performed with sin
realizations spread out on multiple processors, and with
the realizations done in parallel.

The logarithmic derivative in time~power-law exponent!
of the scalar variance versus the normalized timet, ~55!, for
all of the different Schmidt numbers is plotted in Fig. 8. T
logarithmic derivative is two at the smallest times indicati
a t2 initial growth of scalar fluctuations due to a consta
fluid motion along the mean scalar gradient~see ~7! and
~56!!. Asymptotically, the power-law exponent becomes o
~indicated by a dashed line! for all Schmidt numbers, as pre
dicted in ~59!. The large fluctuations in the curve fors
5104 are due to the poor statistical average. This calcula
was too expensive to make additional averaging worthwh

For s5100, the time evolution of the scalar-varian
spectrumEu /(b2l 0

3) is shown in Fig. 9. At the earliest time
of evolution, the scalar field is slightly under-resolved, b

TABLE I. For bÞ0, resolutionN2 and realizationsM for scalar with
Schmidt numbers. The wave numberkp is that for which the initial energy
spectrum is maximum.

s N23M kp

1 5122364 64
10 5122364 64
102 10242316 64
103 10242316 16
104 409623 2 16
t
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becomes sufficiently well-resolved at the latest times. T
times plotted correspond tot55,10, . . . ,35, with t defined
in ~55!. The largest scales of the flow are still well captur
by the computational box at the last time computed.

The scalar-variance spectra at the timest
520,25, . . . ,35 arenormalized using Batchelor scaling~11!

and plotted versus the normalized wave numberk̂5k/kB in
Fig. 10. The spectra are observed to collapse over all w
numbers, indicating that the scalar-variance spectr
evolves in a completely self-similar fashion together with t
energy spectrum. This self-similar evolution in time was o
served for all simulated Schmidt numbers.

Of primary interest to us here is the plot of the differe
Schmidt number scalar-variance spectra normalized
Batchelor scaling. This is shown in Fig. 11, where the resu
for s51,10,102,103,104 are plotted at the times correspon
ing to t535,35,35,30,20, respectively. A reasonable c
lapse of all the spectra, excepting the lowest wave numb
not contained in the viscous subrange, is observed. A

FIG. 8. Time evolution of the power-law exponent of the scalar-variance
nonzerob. The solid lines are the results of the simulations for Schm
numbers 1,10, . . . ,104 and the dashed line is the theoretical result.

FIG. 9. Evolution of the scalar-variance spectrum in time withs5100. The
times plotted correspond tot55,10,. . . ,35.
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shown in Fig. 11 by the dashed line is the spectrum obtai
using the Kraichnan form of the transfer,~24!, with a21

56.0, x51/Rc8 , andy50. Good~but not perfect! agreement
between the simulation and theoretical results is obser
including the prediction of a viscous-convective subrange
approximate power-law formk21.56.

A secondary prediction of the theoretical analysis is
dependence of the scalar-variance dissipation rateeu on the
anomalous power-law exponent of the viscous-convec
subrange.~For a discussion with respect to the Batche
form for the transfer, see the paragraph preceeding~23!.! The
prediction using Kraichnan’s form for the transfer is

eu5s2s/2x, ~61!

wherex is independent ofs, ands is given by~60!. In Fig.
12, the scalar-variance dissipation rateeu /(b2l 0

2v0) versus
time v0t is plotted for all the Schmidt numbers. Also show
by the dashed lines are the predictions of~61! with s
50.56, obtained by using as a reference value the nume

FIG. 10. Rescaling of the scalar-variance spectrum of Fig. 9. The ti
plotted correspond tot520,25,. . . ,35.

FIG. 11. Batchelor-scaled scalar-variance spectra for alls. The dashed line
is the theoretical result obtained using the Kraichnan form for the trans

For comparison, the power lawk̂21.56 is shown by the dotted line.
d

d,
f

e

e
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al

simulation asymptotic resulteu /(b2l 0
2v0)50.16 when s

5100. Exceptings51, it is observed that~61! agrees rea-
sonably well with the data. Thes5104 computation was not
evolved sufficiently long to attain clear asymptotics, but t
trend is in agreement with the theoretical prediction.

It is evident from Fig. 12 that the scalar dissipation a
proaches zero ass→`. The scalar-variance evolution equ
tion ~57! becomes in this limit

d^u2&
dt

52b^u1u&. ~62!

