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Preface
View the promotional video on YouTube

These are my lecture notes for my online Coursera course, Differential Equations for
Engineers. I have divided these notes into chapters called Lectures, with each Lecture
corresponding to a video on Coursera. I have also uploaded all my Coursera videos to
YouTube, and links are placed at the top of each Lecture.

There are problems at the end of each lecture chapter and I have tried to choose
problems that exemplify the main idea of the lecture. Students taking a formal university
course in differential equations will usually be assigned many more additional problems,
but here I follow the philosophy that less is more. I give enough problems for students to
solidify their understanding of the material, but not too many problems that students feel
overwhelmed and drop out. I do encourage students to attempt the given problems, but
if they get stuck, full solutions can be found in the Appendix.

There are also additional problems at the end of coherent sections that are given as
practice quizzes on the Coursera platform. Again, students should attempt these quizzes
on the platform, but if a student has trouble obtaining a correct answer, full solutions are
also found in the Appendix.

Students who take this course are expected to know single-variable differential and in-
tegral calculus. Some knowledge of complex numbers, matrix algebra and vector calculus
is required for parts of this course. Students missing this latter knowledge can find the
necessary material in the Appendix.

Jeffrey R. Chasnov

Hong Kong
January 2019

https://www.youtube.com/watch?v=eSty7oo09ZI&list=PLkZjai-2JcxlvaV9EUgtHj1KV7THMPw1w&index=2&t=13s
https://www.coursera.org/learn/differential-equations-engineers/
https://www.coursera.org/learn/differential-equations-engineers/
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Lecture 1 | Introduction to
differential equations

View this lecture on YouTube

A differential equation is an equation for a function containing derivatives of that function.
For example, the differential equations for an RLC circuit, a pendulum, and a diffusing
dye are given by

L
d2q
dt2 + R

dq
dt

+
1
C

q = E0 cos ωt, (RLC circuit equation)

ml
d2θ

dt2 + cl
dθ

dt
+ mg sin θ = F0 cos ωt, (pendulum equation)

∂u
∂t

= D
(

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
. (diffusion equation)

These are second-order differential equations, categorized according to the highest order
derivative.

The RLC circuit equation (and pendulum equation) is an ordinary differential equa-
tion, or ode, and the diffusion equation is a partial differential equation, or pde. An ode
is an equation for a function of a single variable and a pde for a function of more than one
variable. A pde is theoretically equivalent to an infinite number of odes, and numerical
solution of nonlinear pdes may require supercomputer resources.

The RLC circuit and the diffusion equation are linear and the pendulum equation
is nonlinear. In a linear differential equation, the unknown function and its derivatives
appear as a linear polynomial. For instance, the general linear third-order ode, where
y = y(x) and primes denote derivatives with respect to x, is given by

a3(x)y′′′ + a2(x)y′′ + a1(x)y′ + a0(x)y = b(x),

where the a and b coefficients can be any function of x. The pendulum equation is nonlin-
ear because of the term sin θ, where θ = θ(t) is the unknown function. Making the small
angle approximation, sin θ ≈ θ, the pendulum equation becomes linear.

The simplest type of ode can be solved by integration. For example, a mass such as
Newton’s apocryphal apple, falls downward with constant acceleration, and satisfies the
differential equation

d2x
dt2 = −g.

With initial conditions specifying the initial height of the mass x0 and its initial velocity
u0, the solution obtained by straightforward integration is given by the well-known high
school physics equation

x(t) = x0 + u0t− 1
2

gt2.
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Practice Quiz | Classify differen-
tial equations

1. By checking all that apply, classify the following differential equation:

d3y
dx3 + y

d2y
dx2 = 0

a) first order

b) second order

c) third order

d) ordinary

e) partial

f ) linear

g) nonlinear

2. By checking all that apply, classify the following differential equation:

1
ξ2

d
dξ

(
ξ2 dψ

dξ

)
= e−ψ

a) first order

b) second order

c) ordinary

d) partial

e) linear

f ) nonlinear

2



PRACTICE QUIZ. CLASSIFY DIFFERENTIAL EQUATIONS 3

3. By checking all that apply, classify the following differential equation:

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2

a) first order

b) second order

c) ordinary

d) partial

e) linear

f ) nonlinear

4. By checking all that apply, classify the following differential equation:

a
d2x
dt2 + b

dx
dt

+ cx = 0

a) first order

b) second order

c) ordinary

d) partial

e) linear

f ) nonlinear

5. By checking all that apply, classify the following differential equation:

∂2u
∂t2 = c2

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
a) first order

b) second order

c) ordinary

d) partial

e) linear

f ) nonlinear

Solutions to the Practice quiz



Week I

First-Order Differential Equations

In this week’s lectures, we discuss first-order differential equations. We begin by explaining the
Euler method, which is a simple numerical method for solving an ode. Not all first-order differential
equations have an analytical solution, so it is useful to understand a basic numerical method. Then
the analytical solution methods for separable and linear equations are explained. We follow the
discussion of each theory with some simple examples. Finally, three real-world applications of first-
order equations and their solutions are presented: compound interest, terminal velocity of a falling
mass, and the resistor-capacitor electrical circuit.

4



Lecture 2 | Euler method
View this lecture on YouTube

Sometimes there is no analytical solution to a first-order differential equation and a nu-
merical solution must be sought. The first-order differential equation dy/dx = f (x, y)
with initial condition y(x0) = y0 provides the slope f (x0, y0) of the tangent line to the
solution curve y = y(x) at the point (x0, y0). With a small step size ∆x = x1 − x0, the
initial condition (x0, y0) can be marched forward to (x1, y1) along the tangent line using
Euler’s method (see figure):

y1 = y0 + ∆x f (x0, y0).

This solution (x1, y1) then becomes the new initial condition and is marched forward to
(x2, y2) along a newly determined tangent line with slope given by f (x1, y1). For small
enough ∆x, the numerical solution converges to the unique solution, when such a solution
exists.

There are better numerical methods than the Euler method, but the basic principle of
marching the solution forward remains the same.

5
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Problems for Lecture 2

1. The Euler method for solving the differential equation dy/dx = f (x, y) can be rewritten
in the form

k1 = ∆x f (xn, yn), yn+1 = yn + k1,

and is called a first-order Runge-Kutta method. More accurate second-order Runge-Kutta
methods have the form

k1 = ∆x f (xn, yn), k2 = ∆x f (xn + α∆x, yn + βk1), yn+1 = yn + ak1 + bk2.

Some analysis (not shown here) on the second-order Runge-Kutta methods results in the
constraints

a + b = 1, αb = βb = 1/2.

Write down the second-order Runge-Kutta methods corresponding to (i) a = b, and (ii)
a = 0. These specific second-order Runge-Kutta methods are called the modified Euler
method and the midpoint method, respectively.

Solutions to the Problems



Lecture 3 | Separable first-order
equations

View this lecture on YouTube

A first-order ode is separable if it can be written in the form

g(y)
dy
dx

= f (x), y(x0) = y0,

where the function g(y) is independent of x and f (x) is independent of y. Integration
from x0 to x results in ˆ x

x0

g(y(x))y′(x) dx =

ˆ x

x0

f (x) dx.

The integral on the left can be transformed by substituting u = y(x), du = y′(x)dx, and
changing the lower and upper limits of integration to y(x0) = y0 and y(x) = y. Therefore,

ˆ y

y0

g(u) du =

ˆ x

x0

f (x) dx,

which can often yield an analytical expression for y = y(x) if the integrals can be done
and the resulting algebraic equation can be solved for y.

A simpler procedure that yields the same result is to treat dy/dx as a fraction. Multi-
plying the differential equation by dx results directly in

g(y) dy = f (x) dx,

which is what we call a separated equation with a function of y times dy on one side, and
a function of x times dx on the other side. This separated equation can then be integrated
directly over y and x.

7
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Problems for Lecture 3

1. Put the following equation in separated form. Do not integrate.

a)
dy
dx

=
x2y− 4y

x + 4

b)
dy
dx

= sec(y)ex−y(1 + x)

c)
dy
dx

=
xy

(x + 1)(y + 1)

d)
dθ

dt
+ sin θ = 0

Solutions to the Problems



Lecture 4 | Separable first-order
equation (example)

View this lecture on YouTube

Example: Solve y′ + y2 sin x = 0, y(0) = 1.

We first manipulate the differential equation to the form

dy
dx

= −y2 sin x

and then treat dy/dx as if it was a fraction to separate variables:

dy
y2 = − sin x dx.

We then integrate the right side from x equals 0 to x and the left side from y equals 1 to
y. We obtain ˆ y

1

dy
y2 = −

ˆ x

0
sin x dx.

Integrating, we have

−1
y

∣∣∣∣y
1
= cos x

∣∣∣∣x
0
,

or
1− 1

y
= cos x− 1.

Solving for y, we obtain the solution

y =
1

2− cos x
.

9
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Problems for Lecture 4

1. Solve the following separable first-order equations.

a) dy/dx = 4x
√

y, with y(0) = 1.

b) dx/dt = x(1− x), with x(0) = x0 and 0 < x0 < 1.

Solutions to the Problems



Practice Quiz | Separable first-order
odes

1. The solution of y′ =
√

xy with initial value y(1) = 0 is given by

a) y(x) =
1
9
(x1/2 − 1)2

b) y(x) =
1
9
(x− 1)2

c) y(x) =
1
9
(x3/2 − 1)2

d) y(x) =
1
9
(x2 − 1)2

2. The solution of y2 − xy′ = 0 with initial value y(1) = 1 is given by

a) y(x) =
1

1− ln x

b) y(x) =
1

1− 2 ln x

c) y(x) =
1

1 + ln x

d) y(x) =
1

1 + 2 ln x

3. The solution of y′ + (sin x)y = 0 with initial value y(π/2) = 1 is given by

a) y(x) = esin x

b) y(x) = ecos x

c) y(x) = e1−sin x

d) y(x) = e1−cos x

Solutions to the Practice quiz
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Lecture 5 | Linear first-order
equations

View this lecture on YouTube

A linear first-order differential equation with initial condition can be written in standard
form as

dy
dx

+ p(x)y = g(x), y(x0) = y0. (5.1)

All linear first-order differential equations can be integrated using an integrating factor µ.
We multiply the differential equation by the yet unknown function µ = µ(x) to obtain

µ(x)
[

dy
dx

+ p(x)y
]
= µ(x)g(x);

and then require µ(x) to satisfy the differential equation

µ(x)
[

dy
dx

+ p(x)y
]
=

d
dx

[µ(x)y]. (5.2)

The unknown function µ(x) is called an integrating factor because the resulting differ-

ential equation,
d

dx
[µ(x)y] = µ(x)g(x), can be directly integrated. Using y(x0) = y0 and

choosing µ(x0) = 1, we have µ(x)y− y0 =

ˆ x

x0

µ(x)g(x) dx; or after solving for y = y(x),

y(x) =
1

µ(x)

(
y0 +

ˆ x

x0

µ(x)g(x) dx
)

. (5.3)

To determine µ(x), we expand (5.2) using the product rule to obtain to yield

µ
dy
dx

+ pµy =
dµ

dx
y + µ

dy
dx

;

and upon canceling terms, we obtain the differential equation

dµ

dx
= p(x)µ, µ(x0) = 1.

This equation is separable and can be easily integrated to obtain

µ(x) = exp
(ˆ x

x0

p(x) dx
)

. (5.4)

Equations (5.3) and (5.4) together solve the first-order linear equation given by (5.1).

12

https://youtu.be/YDzuN6t_9lM


LECTURE 5. LINEAR FIRST-ORDER EQUATIONS 13

Problems for Lecture 5

1. Write the following linear equations in standard form.

a) x
dy
dx

+ y = sin x;

b)
dy
dx

= x− y.

2. Consider the nonlinear differential equation dx/dt = x(1− x). By defining z = 1/x,
show that the resulting differential equation for z is linear.

Solutions to the Problems



Lecture 6 | Linear first-order
equation (example)

View this lecture on YouTube

Example: Solve
dy
dx

+ 2y = e−x, with y(0) = 3/4.

Note that this equation is not separable. With p(x) = 2 and g(x) = e−x, we have

µ(x) = exp
(ˆ x

0
2 dx

)
= e2x,

and
y(x) = e−2x

(
3
4
+

ˆ x

0
e2xe−x dx

)
.

Performing the integration, we obtain

y(x) = e−2x
(

3
4
+ (ex − 1)

)
,

which can be simplified to

y(x) = e−x
(

1− 1
4

e−x
)

.

14

https://youtu.be/U9tYvDQ8XgA


LECTURE 6. LINEAR FIRST-ORDER EQUATION (EXAMPLE) 15

Problems for Lecture 6

1. Solve the following linear odes.

a)
dy
dx

= x− y, y(0) = −1;

b)
dy
dx

= 2x(1− y), y(0) = 0.