It thus becomes possible to close~62! with a simple hypoth-
esis on the scalar-velocity correlation; namely,

^u1u&5a^u1
2&1/2^u2&1/2, ~63!

with a constant ass→`. Since the two-dimensional turbu
lence is statistically isotropic in space, we also have

^u1
2&5 1

2 ^u2&, ~64!

with ^u2& given asymptotically by~45!. The correlation co-
efficienta may be found numerically, and Fig. 13 provides
plot for the differents simulations. An asymptotic value o
a'0.45 ass→` seems reasonable, though the statistics
the computations become noticeably poorer fors5103 and
104.

Thus combining~62!–~64!, one obtains the differentia
equation

d^u2&
dt

5&ab^u2&1/2^u2&1/2, ~65!

which may be solved analytically using~45!. The asymptotic
solution is

^u2&5a2b2nRc8
2t, ~66!

in agreement with the prediction of~59!, determined using
dimensional analysis. Here, we exhibit the proportiona
constants explicitly.

s

r.

FIG. 12. Time evolution of the scalar-variance dissipation rateeu for all s.
The asymptotic theoretical predictions are plotted as dashed lines, obta
using as a reference value the numerical result fors5100.
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VII. PASSIVE SCALAR TRANSPORT WITHOUT MEAN
GRADIENT

A. Theoretical considerations

Decaying scalar fluctuations withb50 in two-
dimensional turbulence was considered by Lesieur
Herring,20 and the decay laws were shown to depend on
form of the initial scalar-variance spectrum at low wa
numbers. Here, we assume that an asymptotic expansio
the scalar-variance spectrum can be written as

Eu~k,t !5pk~C01k2C21 . . . ! ~67!

as k→0. It is known that the low wave number coefficie
C0 is an invariant,21 and if zero initially, thenC2 is neces-
sarily nonzero and time dependent due to nonlinear tran
of scalar variance from small-to-large scales.22

Asymptotic decay laws of the scalar variance can
determined from a dimensional analysis23 by postulating a
linear dependence~due to the linearity of the scalar transpo
equation! on the leading-order coefficient of~67!, and a de-
pendence onn ~or D! andt, only. ForC0Þ0, the decay law
is determined to be

^u2&}C0~nt !21, ~68!

where the proportionality constant can depend onRc8 , which
is fixed, ands.

For C050, the asymptotic time behavior ofC2 is un-
known and we postulate it to be of power-law form

C2~ t !5ctg, ~69!

whereg.0 is an unknown exponent andc is a dimensional
constant which could depend on initial conditions. The de
law of the scalar variance is thus determined by dimensio
analysis to be

^u2&}C2~nt !225cn22t221g. ~70!

The evolution equation for the scalar variance is giv
by ~57! with b50, and using~45!, ~68!, and ~70! one can
determine the parametery, defined in~14!:

FIG. 13. Time evolution of the scalar-velocity correlation coefficienta for
all s.
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y52
4

Rc8
, C0Þ0; y52

~622g!

Rc8
, C050. ~71!

Together with x51/Rc8 , a2156.0, Rc8512.0, the ano-
molous exponents in the viscous-convective subrange spe
trum k2(11s), derived in~34! from the Kraichnan model, is
found to be

s5
11aRc8

aRc8
F S 12

4aRc8

~11aRc8!2D 1/2

21G'21.0,

C0Þ0 ; ~72!

s5
11aRc8

aRc8
F S 12

4aRc8~22g!

~11aRc8!2 D 1/2

21G
' 1

2 @~27.018.0g!1/223.0#, C050. ~73!

For C0Þ0, the viscous-convective subrange spectrum is
proximately independent of wave number, i.e., the spectr
is proportional tok0.0. For C050, if g,7/8 thens is com-
plex. Recalling~32! and~33!, a complexs implies a solution
for f (r ) which is oscillatory asr→0, taking on negative
values. This would result in the unrealizable situation o
negative scalar-variance spectrum, implying a breakdown
our theoretical analysis. On the other hand, a valueg>7/8
results ins being real, and also implies from~70! a decay
law of the scalar variance less steep thant29/8. We know of
no way to accurately estimateg other than by numerica
simulations.

B. Numerical simulations: C0Þ0

The form of our initial scalar-variance spectrum is tak
to be the same as for the energy spectrum,~52!, replacingu0

by u0 . Here, we considern50 corresponding to a low wave
number scalar-variance spectrum proportional topC0k, with
the invariantC0 given by

C05
u0

2

2pkp
2 . ~74!

The case ofC050 initially will be treated in Part C. Table II
shows the resolution, number of realizations, and value okp

used in the present calculations. A numerical simulation o
decaying scalar field without mean gradient requires m
resolution for a given value ofs than those performed with
nonzero mean gradient, primarily because of the more ra
loss of statistical sample of the largest scales. We have
only been able to obtain reasonably accurate results
maximum Schmidt number ofs5100.

TABLE II. For C0Þ0, resolutionN2 and realizationsM for scalar with
Schmidt numbers. The wave numberkp is that for which the initial spectra
are maximum.

s N23M kp

1 10242332 128
10 204823 8 128
102 204823 8 64
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In Fig. 14, the logarithmic derivative in time of the sc
lar variance versust is plotted with the dashed line showin
the expected asymptotic power-law exponent obtained f
~68!. At large times, the power-law exponent obtained fro
the simulation data deviates about 10% from the predic
exponent. This is to be compared to calculations done wi
mean scalar gradient, Fig. 8, for which agreement betw
the simulations and theoretical scalings was noticeably
ter.

In Fig. 15, the time evolution of the scalar-varian
spectrum for Schmidt numbers510 is shown, correspond
ing to the timest50,5,10,. . . ,30. It isevident that the low
wave number coefficient is an invariant, but that there is li
large scale sample remaining at the last time plotted. In
16, the times corresponding tot520,25,30 are rescaled ac
cording to Batchelor scaling,~11!. The spectrum appears t
decay self-similarly, with some deviation from self-similari
occurring at the smallest wave numbers. We suspect that
is due to the adverse influence of the periodic boundary c
ditions on the largest scales of the flow. This error may a

FIG. 14. Time evolution of the power-law exponent of the scalar-varia
for C0Þ0. The solid lines are the results of the simulations for Schm
numbers 1, 10, 102 and the dashed line is the theoretical result.

FIG. 15. Evolution of the scalar-variance spectrum in time withC0Þ0 and
s510. The times plotted correspond tot50,5,10,. . . ,30.
m
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account for the discrepancy between the theoretical de
exponent and that obtained from the simulations.

All three Schmidt number spectra at times correspond
to t530 are rescaled according to Batchelor scaling a
plotted in Fig. 17. A reasonable collapse of the three spe
is observed. Also shown by the dashed line is the spect
obtained using the Kraichnan form of the transfer witha21

56.0, x51/Rc8 , y524/Rc8 , Rc8512.0. Reasonable~but not
perfect! agreement between the simulations and the theo
ical result is observed, including the prediction of a viscou
convective subrange which is approximately independen
wave number.

A secondary prediction of the theoretical analysis is t
the scalar-variance dissipation scales likeeu5s1/2x ~from
~61! and~72!!. In Fig. 18, the dissipation rate is plotted ve
sus time together with the theoretical predictions, obtain
by using as a reference value the asymptotic decay of
scalar variance whens5100. The agreement between th

e
t FIG. 16. Batchelor scaling of the scalar-variance spectrum of Fig. 15.
times plotted correspond tot520,25,30.

FIG. 17. Batchelor-scaled scalar-variance spectra for alls. The dashed line
is the theoretical result obtained using the Kraichnan form for the trans

The asymptotic form of the theoretical spectrum isk̂0.0 as k̂→0.
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predicted and observed behavior is reasonable fors510 but
has substantial error fors51, for which the Schmidt numbe
is most likely too small.

C. Numerical simulations: C050

We now consider an initial scalar-variance spectr
with form ~52! andn53. The low wave number coefficient
C0 andC2 in ~67! are initially zero;C0 remains zero andC2

increases in time. Table III shows the resolution, numbe
realizations, and value ofkp used in the present calculation

In Fig. 19, the logarithmic derivative in time of the sc
lar variance versust is plotted. There does not appear to
a universal asymptotic decay exponent for this flow, and
magnitude of the decay exponent decreases with increa
Schmidt number. If~69! and ~70! are to be believed, this
implies that the exponentg increases with Schmidt numbe
From a rough estimate of the asymptotic power-law ex
nents of the scalar-variance decay, a value ofg can be de-
termined for the different Schmidt numbers. The estima
decay exponents and inferred values ofg are shown in Table
IV.

Also shown in Fig. 19 for future reference is a dash
line which indicates the value of the decay law for which t
theoretical exponents in ~73! changes from real to complex
~below the dashed lines is complex and above it is real!.