Solutions to the Problems



Practice Quiz | Linear first-order
odes

1. The solution of (1 + x2)y′ + 2xy = 2x with initial value y(0) = 0 is given by

a) y(x) =
x

1 + x

b) y(x) =
x

1 + x2

c) y(x) =
x2

1 + x

d) y(x) =
x2

1 + x2

2. The solution of x2y′ = 1− 2xy with initial value y(1) = 2 is given by

a) y(x) =
1 + x

x

b) y(x) =
1 + x

x2

c) y(x) =
1 + x2

x

d) y(x) =
1 + x2

x2

3. The solution of y′ + λy = a with initial value y(0) = 0 and λ > 0 is given by

a) y(x) = a(1− eλx)

b) y(x) = a(1− e−λx)

c) y(x) =
a
λ
(1− eλx)

d) y(x) =
a
λ
(1− e−λx)

Solutions to the Practice quiz

16



Lecture 7 | Application: compound
interest

View this lecture on YouTube

The compound interest equation arises in many different engineering problems, and we
consider it here as it relates to an investment. Let S(t) be the value of the investment at
time t, and let r be the annual interest rate compounded after every time interval ∆t. Let
k be the annual deposit amount (a negative value indicates a withdrawal), and suppose
that a fixed amount is deposited after every time interval ∆t. The value of the investment
at the time t + ∆t is then given by

S(t + ∆t) = S(t) + (r∆t)S(t) + k∆t,

where at the end of the time interval ∆t, r∆tS(t) is the amount of interest credited and
k∆t is the amount of money deposited.

Rearranging the terms of this equation to exhibit what will soon become a derivative,
we have

S(t + ∆t)− S(t)
∆t

= rS(t) + k.

The equation for continuous compounding of interest and continuous deposits is obtained
by taking the limit ∆t→ 0. The resulting differential equation is

dS
dt

= rS + k,

which can solved with the initial condition S(0) = S0, where S0 is the initial capital.
The differential equation is linear and the standard form is dS/dt − rS = k, so that the
integrating factor is given by

µ(t) = e−rt.

The solution is therefore

S(t) = ert
(

S0 +

ˆ t

0
ke−rtdt

)
= S0ert +

k
r

ert (1− e−rt) ,

where the first term on the right-hand side comes from the initial invested capital, and the
second term comes from the deposits (or withdrawals). Evidently, compounding results
in the exponential growth of an investment.

17

https://youtu.be/hqxzzWkBP90
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Problems for Lecture 7

1. Suppose a 25 year-old plans to set aside a fixed amount each year until retirement at
age 65. How much must he/she save each year to have $1,000,000 at retirement? Assume
a 6% annual return on the saved money compounded continuously. Out of the $1,000,000,
approximately how much was saved, and how much was earned on the investment?

2. A home buyer can afford to spend no more than $1500 per month on mortgage pay-
ments. Suppose that the annual interest rate is 4% and that the term of the mortgage
is 30 years. Assume that interest is compounded continuously and that payments are
also made continuously. Determine the maximum amount that this buyer can afford to
borrow.

Solutions to the Problems



Lecture 8 | Application: terminal
velocity

View this lecture on YouTube

Using Newton’s law, we model a mass m free falling under gravity but with air resis-
tance. We assume that the force of air resistance is proportional to the speed of the mass
and opposes the direction of motion. We define the x-axis to point in the upward direc-
tion, opposite the force of gravity. Near the surface of the Earth, the force of gravity is
approximately constant and is given by −mg, with g = 9.8 m/s2 the usual gravitational
acceleration. The force of air resistance is modeled by −kv, where v is the vertical velocity
of the mass and k is a positive constant. When the mass is falling, v < 0 and the force of
air resistance is positive, pointing upward and opposing the motion. The total force on
the mass is therefore given by F = −mg− kv. With F = ma and a = dv/dt, we obtain the
differential equation

m
dv
dt

= −mg− kv.

The terminal velocity v∞ of the mass is defined as the asymptotic velocity after air resis-
tance balances the gravitational force. When the mass is at terminal velocity, dv/dt = 0 so
that

v∞ = −mg
k

.

The approach to the terminal velocity of a mass initially at rest is obtained by solving
the differential equation with initial condition v(0) = 0. The equation is linear and the
standard form is dv/dt + (k/m)v = −g, so that the integrating factor is

µ(t) = ekt/m,

and the solution to the differential equation is

v(t) = e−kt/m
ˆ t

0
ekt/m(−g) dt

= −mg
k

(
1− e−kt/m

)
.

Therefore, v = v∞

(
1− e−kt/m

)
, and v approaches v∞ as the exponential term decays to

zero.

19
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Problems for Lecture 8

1. A male skydiver of mass m = 100 kg with his parachute closed may attain a terminal
speed of 200 km/hr. How long does it take him to attain one-half his terminal speed, and
how long to attain 95%?

Solutions to the Problems



Lecture 9 | Application: RC circuit
View this lecture on YouTube

 

C 
 

R

i

+ 

_ 

(a) 

(b)

R

i

C

Consider a resister R and a capacitor C connected in series as shown in the figure. A
battery connects to this circuit by a switch, stepping up the voltage by E . Initially, there
is no charge on the capacitor. When the switch is thrown to (a), the battery connects
and the capacitor charges. When the switch is thrown to (b), the battery disconnects and
the capacitor discharges, with energy dissipated in the resister. Here, we determine the
voltage drop across the capacitor during charging and discharging.

The equations for the voltage drops across a capacitor and a resister are given by

VC = q/C, VR = iR, (9.1)

where C is the capacitance and R is the resistance. The charge q and the current i are
related by

i =
dq
dt

. (9.2)

Kirchhoff’s voltage law states that the emf E in any closed loop is equal to the sum of the
voltage drops in that loop. Applying Kirchhoff’s voltage law when the switch is thrown
to a results in

VR + VC = E . (9.3)

Using (9.1) and (9.2), the voltage drop across the resister can be written in terms of the
voltage drop across the capacitor as

VR = RC
dVC
dt

,

and (9.3) can be rewritten to yield the linear first-order differential equation for VC given

21
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by
dVC
dt

+ VC/RC = E/RC, (9.4)

with initial condition VC(0) = 0.
The integrating factor for this equation is

µ(t) = et/RC,

and (9.4) integrates to

VC(t) = e−t/RC
ˆ t

0
(E/RC)et/RCdt,

with solution
VC(t) = E

(
1− e−t/RC

)
.

The voltage starts at zero and rises exponentially to E , with characteristic time scale given
by RC.

When the switch is thrown to b, application of Kirchhoff’s voltage law results in

VR + VC = 0,

with corresponding differential equation

dVC
dt

+ VC/RC = 0.

Here, we assume that the capacitance is initially fully charged so that VC(0) = E . The
solution, then, during the discharge phase is given by

VC(t) = E e−t/RC.

The voltage starts at E and decays exponentially to zero, again with characteristic time
scale given by RC.
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Problems for Lecture 9

1. Determine the current in an RC circuit during charging and discharging.

Solutions to the Problems



Practice Quiz | Applications
1. Suppose a 25 year-old plans to set aside a fixed amount each year until retirement at
age 65. Approximately, how much total must they have set aside to have $1,000,000 at
retirement? Assume a 10% annual return on the saved money compounded continuously.

a) $75,000

b) $150,000

c) $225,000

d) $300,000

2. A male skydiver of mass 100 kg with his parachute closed may attain a terminal speed
of 200 km/hr. How long does it take him to attain a speed of 150 km/hr?

a) 1 s

b) 4 s

c) 8 s

d) 15 s

3. An RC circuit consists of a resistor (3000 Ω) and a capacitor (0.001 F), where Ω is the
ohm with units kg ·m2 · s−3 · A−2, F is the Faraday with units s4 · A2 ·m−2 · kg−1, and
where kg is kilogram, m is meters, s is seconds, and A is amps. How long does it take for
the capacitor to charge to 95% of the battery voltage?

a) 1 s

b) 5 s

c) 9 s

d) 14 s

Solutions to the Practice quiz
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Week II

Homogeneous Linear Differential
Equations

This week’s lectures are on second-order differential equations. We begin by generalizing the Euler
numerical method to a second-order equation, to show how numerical solutions can be obtained
for equations that have no analytical solutions. We then develop two theoretical concepts used for
linear equations: the principle of superposition, and the Wronskian. Armed with these concepts,
we can then find analytical solutions to a homogeneous second-order ode with constant coefficients.
We make use of an exponential ansatz, and convert the differential equation to a quadratic equation
called the characteristic equation of the ode. The characteristic equation may have real or complex
roots and we discuss the solutions for these different cases.
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Lecture 10 | Euler method for
higher-order odes

View this lecture on YouTube

In practice, most higher-order odes are solved numerically. For example, consider the
general second-order ode given by

ẍ = f (t, x, ẋ).

Here, we adopt the widely used physics notation ẋ = dx/dt and ẍ = d2x/dt2. The dot
notation is used to represent only time derivatives and can be applied to any dependent
variable that is a function of time.

To solve numerically, we convert the second-order ode to a pair of first-order odes.
Define u = ẋ, and write the first-order system as

ẋ = u, (10.1)

u̇ = f (t, x, u). (10.2)

The first ode, (10.1), gives the slope of the tangent line to the curve x = x(t). The second
ode, (10.2), gives the slope of the tangent line to the curve u = u(t). Beginning at the initial
values (x, u) = (x0, u0) at the time t = t0, we move along the tangent lines to determine
x1 = x(t0 + ∆t) and u1 = u(t0 + ∆t):

x1 = x0 + ∆tu0,

u1 = u0 + ∆t f (t0, x0, u0).

The values x1 and u1 at the time t1 = t0 + ∆t are then used as new initial values to march
the solution forward to time t2 = t1 + ∆t. When a unique solution of the ode exists, the
numerical solution converges to this unique solution as ∆t→ 0.
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LECTURE 10. EULER METHOD FOR HIGHER-ORDER ODES 27

Problems for Lecture 10

1. Write the second-order ode, θ̈ + θ̇/q + sin θ = f cos ωt, as a system of two first-order
odes.

2. Write down the second-order Runge-Kutta modified Euler method (predictor-corrector
method) for the following system of two first-order odes:

ẋ = f (t, x, y), ẏ = g(t, x, y).

Solutions to the Problems



Lecture 11 | The principle of
superposition

View this lecture on YouTube

Consider the homogeneous linear second-order ode given by

ẍ + p(t)ẋ + q(t)x = 0;

and suppose that x = X1(t) and x = X2(t) are solutions. We consider a linear combination
of X1 and X2 by letting

x = c1X1(t) + c2X2(t),

with c1 and c2 constants. The principle of superposition states that x is also a solution to the
homogeneous ode. To prove this, we compute

ẍ + pẋ + qx = c1Ẍ1 + c2Ẍ2 + p
(
c1Ẋ1 + c2Ẋ2

)
+ q (c1X1 + c2X2)

= c1
(
Ẍ1 + pẊ1 + qX1

)
+ c2

(
Ẍ2 + pẊ2 + qX2

)
= c1 × 0 + c2 × 0

= 0,

since X1 and X2 were assumed to be solutions of the homogeneous ode. We have therefore
shown that any linear combination of solutions to the homogeneous linear second-order
ode is also a solution.

28

https://youtu.be/fseEhS2WWyY


LECTURE 11. THE PRINCIPLE OF SUPERPOSITION 29

Problems for Lecture 11

1. Consider the inhomogeneous linear second-order ode given by

ẍ + p(t)ẋ + q(t)x = g(t);

and suppose that x = xh(t) is a solution of the homogeneous equation and x = xp(t) is a
solution of the inhomogeneous equation. Prove that x = xh(t) + xp(t) is a solution of the
inhomogeneous equation.

Solutions to the Problems



Lecture 12 | The Wronskian
View this lecture on YouTube

Suppose that we have determined that x = X1(t) and x = X2(t) are solutions to

ẍ + p(t)ẋ + q(t)x = 0,

and that we now attempt to write the general solution to the ode as

x = c1X1(t) + c2X2(t).

We must then ask whether this general solution can satisfy the two initial conditions given
by

x(t0) = x0, ẋ(t0) = u0.

Applying these initial conditions to our proposed general solution, we obtain

c1X1(t0) + c2X2(t0) = x0, c1Ẋ1(t0) + c2Ẋ2(t0) = u0,

which is a system of two linear equations for c1 and c2. A unique solution exists provided

W =

∣∣∣∣∣X1(t0) X2(t0)

Ẋ1(t0) Ẋ2(t0)

∣∣∣∣∣ = X1(t0)Ẋ2(t0)− Ẋ1(t0)X2(t0) 6= 0,

where the determinant given by W is called the Wronskian.
For example, with ω 6= 0, the two solutions X1(t) = cos ωt and X2(t) = sin ωt have a

nonzero Wronskian for all t since

W = (cos ωt) (ω cos ωt)− (−ω sin ωt) (sin ωt) = ω.