In Fig. 20, the time evolution of the scalar-varian
spectrum for Schmidt numbers510 is shown, correspond
ing to the timest50,5,10,. . . ,30. Theformation of a low

FIG. 18. Time evolution of the scalar-variance dissipation rateeu for s
51,10,100. The asymptotic theoretical predictions are plotted as da
lines, obtained using as a reference value the numerical result fors5100.

TABLE III. For C050, resolutionN2 and realizationsM for scalar with
Schmidt numbers. The wave numberkp is that for which the initial spectra
are maximum.

s N23M kp

1 10242316 128
10 204823 8 128
102 204823 8 64
103 409423 2 64
f

e
ng

-

d

d

wave number scalar-variance spectrum proportional tok3 is
evident. In Fig. 21, the times corresponding tot520,25,30
are rescaled according to Batchelor scaling,~11!. The spec-
trum is observed to decay self-similarly over all wave nu
bers.

All four Schmidt number spectra at timet525 are res-
caled according to Batchelor scaling and plotted in Fig.
The spectra are observed to collapse in the diffusion s
range, but not in the convective subrange or at the larg
scales. Also shown by the dashed lines are the spectra
tained from the Kraichnan model witha2156.0, x51/Rc8 ,
y52(622g)/Rc8 , Rc8512.0, and inferred values ofg
shown in Table IV. All of the theoretical results collapse
the diffusive subrange at largek̂ but differ at small wave
numbers. This collapse of the theoretical spectra at largk̂
can be shown from the results of Sec. III, where t
asymptotic form of the spectrum given by~35! is seen to be
independent ofy, and thereforeg. The form of the spectrum
in the convective subrange, however, does depend ong.

There is little direct numerical evidence from Fig. 22 f
a power-law form of the spectrum in the viscous-convect
subrange. Nevertheless, it is interesting to observe that
Kraichnan model for the transfer agrees reasonably well w
the simulation data for relatively small values ofs despite
predicting a complex value for the anomalous exponens
~see Fig. 19!. Apparently, for s less than about 100, a
viscous-convective subrange has not yet developed so
the range of wave numbers over which the theoretical sp

ed

FIG. 19. Time evolution of the power-law exponent of the scalar varia
for C050. The solid lines are the results of the simulations for Schm
numbers 1,10,102,103 and the dashed line separates theoretically predic
real from complex values ofs.

TABLE IV. For C050, estimated exponents of the scalar-variance and
inferred values of the exponentg.

s Decay exponent g

1 21.8 0.2
10 21.45 0.55
102 21.2 0.8
103 21.0 1.0
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trum is oscillatory is not part of the universal subrange. F
s greater than about 100,g is large enough so that the ex
ponents is real; apparently for these larger values ofs a
viscous-convective subrange of power-law form will beg
to develop. It is reasonable to expect that ass→`, the
power-law exponent of the scalar-variance decay will
proach some limiting value as will the exponentg. It seems
a value ofs much large than 1000 is required to obser
approximate asymptotic behavior.

VIII. CONCLUSIONS

We have derived necessary conditions so that a non
tionary high Schmidt number passive scalar field may foll
Batchelor scaling in the viscous-convective subrange.
three dimensions, these conditions can be approximately
isfied for large Reynolds numbers. However, Batchelor s
ing is also possible if the enstrophy of the turbulence dec
as t22. Just such a decay was recently discovered in a st
of two-dimensional turbulence decaying at constant R

FIG. 20. Evolution of the scalar-variance spectrum in time withC0Þ0 and
s510. The times plotted correspond tot50,5,10,. . . ,30.

FIG. 21. Batchelor scaling of the scalar-variance spectrum of Fig. 20.
times plotted correspond tot520,25,30.
r

-

ta-

n
at-
l-
s

dy
-

nolds number,18 and we have investigated in detail the tran
port of passive scalars by this type of decaying turbulenc

Being unstable to small perturbations, decaying tw
dimensional turbulence at constant Reynolds number is
likely to be observed in nature. Nevertheless, this flow p
vides us an interesting numerical test of Batchelor scaling
high Schmidt number fluids, and in particular a test of t
accuracy of the model scalar-variance transfer spectrum
posed by Kraichnan.4 There are some laboratory9,10 and nu-
merical experiments14 in which Batchelor’sk21 spectrum is
not observed and this has led to suggestions that Batche
result may not be universal9 or may be fundamentally
flawed.14 The present work at least provides additional n
merical support in favor of Batchelor scaling, and furth
demonstrates the accuracy of Kraichnan’s model for stat
ary and nonstationary flow situations.
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