When the Wronskian is not equal to zero, we say that the two solutions X1(t) and X2(t) are
linearly independent. The concept of linear independence is borrowed from linear algebra,
and indeed, the set of all functions that satisfy a second-order linear homogeneous ode
can be shown to form a two-dimensional vector space.
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LECTURE 12. THE WRONSKIAN 31

Problems for Lecture 12

1. Show that X1(t) = exp (αt) and X2(t) = exp (βt) have a nonzero Wronskian for all t
provided α 6= β.

Solutions to the Problems



Lecture 13 | Homogeneous
second-order ode with
constant coefficients

View this lecture on YouTube

We now study solutions of the homogeneous constant-coefficient ode, written as

aẍ + bẋ + cx = 0,

with a, b, and c constants. Our solution method finds two linearly independent solutions,
multiplies each of these solutions by a constant, and adds them. The two free constants
are then determined from initial values on x and ẋ.

Because of the differential properties of the exponential function, a natural ansatz,
or educated guess, for the form of the solution is x = ert, where r is a constant to be
determined. Successive differentiation results in ẋ = rert and ẍ = r2ert, and substitution
into the ode yields

ar2ert + brert + cert = 0.

Our choice of exponential function is now rewarded by the explicit cancelation of ert. The
result is a quadratic equation for the unknown constant r:

ar2 + br + c = 0.

Our ansatz has thus converted a differential equation for x into an algebraic equation for r.
This algebraic equation is called the characteristic equation of the ode. Using the quadratic
formula, the two solutions of the characteristic equation are given by

r± =
−b±

√
b2 − 4ac

2a
.

There are three cases to consider: (1) if b2 − 4ac > 0, the roots are distinct and real ; (2)
if b2 − 4ac < 0, the roots are distinct and complex-conjugates; and (3) if b2 − 4ac = 0, the
roots are repeated. We will consider these three cases in turn.
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LECTURE 13. HOMOGENEOUS SECOND-ORDER ODE WITH CONSTANT
COEFFICIENTS 33

Problems for Lecture 13

1. For the following differential equations, determine the roots of the characteristic equa-
tion.

a) ẍ− x = 0;

b) ẍ + x = 0;

c) ẍ− 2ẋ + x = 0.

Solutions to the Problems



Practice Quiz | Theory of ode
1. Which two functions have a nonzero Wronskian?

a) 2e2t, 3e2t

b) et, et−t0

c) sin t, sin (t− π/2)

d) sin t, sin (t− π)

2. Let x = X1(t) and x = X2(t) be solutions to a homogeneous linear second-order ode.
Which of the following functions is generally not a solution?

a) x =
1
2
(X1 + X2)

b) x =
1
2
(X1 − X2)

c) x = 0

d) x = X1(t)X2(t)

3. Which of the following odes has a characteristic equation with complex-conjugate
roots?

I. ẍ + ẋ + x = 0
II. ẍ + ẋ− x = 0
III. ẍ− ẋ + x = 0
IV. ẍ− ẋ− x = 0

a) I only

b) IV only

c) I and III

d) II and IV

Solutions to the Practice quiz
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Lecture 14 | Case 1: Distinct real
roots

View this lecture on YouTube

When the roots of the characteristic equation are distinct and real, then the general solu-
tion to the second-order ode can be written as a linear superposition of the two solutions
er1t and er2t; that is,

x(t) = c1er1t + c2er2t.

The unknown constants c1 and c2 can then be determined by the given initial conditions
x(t0) = x0 and ẋ(t0) = u0.

Example: Solve ẍ + 5ẋ + 6x = 0 with x(0) = 2, ẋ(0) = 3.

We take as our ansatz x = ert and obtain the characteristic equation

r2 + 5r + 6 = 0,

which factors to
(r + 3)(r + 2) = 0.

The general solution to the ode is thus

x(t) = c1e−2t + c2e−3t.

The solution for ẋ obtained by differentiation is

ẋ(t) = −2c1e−2t − 3c2e−3t.

Use of the initial conditions then results in two equations for the two unknown constant
c1 and c2,

c1 + c2 = 2, −2c1 − 3c2 = 3,

with solution c1 = 9 and c2 = −7. Therefore, the unique solution that satisfies both the
ode and the initial conditions is

x(t) = 9e−2t − 7e−3t

= 9e−2t
(

1− 7
9

e−t
)

.
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Problems for Lecture 14

1. Solve the following initial value problem: ẍ + 4ẋ + 3x = 0, with x(0) = 1 and ẋ(0) = 0.

2. Find the solution of ẍ− x = 0, with x(0) = x0 and ẋ(0) = u0.

Solutions to the Problems



Lecture 15 | Case 2: Complex-
conjugate roots
(Part A)

View this lecture on YouTube

When the roots of the characteristic equation are complex conjugates, we can define real
numbers λ and µ such that the two roots are given by

r = λ + iµ, r̄ = λ− iµ.

We have thus found the following two complex exponential solutions to the differential
equation:

z(t) = eλteiµt, z̄(t) = eλte−iµt.

Applying the principle of superposition, any linear combination of z and z̄ is also a solu-
tion to the second-order ode, and we can form two different linear combinations of z(t)
and z̄(t) that are real, namely x1(t) = Re z(t) and x2(t) = Im z(t). We have

x1(t) = eλt cos µt, x2(t) = eλt sin µt.

Having found these two real solutions, we can then apply the principle of superposition
a second time to determine the general solution for x(t):

x(t) = eλt (A cos µt + B sin µt) .

The real part of the roots of the characteristic equation appear in the exponential function,
the imaginary part appears in the cosine and sine.
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Lecture 16 | Case 2: Complex-
conjugate roots
(Part B)

View this lecture on YouTube

Example: Solve ẍ + ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0.

The characteristic equation is r2 + r + 1 = 0, with roots

r = −1
2
+ i
√

3
2

, r̄ = −1
2
− i
√

3
2

.

The general solution of the ode is therefore

x(t) = e−t/2

(
A cos

√
3

2
t + B sin

√
3

2
t

)
.

The derivative is

ẋ(t) = −1
2

e−t/2

(
A cos

√
3

2
t + B sin

√
3

2
t

)
+

√
3

2
e−t/2

(
−A sin

√
3

2
t + B cos

√
3

2
t

)
.

Applying the initial conditions x(0) = 1 and ẋ(0) = 0 results in

A = 1, −1
2

A +

√
3

2
B = 0,

with solution A = 1 and B =
√

3/3. Therefore, the resulting solution is

x(t) = e−t/2

(
cos

√
3

2
t +
√

3
3

sin

√
3

2
t

)
.
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LECTURE 16. CASE 2: COMPLEX-CONJUGATE ROOTS (PART B) 39

Problems for Lecture 16

1. Solve ẍ− 2ẋ + 5x = 0, with x(0) = 1 and ẋ(0) = 0.

2. Solve ẍ + x = 0, with x(0) = x0 and ẋ(0) = u0.

Solutions to the Problems



Lecture 17 | Case 3: Repeated roots
(Part A)

View this lecture on YouTube

If the exponential ansatz yields only one linearly independent solution, we need to find
the missing second solution. We will do this by starting with the roots of the characteristic
equation given by r = λ± iµ, and taking the limit as µ goes to zero.

Now, the general solution for the case of complex-conjugate roots is given by

x(t) = eλt (A cos µt + B sin µt) ,

and to limit this solution as µ → 0 requires first satisfying the general initial conditions
x(0) = x0 and ẋ(0) = u0. Solving for A and B, the solution becomes

x(t; µ) = eλt
(

x0 cos µt +
u0 − λx0

µ
sin µt

)
,

where we have written x = x(t; µ) to show explicitly that x now depends on the parameter
µ.

Taking the limit as µ→ 0, and using limµ→0 µ−1 sin µt = t, we have

lim
µ→0

x(t; µ) = eλt(x0 + (u0 − λx0)t
)
;

and the second solution is observed to be a constant, u0 − λx0, times t times the first
solution. The general solution for the case of repeated roots can therefore be written in
the form

x(t) = (c1 + c2t)ert,

where r is the repeated root. The main result is that the second solution is t times the first
solution.
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Lecture 18 | Case 3: Repeated roots
(Part B)

View this lecture on YouTube

Example: Solve ẍ + 2ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0.

The characteristic equation is r2 + 2r + 1 = (r + 1)2 = 0, which has a repeated root given
by r = −1. Therefore, the general solution to the ode is

x(t) = (c1 + c2t)e−t, ẋ(t) = (c2 − c1 − c2t)e−t.

Applying the initial conditions, we have c1 = 1 and c2 − c1 = 0, so that c1 = c2 = 1.
Therefore, the solution is

x(t) = (1 + t)e−t.
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Problems for Lecture 18

1. Solve ẍ− 2ẋ + x = 0, with x(0) = 1 and ẋ(0) = 0.

Solutions to the Problems



Practice Quiz | Homogeneous
equations

1. The solution of ẍ− 3ẋ + 2x = 0 with initial values x(0) = 1 and ẋ(0) = 0 is given by

a) e2t(2− e−t)

b) −e2t(1− 2e−t)

c)
1
2

e3t(3− e−2t)

d) −1
2

e3t(1− 3e−2t)

2. The solution of ẍ− 2ẋ + 2x = 0 with initial values x(0) = 1 and ẋ(0) = 0 is given by

a) et(cos t + sin t)

b) et(cos t− sin t)

c) et(cos 2t− 1
2

sin 2t)

d) e2t(cos t− 2 sin 2t)

3. The solution of ẍ + 2ẋ + x = 0 with initial values x(0) = 0 and ẋ(0) = 1 is given by

a) te−t

b) e−t(1− t)

c) tet

d) et(1− t)

Solutions to the Practice quiz

43



Week III

Inhomogeneous Linear
Differential Equations

We now add an inhomogeneous term to the second-order ode with constant coefficients. The in-
homogeneous term may be an exponential, a sine or cosine, or a polynomial. We further study
the phenomena of resonance, when the forcing frequency is equal to the natural frequency of the
oscillator. Finally, we learn about three important applications: the RLC electrical circuit, a mass
on a spring, and the pendulum.
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Lecture 19 | Inhomogeneous
second-order ode

View this lecture on YouTube

The inhomogeneous linear second-order ode is given by

ẍ + p(t)ẋ + q(t)x = g(t),

with initial conditions x(t0) = x0 and ẋ(t0) = u0. There is a three-step solution method
when the inhomogeneous term g(t) 6= 0. (1) Solve the homogeneous ode

ẍ + p(t)ẋ + q(t)x = 0,

for two independent solutions x = x1(t) and x = x2(t), and form a linear superposition
to obtain the general solution

xh(t) = c1x1(t) + c2x2(t),

where c1 and c2 are free constants. (2) Find a particular solution x = xp(t) that solves the
inhomogeneous ode. A particular solution is most easily found when p(t) and q(t) are
constants, and when g(t) is a combination of polynomials, exponentials, sines and cosines.
(3) Write the general solution of the inhomogeneous ode as the sum of the homogeneous
and particular solutions,

x(t) = xh(t) + xp(t),

and apply the initial conditions to determine the constants c1 and c2 appearing in the
homogeneous solution. Note that because of the linearity of the differential equations,

ẍ + pẋ + qx =
d2

dt2 (xh + xp) + p
d
dt
(xh + xp) + q(xh + xp)

= (ẍh + pẋh + qxh) + (ẍp + pẋp + qxp)

= 0 + g

= g,

so that the sum of the homogeneous and particular solutions solve the ode, and the two
free constants in xh can be used to satisfy the two initial conditions.
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Problems for Lecture 19

1. Consider the inhomogeneous linear second-order ode given by

ẍ + p(t)ẋ + q(t)x = g1(t) + g2(t).

Show that
x(t) = xh(t) + xp1(t) + xp2(t)

is the general solution, where xh(t) is the general solution to the homogeneous ode, xp1(t)
is a particular solution for the inhomogeneous ode with only g1(t) on the right-hand-side,
and xp2(t) is a particular solution for the inhomogeneous ode with only g2(t) on the
right-hand side.

Solutions to the Problems



Lecture 20 | Inhomogeneous term:
Exponential function

View this lecture on YouTube
Example: Solve ẍ− 3ẋ− 4x = 3e2t with x(0) = 1 and ẋ(0) = 0.
First, we solve the homogeneous equation. The characteristic equation is

r2 − 3r− 4 = (r− 4)(r + 1) = 0,

so that
xh(t) = c1e4t + c2e−t.

Second, we find a particular solution of the inhomogeneous equation. We try an ansatz
such that the exponential function cancels:

x(t) = Ae2t,

where A is an undetermined coefficient. Substituting our ansatz into the ode, we obtain

4A− 6A− 4A = 3,

from which we determine A = −1/2. Obtaining a solution for A independent of t justifies
the ansatz. Third, we write the general solution to the ode as the sum of the homogeneous
and particular solutions, and determine c1 and c2 that satisfy the initial conditions. We
have

x(t) = c1e4t + c2e−t − 1
2

e2t, ẋ(t) = 4c1e4t − c2e−t − e2t.

Applying the initial conditions yields the two linear equations

c1 + c2 =
3
2

, 4c1 − c2 = 1,

with solution c1 = 1/2 and c2 = 1. Therefore, the solution for x(t) that satisfies both the
ode and the initial conditions is given by

x(t) =
1
2

e4t − 1
2

e2t + e−t =
1
2

e4t
(

1− e−2t + 2e−5t
)

,

where we have grouped the terms in the final solution to better display the asymptotic
behavior for large t.
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Problems for Lecture 20

1. Solve ẍ + 5ẋ + 6x = e−t, with x(0) = 0 and ẋ(0) = 0.

Solutions to the Problems



Practice Quiz | Solving
inhomogeneous

equations
All the questions will consider the differential equation given by

ẍ + 5ẋ + 6x = 2e−t.

1. What is the solution that satisfies x(0) = 0 and ẋ(0) = 0?

a) x(t) = e−t(1− 2e−t + e−2t)

b) x(t) = et(1− 4e−3t + 3e−4t)

c) x(t) = e3t(3− 4e−t + e−4t)

d) x(t) = e3t(1− 2e−t + e−2t)

2. What is the solution that satisfies x(0) = 1 and ẋ(0) = 0?

a) x(t) = e−t(1 + e−t − e−2t)

b) x(t) = et(1− e−3t + e−4t)

c) x(t) = e3t(1− e−t + e−4t)

d) x(t) = −e3t(1− e−t − e−2t)

3. What is the solution that satisfies x(0) = 0 and ẋ(0) = 1?

a) x(t) = e−t(1− e−t)

b) x(t) = et(1− 3e−3t + 2e−4t)

c) x(t) = e3t(4− 5e−t + e−4t)

d) x(t) = e3t(2− 3e−t + e−2t)

Solutions to the Practice quiz
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Lecture 21 | Inhomogeneous term:
Sine or cosine (Part A)

View this lecture on YouTube

Example: Find a particular solution of ẍ− 3ẋ− 4x = 2 sin t.
We will demonstrate two solution methods in this and the next lecture. The first method
tries the ansatz

x(t) = A cos t + B sin t,

where the argument of cosine and sine must agree with the argument of sine in the
inhomogeneous term. The cosine term is required because the derivative of sine is cosine.
Upon substitution into the differential equation, we obtain

(−A cos t− B sin t)− 3 (−A sin t + B cos t)− 4 (A cos t + B sin t) = 2 sin t,

or regrouping terms,

− (5A + 3B) cos t + (3A− 5B) sin t = 2 sin t.

This equation is valid for all t, and in particular for t = 0 and π/2, for which the sine and
cosine functions vanish. For these two values of t, we find

5A + 3B = 0, 3A− 5B = 2;

and solving we obtain A = 3/17 and B = −5/17. The particular solution is therefore
given by

xp =
1
17

(3 cos t− 5 sin t) .
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Lecture 22 | Inhomogeneous term:
Sine or cosine (Part B)

View this lecture on YouTube

Example: Find a particular solution of ẍ− 3ẋ− 4x = 2 sin t.
The second method makes use of the relation eit = cos t + i sin t to convert the sine inho-
mogeneous term to an exponential function. We introduce the complex function z = z(t)
and note that sin t = Im{eit}. We then consider the complex ode

z̈− 3ż− 4z = 2eit,

where x = Im{z} satisfies the original differential equation for x.
To find a particular solution of the complex equation, we try the ansatz z(t) = Ceit,

where we now expect C to be a complex constant. Upon substitution into the complex
ode, and using i2 = −1, we obtain −C− 3iC− 4C = 2; or upon solving for C,

C =
−2

5 + 3i
=
−5 + 3i

17
.

Therefore,

xp = Im{zp} = Im
{

1
17

(−5 + 3i)(cos t + i sin t)
}

=
1

17
(3 cos t− 5 sin t),

the same result as in the first method.
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Problems for Lecture 22

1. Find a particular solution of ẍ− 3ẋ− 4x = 2 cos t by trying a

a) cosine and sine ansatz;

b) an exponential ansatz.

Solutions to the Problems



Lecture 23 | Inhomogeneous term:
Polynomials

View this lecture on YouTube

Example: Find a particular solution of ẍ + ẋ− 2x = t2.
Our ansatz should be a polynomial in t of the same order as the inhomogeneous term.
Accordingly, we try

x(t) = At2 + Bt + C.

Upon substitution into the ode, we have

2A + (2At + B)− 2(At2 + Bt + C) = t2,

or
−2At2 + 2(A− B)t + (2A + B− 2C)t0 = t2.

Equating powers of t,

−2A = 1, 2(A− B) = 0, 2A + B− 2C = 0;

and solving,

A = −1
2

, B = −1
2

, C = −3
4

.

The particular solution is therefore

xp(t) = −
1
2

t2 − 1
2

t− 3
4

.
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Problems for Lecture 23

1. Find a particular solution of ẍ + ẋ + x = t.

Solutions to the Problems



Practice Quiz | Particular solutions
1. A particular solution of ẍ + 3ẋ + 2x = 2e2t is given by

a) xp(t) =
1
6

e−2t

b) xp(t) =
1
6

e2t

c) xp(t) = −
1
6

e−2t

d) xp(t) = −
1
6

e2t

2. A particular solution of ẍ− ẋ− 2x = 2 cos 2t is given by

a) xp(t) =
1

10
(cos 2t + 3 sin 2t)

b) xp(t) = −
1

10
(cos 2t + 3 sin 2t)

c) xp(t) =
1

10
(3 cos 2t + sin 2t)

d) xp(t) = −
1
10

(3 cos 2t + sin 2t)

3. A particular solution of ẍ− 3ẋ + 2x = t + 1 is given by

a) xp(t) =
5
4

t +
1
2

b) xp(t) =
5
4

t− 1
2

c) xp(t) =
1
2

t +
5
4

d) xp(t) =
1
2

t− 5
4

Solutions to the Practice quiz
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Lecture 24 | Resonance
View this lecture on YouTube

Resonance occurs when the forcing frequency ω matches the natural frequency ω0 of
an oscillator. To illustrate resonance, we consider the inhomogeneous linear second-order
ode

ẍ + ω2
0x = f cos ωt, x(0) = 0, ẋ(0) = 0;

and determine what happens to the solution in the limit ω → ω0.
The homogeneous equation has characteristic equation r2 + ω2

0 = 0, with solution
r = ±iω0, so that the solution to the homogeneous equation is

xh(t) = c1 cos ω0t + c2 sin ω0t.

A particular solution of the equation can be found by trying x(t) = A cos ωt. Upon sub-
stitution into the ode, we can solve for A to obtain A = f /(ω2

0 −ω2), so that

xp(t) =
f

ω2
0 −ω2

cos ωt.

Our general solution is thus

x(t) = c1 cos ω0t + c2 sin ω0t +
f

ω2
0 −ω2

cos ωt.

Initial conditions are satisfied when c1 = − f /(ω2
0 −ω2) and c2 = 0, so that

x(t) =
f (cos ωt− cos ω0t)

ω2
0 −ω2

.

Resonance occurs in the limit ω → ω0; that is, the frequency of the inhomogeneous
term (the external force) matches the frequency of the homogeneous solution (the free
oscillation). By L’Hospital’s rule, the limit of x = x(t) is found by differentiating with
respect to ω:

lim
ω→ω0

x(t) = lim
ω→ω0

f (cos ωt− cos ω0t)
ω2

0 −ω2
= lim

ω→ω0

− f t sin ωt
−2ω

=
f t sin ω0t

2ω0
.

At resonance, the oscillation increases linearly with t, resulting in a large amplitude oscil-
lation.

More generally, if the inhomogeneous term in the differential equation is a solution
of the corresponding homogeneous differential equation, then one should multiply the
usual ansatz for the particular solution by t.
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Problems for Lecture 24

1. Solve ẍ + 3ẋ + 2x = e−2t, with x(0) = 0 and ẋ(0) = 0. Observe that the inhomogeneous
term is a solution of the homogeneous equation. To find a particular solution, the usual
exponential ansatz must be multiplied by t.

Solutions to the Problems



Lecture 25 | Application: RLC
circuit

View this lecture on YouTube
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Consider a resister R, an inductor L and a capacitor C connected in series as shown in
the above figure. An AC generator provides a time-varying electromotive force to the
circuit, given by E(t) = E0 cos ωt. The equations for the voltage drops across a capacitor,
a resister and an inductor are

VC = q/C, VR = iR, VL = L di/dt,

where C is the capacitance, R is the resistance and L is the inductance. The charge q and
the current i are related by i = dq/dt.

Kirchhoff’s voltage law states that the electromotive force applied to any closed loop
is equal to the sum of the voltage drops in that loop. Appying Kirchhoff’s law, we have
VL + VR + VC = E(t), or

L
d2q
dt2 + R

dq
dt

+
1
C

q = E0 cos ωt. (25.1)

This is a second-order linear inhomogeneous differential equation with constant coeffi-
cients.

To reduce the number of free parameters in this equation, we can nondimensionalize.
We first define the natural frequency of oscillation of a system to be the frequency of
oscillation in the absence of any driving or damping forces. For the RLC circuit, the
natural frequency of oscillation is given by ω0 = 1/

√
LC, and making use of ω0, we can

define a dimensionless time τ and a dimensionless charge Q by

τ = ω0t, Q =
ω2

0 L
E0

q.

The resulting dimensionless equation for the RLC circuit can then be found to be

d2Q
dτ2 + α

dQ
dτ

+ Q = cos βτ, (25.2)
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where α and β are dimensionless parameters given by

α =
R

Lω0
, β =

ω

ω0
.

Notice that the original five parameters in (25.1), namely R, L, C, E0 and ω, have been
reduced to the two dimensionless parameters α and β in (25.2).
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Problems for Lecture 25

1. Determine how to nondimensionalize the RLC circuit equation so that the dimension-
less equation takes the form

α
d2Q
dτ2 +

dQ
dτ

+ Q = cos βτ.

What are the definitions of τ, Q, α and β?

Solutions to the Problems



Lecture 26 | Application: Mass on
a spring

View this lecture on YouTube

Consider a mass lying on a flat surface and connected by a spring to a wall, as shown
above. The spring force is modeled by Hooke’s law, Fs = −kx, and sliding friction is
modeled as Ff = −cdx/dt. An external force is applied and is assumed to be sinusoidal,
with Fe = F0 cos ωt. Newton’s equation, F = ma, results in

m
d2x
dt2 + c

dx
dt

+ kx = F0 cos ωt,

another second-order linear inhomogeneous differential equation with constant coeffi-
cients. Here, the natural frequency of oscillation is given by ω0 =

√
k/m, and we define a

dimensionless time τ and a dimensionless position X by

τ = ω0t, X =
mω2

0
F0

x.

The resulting dimensionless equation is given by

d2X
dτ2 + α

dX
dτ

+ X = cos βτ,

where here, α and β are dimensionless parameters given by

α =
c

mω0
, β =

ω

ω0
.

Even though the physical problem is different, the resulting dimensionless equation for
the mass-spring system is the same as that for the RLC circuit.

61

https://youtu.be/gwkBOH7EClo


62

Problems for Lecture 26

1. Determine how to nondimensionalize the mass on a spring equation so that the dimen-
sionless equation takes the form

α
d2X
dτ2 +

dX
dτ

+ X = cos βτ.

What are the definitions of τ, X, α and β?

Solutions to the Problems



Lecture 27 | Application:
Pendulum

View this lecture on YouTube

Consider a mass attached to a mass-
less rigid rod and constrained to move
along an arc of a circle centered at the
pivot point (see figure). Suppose l is
the fixed length of the connecting rod,
and θ is the angle it makes with the
vertical.

We apply Newton’s equation, F =

ma, to the mass with origin at the bot-
tom and axis along the arc with pos-
itive direction to the right. The po-
sition s of the mass along the arc is
given by s = lθ. The relevant gravitational force on the pendulum is the component along
the arc, and is given by Fg = −mg sin θ. We model friction to be proportional to the ve-
locity of the pendulum along the arc, that is Ff = −cṡ = −clθ̇. With a sinusoidal external
force, Fe = F0 cos ωt, Newton’s equation ms̈ = Fg + Ff + Fe results in

mlθ̈ + clθ̇ + mg sin θ = F0 cos ωt.

At small amplitudes of oscillation, we can approximate sin θ ≈ θ, and the natural
frequency of oscillation ω0 of the mass is given by ω0 =

√
g/l. Nondimensionalizing

time as τ = ω0t, the dimensionless pendulum equation becomes

d2θ

dτ2 + α
dθ

dτ
+ sin θ = γ cos βτ,

where α, β, and γ are dimensionless parameters given by

α =
c

mω0
, β =

ω

ω0
, γ =

F0

mlω2
0

.

The nonlinearity of the pendulum equation, with the term sin θ, results in the additional
dimensionless parameter γ. For small amplitude of oscillation, however, we can scale θ

by θ = γΘ, and the small amplitude dimensionless equation becomes

d2Θ
dτ2 + α

dΘ
dτ

+ Θ = cos βτ,

the same equation as the dimensionless equations for the RLC circuit and the mass on a
spring.
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Lecture 28 | Damped resonance
View this lecture on YouTube

The dimensionless odes for the RLC circuit, mass on a spring, and small amplitude pen-
dulum have the form

ẍ + αẋ + x = cos βt, (28.1)

where the physical constraints of these applications require that α > 0. The correspond-
ing homogeneous equation has the characteristic polynomial r2 + αr + 1 = 0, with roots
r± = (−α±

√
α2 − 4)/2. No matter the sign of the discriminant, we have Re{r±} < 0.

Therefore, both linearly independent homogeneous solutions decay exponentially to zero,
and the long-time solution of the differential equation reduces to the non-decaying par-
ticular solution. Since the initial conditions are satisfied by the free constants multiplying
the decaying homogeneous solutions, the long-time solution is independent of the initial
conditions.

If we are only interested in the long-time solution of (28.1), we only need determine
the particular solution. We can consider the complex ode

z̈ + αż + z = eiβt,

with xp = Re(zp). With the ansatz zp = Aeiβt, we have −β2 A + iαβA + A = 1, or

A =
1

(1− β2) + iαβ
.

Of particular interest is when the forcing frequency ω is equal to the natural frequency
ω0 of the undampled oscillator. In the dimensionless equation of (28.1), this resonance
situation corresponds to β = 1. In this case, A = 1/iα and

xp = Re{eit/iα} = (1/α) sin t.

The oscillator position is observed to be π/2 out of phase with the external force, or in
other words, the velocity of the oscillator, not the position, is in phase with the force. Also,
the amplitude of oscillation is seen to be inversely proportional to the damping coefficient
represented by α. Smaller and smaller damping will obviously lead to larger and larger
oscillations.

64

https://youtu.be/8U6fiEXGHdg


LECTURE 28. DAMPED RESONANCE 65

Problems for Lecture 28

1. Consider the differential equation

ẍ + αẋ + x = cos βt.

Find the long-time amplitude of oscillation as a function of α and β.

Solutions to the Problems



Practice Quiz | Applications and
resonance

1. The solution of the differential equation ẍ + ẋ = 1, with x(0) = 0 and ẋ(0) = 0, is given
by

a) t(1− et)

b) t(1− e−t)

c) (t + 1)− et

d) (t− 1) + e−t

2. The solution of the differential equation ẍ− x = cosh t, with x(0) = 0 and ẋ(0) = 0, is
given by

a)
1
2

t cosh t

b)
1
2

t sinh t

c)
1
2
(t cosh t + sinh t)

d)
1
2
(t cosh t− sinh t)

3. When comparing the RLC circuit to the mass on a spring and to the pendulum, the
resistor R plays the role of

a) mass

b) gravity

c) friction

d) restoring force

Solutions to the Practice quiz
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Week IV

Laplace Transform and Series
Solution Methods

We present here two new analytical solution methods for solving linear differential equations. The
first is the Laplace transform method, which is used to solve the constant-coefficient ode with
a discontinuous or impulsive inhomogeneous term. The Laplace transform is a good vehicle in
general for introducing sophisticated integral transform techniques within an easily understandable
context. We also discuss the series solution of a linear differential equation. Although we do not
go deeply here, an introduction to this technique may be useful to students that encounter it again
in more advanced courses.
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Lecture 29 | Definition of the
Laplace transform

View this lecture on YouTube

The Laplace transform of f (t), denoted by F(s) = L{ f (t)}, is defined by the integral

F(s) =
ˆ ∞

0
e−st f (t) dt.

The values of s may be restricted to ensure convergence. The Laplace transform can be
shown to be a linear transformation. We have

L{c1 f1(t) + c2 f2(t)} =
ˆ ∞

0
e−st(c1 f1(t) + c2 f2(t)

)
dt

= c1

ˆ ∞

0
e−st f1(t) dt + c2

ˆ ∞

0
e−st f2(t) dt

= c1L{ f1(t)}+ c2L{ f2(t)}.

There is also a one-to-one correspondence between functions and their Laplace trans-
forms, and a table of Laplace transforms is used to find both Laplace and inverse Laplace
transforms of commonly occurring functions.

To construct such a table, integrals have been performed, where for example, we can
compute

L{eat} =
ˆ ∞

0
e−(s−a)t dt

= − 1
s− a

e−(s−a)t
∣∣∣∣∞
0

=
1

s− a
.

Here, the assumption is made that s > a.
A Table of Laplace transforms can be found in Appendix F.
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Problems for Lecture 29

1. Compute the Laplace transform of f (t) = sin bt.

Solutions to the Problems



Lecture 30 | Laplace transform of
a constant-coefficient
ode

View this lecture on YouTube

Consider the inhomogeneous constant-coefficient second-order ode, given by

aẍ + bẋ + cx = g(t), x(0) = x0, ẋ(0) = u0.

We Laplace transform the ode making use of the linearity of the transform:

aL{ẍ}+ bL{ẋ}+ cL{x} = L{g}.

We define X(s) = L{x(t)} and G(s) = L{g(t)}. The Laplace transforms of the derivatives
can be found from integrating by parts. We have

ˆ ∞

0
e−st ẋ dt = xe−st

∣∣∣∣∞
0
+ s
ˆ ∞

0
e−stx dt = sX(s)− x0;

and

ˆ ∞

0
e−st ẍ dt = ẋe−st

∣∣∣∣∞
0
+ s
ˆ ∞

0
e−st ẋ dt = −u0 + s

(
sX(s)− x0

)
= s2X(s)− sx0 − u0.

The transformed ode is then

a
(

s2X− sx0 − u0

)
+ b (sX− x0) + cX = G,

which is an easily solved linear algebraic equation for X = X(s). Finding the solution of
the ode then requires taking the inverse Laplace transform of X = X(s) to obtain x = x(t).
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Problems for Lecture 30

1. Consider the inhomogeneous constant-coefficient second-order ode given by

aẍ + bẋ + cx = g(t), x(0) = x0, ẋ(0) = u0.

Determine the solution for X = X(s) in terms of the Laplace transform of g(t).

Solutions to the Problems



Lecture 31 | Solution of an initial
value problem

View this lecture on YouTube

Example: Solve by Laplace transform methods ẍ + x = sin 2t with x(0) = 2 and ẋ(0) = 1.

Taking the Laplace transform of both sides of the ode, we find

s2X(s)− 2s− 1 + X(s) =
2

s2 + 4
,

where the Laplace transform of the second derivative and of sin 2t made use of line 16
and line 6a of the table in Appendix F. Solving for X(s), we obtain

X(s) =
2s + 1
s2 + 1

+
2

(s2 + 1)(s2 + 4)
.

To determine the inverse Laplace transform from the table in Appendix F, we need to
perform a partial fraction expansion of the second term:

2
(s2 + 1)(s2 + 4)

=
as + b
s2 + 1

+
cs + d
s2 + 4

.

By inspection, we can observe that a = c = 0 and that d = −b. A quick calculation shows
that 3b = 2, or b = 2/3. Therefore,

X(s) =
2s + 1
s2 + 1

+
2/3

s2 + 1
− 2/3

(s2 + 4)

=
2s

s2 + 1
+

5/3
s2 + 1

− 2/3
(s2 + 4)

.

From lines 6a and 7a of the table in Appendix F, we obtain the solution by taking inverse
Laplace transforms of the three terms separately, where the values in the table are b = 1
in the first two terms, and b = 2 in the third term:

x(t) = 2 cos t +
5
3

sin t− 1
3

sin 2t.
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Problems for Lecture 31

1. Solve by Laplace transform methods ẍ + 5ẋ + 6x = e−t, with x(0) = 0 and ẋ(0) = 0.

Solutions to the Problems



Practice Quiz | The Laplace
transform method

1. What is the Laplace transform of x(t) = e−t cos πt?

a)
s + 1

(s + 1)2 − π2

b)
s + 1

(s + 1)2 + π2

c)
s− 1

(s− 1)2 − π2

d)
s− 1

(s− 1)2 + π2

2. If ẍ + ẋ− 6x = e−t, with x(0) = ẋ(0) = 0, what is X(s)?

a)
1

(s + 1)(s + 2)(s + 3)

b)
1

(s− 1)(s + 2)(s + 3)

c)
1

(s + 1)(s− 2)(s + 3)

d)
1

(s + 1)(s + 2)(s− 3)

3. If X(s) =
1

(s + 1)(s + 2)(s + 3)
, what is x(t)?

a)
1
2

e−t + e−2t +
1
2

e−3t

b) −1
2

e−t + e−2t +
1
2

e−3t

c)
1
2

e−t − e−2t +
1
2

e−3t

d)
1
2

e−t + e−2t − 1
2

e−3t

Solutions to the Practice quiz
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Lecture 32 | The Heaviside step
function

View this lecture on YouTube

The Heaviside or unit step function, denoted here by uc(t), is zero for t < c and one for
t ≥ c:

uc(t) =

{
0, t < c;
1, t ≥ c.

The Heaviside function can be viewed as the step-up function. Using the Heaviside func-
tion both a step-down and a step-up, step-down function can also be defined. The Laplace
transform of the Heaviside function is determined by integration:

L{uc(t)} =
ˆ ∞

0
e−stuc(t)dt =

e−cs

s
.

The Heaviside function can be used to represent a translation of a function f (t) a distance
c in the positive t direction. We have

uc(t) f (t− c) =

{
0, t < c;

f(t-c), t ≥ c.

The Laplace transform is

L{uc(t) f (t− c)} =
ˆ ∞

0
e−stuc(t) f (t− c)dt = e−csF(s).

The translation of f (t) a distance c in the positive t direction corresponds to the multipli-
cation of F(s) by the exponential e−cs.

Piecewise-defined inhomogeneous terms can be modeled using Heaviside functions.
For example, consider the general case of a piecewise function defined on two intervals:

f (t) =

{
f1(t), if t < c;
f2(t), if t ≥ c.

Using the Heaviside function uc, the function f (t) can be written in a single line as

f (t) = f1(t) +
(

f2(t)− f1(t)
)
uc(t).
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Problems for Lecture 32

1. Use the step-up function uc(t) to construct a step-down and a step-up, step-down
function.

2. Prove that L{uc(t) f (t− c)} = e−csF(s).

3. Consider the piecewise continuous function given by

f (t) =

t, if t < 1;

1, if t ≥ 1.

a) Express f (t) in a single line using the Heaviside function.

b) Find F = F(s).

Solutions to the Problems



Lecture 33 | The Dirac delta
function

View this lecture on YouTube

The Dirac delta function, denoted as δ(t), is defined by requiring that for any function
f (t), ˆ ∞

−∞
f (t)δ(t) dt = f (0).

The usual view of the Dirac delta function is that it is zero everywhere except at t = 0,
at which it is infinite in such a way that the integral is one. The Dirac delta function is
technically not a function, but is what mathematicians call a distribution. Nevertheless,
in most cases of practical interest, it can be treated like a function, where physical results
are obtained following a final integration.

There are several common ways to represent the Dirac delta function as a limit of a
well-defined function. For our purposes, the most useful representation of the shifted
Dirac delta function, δ(t− c), makes use of the step-up, step-down function constructed
from Heaviside functions:

δ(t− c) = lim
ε→0

1
2ε

(uc−ε(t)− uc+ε(t)).

Before taking the limit, the well-defined step-up, step-down function is zero except over a
small interval of width 2ε centered at t = c, over which it takes the large value 1/2ε. The
integral of this function is one, independent of the value of ε.

The Laplace transform of the Dirac delta function is easily found by integration using
the definition of the delta function. With c > 0,

L{δ(t− c)} =
ˆ ∞

0
e−stδ(t− c) dt = e−cs.
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Problems for Lecture 33

1. Two expressions D1(x) and D2(x) containing Dirac delta functions are said to be equal
if for functions f (x), ˆ ∞

−∞
f (x)D1(x)dx =

ˆ ∞

−∞
f (x)D2(x)dx.

a) Prove that δ(ax) =
1
|a| δ(x);

b) Show that uc(x) =
ˆ x

−∞
δ(x′ − c) dx′;

c) Show that, at least formally, δ(x− c) =
d

dx
uc(x) .

Solutions to the Problems



Lecture 34 | Solution of a
discontinuous
inhomogeneous term

View this lecture on YouTube

Example: Solve ẍ + 3ẋ + 2x = 1− u1(t), with x(0) = ẋ(0) = 0

Here, the inhomogeneous term is a step-down function, from one to zero. Taking the
Laplace transform of the ode using the table in Appendix F, we have

s2X(s) + 3sX(s) + 2X(s) =
1
s
(
1− e−s) ,

with solution for X = X(s) given by

X(s) =
1− e−s

s(s + 1)(s + 2)
.

Defining

F(s) =
1

s(s + 1)(s + 2)
,

and using the table in Appendix F, the inverse Laplace transform of X(s) can be written
as

x(t) = f (t)− u1(t) f (t− 1),

where f (t) is the inverse Laplace transform of F(s). To determine f (t), we need a partial
fraction expansion of F(s), so we write

1
s(s + 1)(s + 2)

=
a
s
+

b
s + 1

+
c

s + 2
.

Using the coverup method, we find a = 1/2, b = −1, and c = 1/2, and from the table in
Appendix F, determine

L−1 {F(s)} = 1
2
L−1

{
1
s

}
−L−1

{
1

s + 1

}
+

1
2
L−1

{
1

s + 2

}
=

1
2
− e−t +

1
2

e−2t.

The full solution can then be written as

x(t) =
1
2
− e−t +

1
2

e−2t − u1(t)
(

1
2
− e−(t−1) +

1
2

e−2(t−1)
)

.
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Problems for Lecture 34

1. Show that the solution in the lecture,

x(t) =
1
2
− e−t +

1
2

e−2t − u1(t)
(

1
2
− e−(t−1) +

1
2

e−2(t−1)
)

,

is continuous at t = 1.

2. Solve ẍ + x = 1− u2π(t), with x(0) = 0 and ẋ(0) = 0.

Solutions to the Problems



Lecture 35 | Solution of an
impulsive
inhomogeneous term

View this lecture on YouTube

Example: Solve ẍ + 3ẋ + 2x = δ(t) with x(0) = ẋ(0) = 0. Assume the entire impulse oc-
curs at t = 0+.

Taking the Laplace transform of the ode using the table in Appendix F, and applying
the initial conditions, we have

s2X + 3sX + 2X = 1.

Solving for X = X(s), we have

X(s) =
1

(s + 1)(s + 2)
,

and a partial fraction expansion results in

1
(s + 1)(s + 2)

=
1

s + 1
− 1

s + 2
.

Taking the inverse Laplace transform using the table in Appendix F, we find

x(t) = e−t − e−2t

= e−t (1− e−t) .

Note that the function x = x(t) is continuous at t = 0, but that the first derivative is not,
since ẋ(0−) = 0 and ẋ(0+) = 1. Impulsive forces result in a discontinuity in the velocity.
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Problems for Lecture 35

1. Solve ẍ + x = δ(t)− δ(t− 2π), with x(0) = 0 and ẋ(0) = 0.

Solutions to the Problems



Practice Quiz | Discontinuous and
impulsive
inhomogeneous
terms

1. The pictured function can be defined using Heaviside step functions as

a) x(t) = −u1(t) + u2(t) + u3(t)− u4(t)

b) x(t) = −u1(t) + u2(t)− u3(t) + u4(t)

c) x(t) = u1(t)− u2(t)− u3(t) + u4(t)

d) x(t) = u1(t)− u2(t) + u3(t)− u4(t)

0 1 2 3 4 5
-1

0

1

2. The solution to ẍ + x = 1− u2π(t), with x(0) = 1 and ẋ(0) = 0 is given by

a) x(t) =

1− cos t, if t < 2π;

0, if t ≥ 2π.

b) x(t) =

cos t, if t < 2π;

1, if t ≥ 2π.

c) x(t) =

1− sin t, if t < 2π;

1, if t ≥ 2π.

d) x(t) =

1, if t < 2π;

cos t, if t ≥ 2π.
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3. The solution to ẍ + x = δ(t)− δ(t− 2π), with x(0) = 1 and ẋ(0) = 0 is given by

a) x(t) =

cos t, if t < 2π;

0, if t ≥ 2π.

b) x(t) =

sin t, if t < 2π;

0, if t ≥ 2π.

c) x(t) =

cos t + sin t, if t < 2π;

cos t, if t ≥ 2π.

d) x(t) =

cos t + sin t, if t < 2π;

sin t, if t ≥ 2π.

Solutions to the Practice quiz



Lecture 36 | The series solution
method

View this lecture on YouTube

Example: Find the general solution of y′′ + y = 0.

By now, you should know that the general solution is y(x) = a0 cos x + a1 sin x, with a0

and a1 constants. To find a power series solution, we write

y(x) =
∞

∑
n=0

anxn;

and upon differentiating term-by-term

y′(x) =
∞

∑
n=1

nanxn−1, y′′(x) =
∞

∑
n=2

n(n− 1)anxn−2.

Substituting the power series for y and its derivatives into the differential equation, we
obtain

∞

∑
n=2

n(n− 1)anxn−2 +
∞

∑
n=0

anxn = 0. (36.1)

The power-series solution method requires combining the two sums into a single power
series in x. We shift the summation index downward by two in the first sum to obtain

∞

∑
n=2

n(n− 1)anxn−2 =
∞

∑
n=0

(n + 2)(n + 1)an+2xn.

We can then combine the two sums in (36.1) to obtain

∞

∑
n=0

(
(n + 2)(n + 1)an+2 + an

)
xn = 0.

For the equality to hold, the coefficient of each power of x must vanish separately. We
therefore obtain the recurrence relation

an+2 = − an

(n + 2)(n + 1)
, n = 0, 1, 2, . . . .

We observe that even and odd coefficients decouple. We thus obtain two independent
sequences starting with first term a0 or a1. Developing these sequences, we have for the
first sequence,

a0, a2 = −1
2

a0, a4 = − 1
4 · 3 a2 =

1
4!

a0,

and so on; and for the second sequence,

a1, a3 = − 1
3 · 2 a1, a5 = − 1

5 · 4 a3 =
1
5!

a1,

and so on. Using the principle of superposition, the general solution is therefore
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y(x) = a0

(
1− x2

2!
+

x4

4!
− . . .

)
+ a1

(
x− x3

3!
+

x5

5!
− . . .

)
= a0 cos x + a1 sin x,

as expected.
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Problems for Lecture 36

1. Find two independent power series solutions of y′′ − y = 0. Show that

y(x) = a0 cosh x + a1 sinh x,

where

cosh x =
ex + e−x

2
, sinh x =

ex − e−x

2
.

Solutions to the Problems



Lecture 37 | Series solution of the
Airy’s equation
(Part A)

View this lecture on YouTube

We solve by series solution the Airy’s equation, an ode that arises in optics, fluid me-
chanics, and quantum mechanics.
Example: Find the general solution of y′′ − xy = 0. Notice that there is a non-constant coefficient.

We try the power-series ansatz

y(x) =
∞

∑
n=0

anxn,

where the an coefficients are to be determined. Finding the second derivative by differen-
tiating term-by-term, the ode becomes

∞

∑
n=2

n(n− 1)anxn−2 −
∞

∑
n=0

anxn+1 = 0. (37.1)

We shift the summation index of the first sum down by three to obtain

∞

∑
n=2

n(n− 1)anxn−2 =
∞

∑
n=−1

(n + 3)(n + 2)an+3xn+1.

When combining the two sums in (37.1), we separate out the extra first term in the first
sum. Therefore, (37.1) becomes the single power series

2a2 +
∞

∑
n=0

(
(n + 3)(n + 2)an+3 − an

)
xn+1 = 0.

Since all the coefficients of powers of x equal zero, we find a2 = 0 and obtain the recursion
relation

an+3 =
1

(n + 3)(n + 2)
an.

Three sequences of coefficients—those starting with either a0, a1 or a2—decouple. Since
a2 = 0, we find immediately that a2 = a5 = a8 = a11 = · · · = 0. Starting with a0, we have

a0, a3 =
1

3 · 2 a0, a6 =
1

6 · 5 · 3 · 2 a0,

and so on; and starting with a1,

a1, a4 =
1

4 · 3 a1, a7 =
1

7 · 6 · 4 · 3 a1,
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and so on. The general solution for y = y(x), can therefore be written as

y(x) = a0

(
1 +

x3

3 · 2 +
x6

6 · 5 · 3 · 2 + . . .
)
+ a1

(
x +

x4

4 · 3 +
x7

7 · 6 · 4 · 3 + . . .
)

= a0y0(x) + a1y1(x).



90

Problems for Lecture 37

1. Find two independent power series solutions of y′′ + xy′ − y = 0. Keep terms up to x6.

Solutions to the Problems



Lecture 38 | Series solution of the
Airy’s equation
(Part B)

View this lecture on YouTube

The Airy’s equation is given by y′′ − xy = 0, and the general solution for y = y(x), is
given by

y(x) = a0

(
1 +

x3

3 · 2 +
x6

6 · 5 · 3 · 2 + . . .
)
+ a1

(
x +

x4

4 · 3 +
x7

7 · 6 · 4 · 3 + . . .
)

= a0y0(x) + a1y1(x).

Suppose we would like to graph the solutions y = y0(x) and y = y1(x) versus x by solving
the differential equation y′′ − xy = 0 numerically. What initial conditions should we use?
Evidently, y = y0(x) solves the ode with initial values y(0) = 1 and y′(0) = 0, whereas
y = y1(x) solves the ode with initial values y(0) = 0 and y′(0) = 1.

The numerical solutions, obtained using Matlab, are shown in the figure below. Note
that the solutions oscillate for negative x and grow exponentially for positive x. This can
be understood by recalling that y′′ + y = 0 has oscillatory sine and cosine solutions and
y′′ − y = 0 has exponential solutions.

-10 -8 -6 -4 -2 0 2
-2

-1

0

1

2

-10 -8 -6 -4 -2 0 2
-2

-1

0

1

2

Airy’s functions

Numerical solution of Airy’s equation
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Problems for Lecture 38

1. Given the two Airy’s functions y = y0(x) and y = y1(x) as defined by their power
series, solve the Airy’s equation y′′ − xy = 0 with the initial conditions y(0) = 1 and
y′(0) = 1.

Solutions to the Problems



Practice Quiz | Series solutions
1. The value of cosh2 t− sinh2 t is equal to

a) −1

b) 0

c) 1

d) 2

2. The general solution to y′′ + x2y = 0 is given by

a) y(x) = a0

(
1 +

x3

12
+ . . .

)
+ a1

(
x +

x4

20
+ . . .

)

b) y(x) = a0

(
1− x3

12
+ . . .

)
+ a1

(
x− x4

20
+ . . .

)

c) y(x) = a0

(
1 +

x4

12
+ . . .

)
+ a1

(
x +

x5

20
+ . . .

)

d) y(x) = a0

(
1− x4

12
+ . . .

)
+ a1

(
x− x5

20
+ . . .

)
3. The general solution to y′′ − xy′ + y = 0 is given by

a) y(x) = a0

(
1 +

x2

2
+

x4

24
+ . . .

)
+ a1x

b) y(x) = a0

(
1− x2

2
+

x4

24
+ . . .

)
+ a1x

c) y(x) = a0

(
1 +

x2

2
− x4

24
+ . . .

)
+ a1x

d) y(x) = a0

(
1− x2

2
− x4

24
+ . . .

)
+ a1x

Solutions to the Practice quiz
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Week V

Systems of Differential Equations

We solve a coupled system of homogeneous first-order differential equations with constant coeffi-
cients. This system of odes can be written in matrix form, and we explain how to convert these
equations into a standard matrix algebra eigenvalue problem. The two-dimensional solutions are
visualized using phase portraits. We then discuss the important application of coupled harmonic
oscillators and the calculation of normal modes. The normal modes are those motions for which the
individual masses that make up the system oscillate with the same frequency.
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Lecture 39 | Systems of
homogeneous linear
first-order odes

View this lecture on YouTube

We consider a system of homogeneous linear odes with constant coefficients given by

ẋ1 = ax1 + bx2, ẋ2 = cx1 + dx2,

which can be written in matrix form as

d
dt

(
x1

x2

)
=

(
a b
c d

)(
x1

x2

)
,

or more succinctly as ẋ = Ax.
We take as our ansatz x(t) = veλt, where v and λ are independent of t and v is a

two-by-one column matrix. Upon substitution into the ode, we obtain

λveλt = Aveλt;

and upon cancellation of the exponential, we obtain the eigenvalue problem

Av = λv.

The characteristic equation for our two-by-two matrix is given by

det (A− λI) = λ2 − (a + d)λ + (ad− bc) = 0.

We will demonstrate how to solve two separate cases: (i) eigenvalues of A are distinct
and real; (ii) eigenvalues of A are complex conjugates. The third case for which the eigen-
values are repeated will be omitted. These three cases are analogous to those previously
considered when solving the homogeneous constant-coefficient second-order ode.
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Problems for Lecture 39

1. Consider the system of homogeneous linear odes with constant coefficients given by

ẋ1 = ax1 + cx2, ẋ2 = cx1 + bx2.

Prove that the eigenvalues of the resulting characteristic equation are real.

Solutions to the Problems



Lecture 40 | Distinct real
eigenvalues

View this lecture on YouTube

Example: Find the general solution of ẋ1 = x1 + x2, ẋ2 = 4x1 + x2.
The equation in matrix form is given by

d
dt

(
x1

x2

)
=

(
1 1
4 1

)(
x1

x2

)
,

or ẋ = Ax. With our ansatz x(t) = veλt, we obtain the eigenvalue problem Av = λv. The
characteristic equation of A is given by

det (A− λI) = λ2 − 2λ− 3 = (λ− 3)(λ + 1) = 0,

and the eigenvalues are found to be λ1 = −1 and λ2 = 3. To determine the corresponding
eigenvectors, we substitute the eigenvalues successively into (A− λI)v = 0, and denote

the eigenvectors as v1 =
(

v11 v21

)T
and v2 =

(
v12 v22

)T
.

For λ1 = −1, and unknown eigenvector v1, we obtain from (A− λ1I)v1 = 0 the result
v21 = −2v11. Recall that an eigenvector is only unique up to multiplication by a constant:
we may therefore take v11 = 1. For λ2 = 3, and unknown eigenvector v2, we obtain from
(A− λ2I)v2 = 0 the result v22 = 2v12. Here, we take v12 = 1.

Therefore, our eigenvalues and eigenvectors are given by

λ1 = −1, v1 =

(
1
−2

)
; λ2 = 3, v2 =

(
1
2

)
.

Using the principle of superposition, the general solution to the system of odes is given
by

x(t) = c1v1eλ1t + c2v2eλ2t;

or explicitly writing out the components,

x1(t) = c1e−t + c2e3t, x2(t) = −2c1e−t + 2c2e3t.
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Problems for Lecture 40

1. Using matrix algebra, find the general solution of ẋ1 = −x2 and ẋ2 = −2x1 − x2.

Solutions to the Problems



Lecture 41 | Complex-conjugate
eigenvalues

View this lecture on YouTube

Example: Find the general solution of ẋ1 = −1
2

x1 + x2 and ẋ2 = −x1 −
1
2

x2.
The equations in matrix form are

d
dt

(
x1

x2

)
=

(
− 1

2 1
−1 − 1

2

)(
x1

x2

)
.

The ansatz x = veλt leads to the characteristic equation

det (A− λI) = λ2 + λ +
5
4
= 0,

which has complex-conjugate roots. We denote the two eigenvalues as

λ = −1
2
+ i and λ̄ = −1

2
− i.

The eigenvectors also occur as a complex-conjugate pair, and the eigenvector v associated
with the eigenvalue λ satisfies −iv1 + v2 = 0. Normalizing with v1 = 1, we have v =(

1 i
)T

. We have therefore determined two independent complex solutions to the system
of odes, that is,

veλt and v̄eλ̄t,

and we can form a linear combination of these two complex solutions to construct two
independent real solutions. Namely, the two real solutions are Re{veλt} and Im{veλt}.
We have

Re{veλt} = Re

{(
1
i

)
e(−

1
2+i)t

}
= e−t/2

(
cos t
− sin t

)
;

and

Im{veλt} = Im

{(
1
i

)
e(−

1
2+i)t

}
= e−t/2

(
sin t
cos t

)
.

Taking a linear superposition of these two real solutions yields the general solution to the
system of odes, given by

x = e−t/2

(
A

(
cos t
− sin t

)
+ B

(
sin t
cos t

))
;

or explicitly writing out the components,

x1 = e−t/2 (A cos t + B sin t) , x2 = e−t/2 (−A sin t + B cos t) .

99

https://youtu.be/NnK_mJYIrxk


100

Problems for Lecture 41

1. Using matrix algebra, find the general solution of ẋ1 = x1 − 2x2 and ẋ2 = x1 + x2.

Solutions to the Problems



Practice Quiz |Systems of differ-
ential equations

1. The system of odes given by ẋ1 = ax1 + bx2 and ẋ2 = cx1 + dx2 has the same charac-
teristic equation as the second order ode given by

a) aẍ + bẋ + cx = 0

b) ẍ + (a + b)ẋ + (c + d)x = 0

c) ẍ− (a + d)ẋ + (ad− bc)x = 0

d) (a + b)ẍ + (b + c)ẋ + (c + d)x = 0

2. The general solution of ẋ1 = x1 + 2x2 and ẋ2 = 2x1 + x2 is given by

a) x1 = c1e3t + c2e−t

x2 = c1e3t + c2e−t

b) x1 = c1e3t + c2e−t

x2 = c1e3t − c2e−t

c) x1 = c1e3t + c2e−t

x2 = c1e−t + c2e3t

d) x1 = c1e3t + c2e−t

x2 = c1e−t − c2e3t

3. The general solution of ẋ1 = −2x1 + x2 and ẋ2 = −x1 − 2x2 is given by

a) x1 = e−t(A cos 2t + B sin 2t)
x2 = e−t(A sin 2t + B cos 2t)

b) x1 = e−2t(A cos t + B sin t)
x2 = e−2t(A sin t + B cos t)

c) x1 = e−t(A cos 2t + B sin 2t)
x2 = e−t(−A sin 2t + B cos 2t)

d) x1 = e−2t(A cos t + B sin t)
x2 = e−2t(−A sin t + B cos t)

Solutions to the Practice quiz
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Lecture 42 | Phase portraits
View this lecture on YouTube

The solution of a system of two first-order odes for x1 and x2 can be visualized by drawing
a phase portrait, with “x-axis” x1 and “y-axis” x2. Each curve drawn on the phase portrait
corresponds to a different initial condition, and can be viewed as the trajectory of a particle
at position (x1, x2) moving with a velocity given by (ẋ1, ẋ2).

For a two-by-two system, written as ẋ = Ax, the point x = (0, 0) is called an equilib-
rium point, or fixed point, of the system. If x is at the fixed point initially, then x remains
there for all time because ẋ = 0 at the fixed point. This fixed point, or equilibrium, may
be stable or unstable, and the qualitative picture of the phase portrait depends on the sta-
bility of the equilibrium, which in turn depends on the eigenvalues of the characteristic
equation.

If there are two distinct real eigenvalues of the same sign, we say that the fixed point
is a node. When the eigenvalues are both negative the fixed point is a stable node, and
when they are both positive, the fixed point is an unstable node. If the eigenvalues have
opposite sign, the fixed point is a saddle point.

If there are complex-conjugate eigenvalues, we say that the fixed point is a spiral.
A spiral can be stable or unstable and this depends on the sign of the real part of the
eigenvalues. If the real part is negative, then the solution decays exponentially and the
fixed point corresponds to a stable spiral; if the real part is positive then the solution
grows exponentially and the fixed point corresponds to an unstable spiral. Furthermore,
a spiral may wind around the fixed point clockwise or counterclockwise, and this so-
called handedness of the spiral can be determined by examining the differential equations
directly. In the next few lectures, we will present phase portraits representing nodes,
saddle points and spirals.
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Problems for Lecture 42

1. Determine if the fixed points of the following systems are nodes, saddle points, or
spirals, and determine their stability:

a)
ẋ1 = −3x1 +

√
2x2, ẋ2 =

√
2x1 − 2x2;

b)
ẋ1 = x1 + x2, ẋ2 = 4x1 + x2;

c)

ẋ1 = −1
2

x1 + x2, ẋ2 = −x1 −
1
2

x2.

Solutions to the Problems



Lecture 43 | Stable and unstable
nodes

View this lecture on YouTube

When there are two distinct real eigenvalues of the same sign, the fixed point is called a
node. Consider the differential equations given by

ẋ1 = −3x1 +
√

2x2, ẋ2 =
√

2x1 − 2x2.

An eigenvalue analysis of this system results in eigenvalues and eigenvectors given by

λ1 = −4, v1 =

(
1

−
√

2/2

)
; λ2 = −1, v2 =

(
1√
2

)
;

and the general solution of the system is written as

x(t) = c1v1eλ1t + c2v2eλ2t.

Because λ1, λ2 < 0, both exponential solutions for x = x(t) decay in time and x → (0, 0)
as t → ∞. This is why we say that the node is stable. If both eigenvalues were positive,
the node would be unstable.

To draw the phase portrait, one considers the eigenfunctions. On the one hand, sup-
pose initial conditions are such that c2 = 0. The solution x(t) is then equal to a scalar
function of time times the eigenvector v1. Since x is proportional to v1, trajectories with
c2 = 0 must lie on the line x2 = −

√
2x1/2. This line can be drawn on the phase portrait

with arrow pointing in towards the origin.
On the other hand, suppose initial conditions

are such that c1 = 0. The solution is then equal
to a scalar times the eigenvector v2. Since x is
proportional to v2, trajectories with c1 = 0 must
lie on the line x2 =

√
2x1. This line can also be

drawn on the phase portrait with arrow again
pointing in towards the origin.

Because |λ1| > |λ2|, the trajectory ap-
proaches the fixed point quicker along v1 than
along v2, resulting in a final approach to the ori-
gin along v2, as is evident in the drawn phase
portrait.

-2 -1 0 1 2
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-1

0

1

2
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Problems for Lecture 43

1. Consider the system of differential equations given by

ẋ1 = 2x1 + x2, ẋ2 = x1 + 2x2.

Determine the eigenvalues and eigenvectors, and sketch the phase portrait.

Solutions to the Problems



Lecture 44 | Saddle points
View this lecture on YouTube

If there are two distinct real eigenvalues of opposite sign, the fixed point is a saddle point.
Consider the differential equations given by

ẋ1 = x1 + x2, ẋ2 = 4x1 + x2.

An eigenvalue analysis of this system results in eigenvalues and eigenvectors given by

λ1 = −1, v1 =

(
1
−2

)
; λ2 = 3, v2 =

(
1
2

)
;

and the general solution is again written as

x(t) = c1v1eλ1t + c2v2eλ2t.

Because λ1 < 0, trajectories approach the fixed point along the direction of the first eigen-
vector, and because λ2 > 0, trajectories move away from the fixed point along the direction
of the second eigenvector. Ultimately, a saddle point is an unstable equilibrium because
for any initial conditions such that c2 6= 0, |x(t)| → ∞ as t→ ∞.

To draw a phase portrait of the solu-
tion, we first consider motion along the
directions of the eigenvectors. Along the
first eigenvector, we have x2 = −2x1,
and this line is to be drawn on the phase
portrait with arrow pointing in towards
origin. Along the second eigenvector,
we have x2 = 2x1, and this line is to be
drawn on the phase portrait with arrow
pointing away from the origin. Imme-
diately, we see that the motion is in to-
wards the origin in the direction of the
first eigenvector, and away from the ori-
gin in the direction of the second eigen-
vector. The remainder of the phase tra-
jectories can be sketched or computer
drawn, and the resulting phase portrait
is shown.
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Problems for Lecture 44

1. Consider the system of differential equations given by

ẋ1 = −x1 + 3x2, ẋ2 = 2x1 + 4x2.

Determine the eigenvalues and eigenvectors, and sketch the phase portrait.

Solutions to the Problems



Lecture 45 | Spiral points
View this lecture on YouTube

If there are complex conjugate eigenvalues, the fixed point is a spiral point. Consider the
system of differential equations given by

ẋ1 = −1
2

x1 + x2, ẋ2 = −x1 −
1
2

x2.

An eigenvalue analysis of this system results in the complex eigenvalue and eigenvector

λ = −1
2
+ i, v =

(
1
i

)
,

and their complex conjugates. The general solution is written as

x(t) = e−t/2

[
A

(
cos t
− sin t

)
+ B

(
sin t
cos t

)]
.

The trajectories in the phase portrait are spirals centered at the fixed point. If the
Re{λ} > 0 the trajectories spiral out, and if Re{λ} < 0 they spiral in. The spirals around
the fixed point may be clockwise or counterclockwise, depending on the governing equa-
tions.

Here, since Re{λ} = −1/2 < 0,
the trajectories spiral into the origin.
To determine whether the spiral is
clockwise or counterclockwise, we
can examine the time derivatives at
the point (x1, x2) = (0, 1). At this
point in the phase space, (ẋ1, ẋ2) =

(1,−1/2), and a particle on this
trajectory moves to the right and
downward, indicating a clockwise
spiral. The corresponding phase
portrait is shown.
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Problems for Lecture 45

1. Consider the system of differential equations given by

ẋ1 = x1 + x2, ẋ2 = −x1 + x2.

Determine the eigenvalues and eigenvectors, and sketch the phase portrait.

Solutions to the Problems



Practice Quiz | Phase portraits
1. Select the correct phase portrait for the following system of differential equations:

ẋ1 = 2x1 + x2, ẋ2 = x1 + 2x2.

(a)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(b)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(c)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(d)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

2. Select the correct phase portrait for the following system of differential equations:

ẋ1 = −x1 + 3x2, ẋ2 = 2x1 + 4x2.

(a)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(b)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(c)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(d)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2
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3. Select the correct phase portrait for the following system of differential equations:

ẋ1 = x1 + x2, ẋ2 = −x1 + x2.

(a)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(b)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(c)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

(d)
-2 -1 0 1 2

x
1

-2

-1

0

1

2

x 2

Solutions to the Practice quiz



Lecture 46 | Coupled oscillators
View this lecture on YouTube

m m

k kK

x1 x2

The normal modes of a physical system are oscillations of the entire system that take
place at a single frequency. Perhaps the simplest example of a system containing two
distinct normal modes is the coupled mass-spring system shown above. We will see that
an eigenvector analysis of this system, similar to what we have just done for coupled first-
order odes, will exhibit the normal modes and reveal the true nature of the oscillation.

In the figure, the position variables x1 and x2 are measured from the equilibrium posi-
tions of the masses. Hooke’s law states that the spring force is linearly proportional to the
extension length of the spring, measured from equilibrium. By considering the extension
of each spring and the sign of each force, Newton’s law F = ma written separately for
each mass is

mẍ1 = −kx1 − K(x1 − x2),

mẍ2 = −kx2 − K(x2 − x1).

Collecting terms proportional to x1 and x2 results in

mẍ1 = −(k + K)x1 + Kx2,

mẍ2 = Kx1 − (k + K)x2.

The equations for the coupled mass-spring system form a system of two homogeneous
linear second-order odes. In matrix form, mẍ = Ax, or explicitly,

m
d2

dt2

(
x1

x2

)
=

(
−(k + K) K

K −(k + K)

)(
x1

x2

)
.
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Problems for Lecture 46

m m

k k

x1 x2

1. Consider the mass-spring system shown above. Determine the matrix equation repre-
sented as mẍ = Ax.

Solutions to the Problems



Lecture 47 | Normal modes
(eigenvalues)

View this lecture on YouTube

We now solve the two masses, three springs system with governing equation

m
d2

dt2

(
x1

x2

)
=

(
−(k + K) K

K −(k + K)

)(
x1

x2

)
.

We try the ansatz x = vert, and obtain the eigenvalue problem Av = λv, with λ = mr2.
The eigenvalues are determined by solving the characteristic equation

det (A− λI) = (λ + k + K)2 − K2 = 0;

and the two solutions for λ are given by

λ1 = −k, λ2 = −(k + 2K).

The corresponding values of r in our ansatz x = vert, with r = ±
√

λ/m, are

r1 = i
√

k/m, r̄1, r2 = i
√
(k + 2K)/m, r̄2.

Since the values of r are pure imaginary, we know that x1(t) and x2(t) will oscillate with
angular frequencies ω1 = Im{r1} and ω2 = Im{r2}, that is,

ω1 =
√

k/m, ω2 =
√
(k + 2K)/m.

These are the so-called frequencies of the two normal modes. A normal mode with an-
gular frequency ωi is periodic with period Ti = 2π/ωi. In the next lecture, we find the
eigenvectors and physically intepret the results.
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Lecture 48 | Normal modes
(eigenvectors)

View this lecture on YouTube

We are solving the two masses, three springs system with governing equation

m
d2

dt2

(
x1

x2

)
=

(
−(k + K) K

K −(k + K)

)(
x1

x2

)
.

We tried the ansatz x = vert, and obtained the eigenvalue problem Av = λv, with λ = mr2.
The eigenvalues were found to be

λ1 = −k, λ2 = −(k + 2K).

The eigenvectors, or so-called normal modes of oscillations, correspond to the mass-
spring system oscillating at a single frequency. The eigenvector with eigenvalue λ1 satis-
fies

−Kv11 + Kv12 = 0,

so that v11 = v12. The normal mode with frequency ω1 =
√

k/m thus follows a motion
where x1 = x2. During this motion the center spring length does not change, and the
frequency is independent of K.

Next, we determine the eigenvector with eigenvalue λ2:

Kv21 + Kv22 = 0,

so that v21 = −v22. The normal mode with frequency ω2 =
√
(k + 2K)/m thus follows a

motion where x1 = −x2. During this motion the two equal masses symmetrically push or
pull against each side of the middle spring.

A general solution for x(t) can be constructed from the eigenvalues and eigenvectors.
Our ansatz was x = vert, and for each of two eigenvectors v, we have a pair of complex
conjugate values for r. Accordingly, we first apply the principle of superposition to obtain
four real solutions, and then apply the principle again to obtain the general solution. With
ω1 =

√
k/m and ω2 =

√
(k + 2K)/m, the general solution is given by(

x1

x2

)
=

(
1
1

)
(A cos ω1t + B sin ω1t) +

(
1
−1

)
(C cos ω2t + D sin ω2t) ,

where the now real constants A, B, C, and D can be determined from the four independent
initial conditions, x1(0), x2(0), ẋ1(0), and ẋ2(0).
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Problems for Lecture 48

m m

k k

x1 x2

1. Consider the matrix equation obtained from the mass-spring system shown above. Find
the angular frequencies and the eigenvectors of the two normal modes.

Solutions to the Problems



Practice Quiz | Normal modes
1. The matrix equation for the pictured mass-spring system is given by

a) m
d2

dt2

(
x1

x2

)
=

(
−k k

k −k

)(
x1

x2

)

b) m
d2

dt2

(
x1

x2

)
=

(
−2k k

k −k

)(
x1

x2

)

c) m
d2

dt2

(
x1

x2

)
=

(
−3k k

k −k

)(
x1

x2

)

d) m
d2

dt2

(
x1

x2

)
=

(
−4k k

k −k

)(
x1

x2

)
2. The angular frequencies of the normal modes for the mass-spring system of Question
1 are approximately given by

a) ω1 = 0.77

√
k
m

, ω2 = 1.85

√
k
m

b) ω1 = 0.84

√
k
m

, ω2 = 2.14

√
k
m

c) ω1 = 1.45

√
k
m

, ω2 = 2.34

√
k
m

d) ω1 = 1.82

√
k
m

, ω2 = 2.66

√
k
m

3. The eigenvectors of the normal modes for the mass-spring system of Question 1 are
approximately given by

a) v1 =

(
1

1.32

)
, v2 =

(
1
−0.22

)

b) v1 =

(
1

1.98

)
, v2 =

(
1
−0.35

)

c) v1 =

(
1

2.41

)
, v2 =

(
1
−0.41

)

d) v1 =

(
1

2.92

)
, v2 =

(
1
−0.63

)

Solutions to the Practice quiz
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Week VI

Partial Differential Equations

To solve a partial differential equation, we must first define the Fourier series, and the Fourier
sine and cosine series. We then derive the one-dimensional diffusion equation, which is a partial
differential equation for the time-evolution of the concentration of a dye over one spatial dimension.
We proceed to solve this equation using the method of separation of variables. This method yields a
mathematical solution for a dye diffusing length-wise within a finite length pipe.
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Lecture 49 | Fourier series
View this lecture on YouTube

Fourier series will be needed to solve the diffusion equation. A periodic function f (x)
with period 2L can be represented as a Fourier series in the form

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
. (49.1)

Determination of the coefficients a0, a1, a2, . . . and b1, b2, b3, . . . makes use of orthogonality
relations for sine and cosine. We first define the Kronecker delta δnm as

δnm =

{
1, if n = m;
0, otherwise.

The orthogonality relations for n and m positive integers are then given as the integration
formulas

ˆ L

−L
cos

(mπx
L

)
cos
(nπx

L

)
dx = Lδnm,

ˆ L

−L
sin
(mπx

L

)
sin
(nπx

L

)
dx = Lδnm,

ˆ L

−L
cos

(mπx
L

)
sin
(nπx

L

)
dx = 0.

To determine the coefficient an, we multiply both sides of (49.1) by cos (nπx/L), change
the dummy summation variable from n to m, and integrate over x from −L to L. To
determine the coefficient bn, we do the same except multiply by sin (nπx/L). To illustrate
the procedure, when finding bn, integration will result in

ˆ L

−L
f (x) sin

nπx
L

dx =
∞

∑
m=1

bm

ˆ L

−L
sin

nπx
L

sin
mπx

L
dx

=
∞

∑
m=1

bm (Lδnm)

= Lbn,

which can be solved for bn. The final results for the coefficients are given by

an =
1
L

ˆ L

−L
f (x) cos

nπx
L

dx, bn =
1
L

ˆ L

−L
f (x) sin

nπx
L

dx.
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Problems for Lecture 49

1. Let

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
.

a) Show that f (x + 2L) = f (x), that is, f (x) is a periodic function with period 2L.

b) Show that a0 is twice the average value of f (x).

Solutions to the Problems



Lecture 50 | Fourier sine and
cosine series

View this lecture on YouTube

We now know that the Fourier series of a periodic function with period 2L is given by

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
,

with

an =
1
L

ˆ L

−L
f (x) cos

nπx
L

dx, bn =
1
L

ˆ L

−L
f (x) sin

nπx
L

dx.

The Fourier series simplifies if f (x) is an even function such that f (−x) = f (x), or an
odd function such that f (−x) = − f (x). We make use of the following facts. The function
cos (nπx/L) is an even function and sin (nπx/L) is an odd function. The product of two
even functions is an even function. The product of two odd functions is an even function.
The product of an even and an odd function is an odd function. And if g(x) is an even
function, then ˆ L

−L
g(x) dx = 2

ˆ L

0
g(x) dx;

and if g(x) is an odd function, then

ˆ L

−L
g(x) dx = 0.

Regarding the Fourier series, then, if f (x) is even we have

an =
2
L

ˆ L

0
f (x) cos

nπx
L

dx, bn = 0;

and the Fourier series for an even function is given by the Fourier cosine series

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
, f (x) even.

If f (x) is odd, then

an = 0, bn =
2
L

ˆ L

0
f (x) sin

nπx
L

dx;

and the Fourier series for an odd function is given by the Fourier sine series

f (x) =
∞

∑
n=1

bn sin
nπx

L
, f (x) odd.
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Problems for Lecture 50

1. Show that the Fourier series for an odd function satisfies f (0) = 0 and that the Fourier
series for an even function satisfies f ′(0) = 0.

Solutions to the Problems



Lecture 51 | Fourier series
(example)

View this lecture on YouTube

Example: Determine the Fourier series of the triangle wave, shown in the following figure:

-2π -π 0 π 2π
-1

0

1

The triangle wave

Evidently, the triangle wave is an even function of x with period 2π, and its definition
over half a period is

f (x) = 1− 2x
π

, 0 < x < π.

Because f (x) is even, it can be represented by a Fourier cosine series (with L = π) given
by

f (x) =
a0

2
+

∞

∑
n=1

an cos nx, with an =
2
π

ˆ π

0
f (x) cos nx dx.

The coefficient a0/2 is the average value of f (x) over one period, which is clearly zero.
The coefficients an for n > 0 are

an =
2
π

ˆ π

0

(
1− 2x

π

)
cos nx dx =

4
n2π2

(
1− cos nπ

)
=

{
8/(n2π2), if n odd;
0, if n even.

The Fourier cosine series for the triangle wave is therefore given by

f (x) =
8

π2

(
cos x +

cos 3x
32 +

cos 5x
52 + . . .

)
.

Convergence of this series is rapid. As an interesting aside, evaluation of this series at
x = 0, using f (0) = 1, yields in an infinite series for π2, which is usually written in the
form

π2

8
= 1 +

1
32 +

1
52 + . . . .
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Problems for Lecture 51

1. Determine the Fourier series of the square wave, shown in the following figure:

-2π -π 0 π 2π
-1

0

1

The square wave

Solutions to the Problems



Practice Quiz | Fourier series
1. The Fourier series of a periodic function of period 2L is given by

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
. The value of f (0) is given by

a)
a0

2

b)
a0

2
+

∞

∑
n=1

an

c)
∞

∑
n=1

bn

d)
a0

2
+

∞

∑
n=1

(an + bn)

2. The Fourier series of the square wave in the shown figure is given by

a) f (x) =
4
π

(
cos x +

cos 3x
3

+
cos 5x

5
+ . . .

)

b) f (x) =
4
π

(
cos x− cos 3x

3
+

cos 5x
5
− . . .

)

c) f (x) =
4
π

(
sin x +

sin 3x
3

+
sin 5x

5
+ . . .

)

d) f (x) =
4
π

(
sin x− sin 3x

3
+

sin 5x
5
− . . .

)
3. The Fourier series of the square wave in the shown figure is given by

a) g(x) =
4
π

(
cos x +

cos 3x
3

+
cos 5x

5
+ . . .

)

b) g(x) =
4
π

(
cos x− cos 3x

3
+

cos 5x
5
− . . .

)

c) g(x) =
4
π

(
sin x +

sin 3x
3

+
sin 5x

5
+ . . .

)

d) g(x) =
4
π

(
sin x− sin 3x

3
+

sin 5x
5
− . . .

)
Solutions to the Practice quiz

125



Lecture 52 | The diffusion
equation

View this lecture on YouTube

To derive the diffusion equation in one spacial dimension, we imagine a still liquid in a
pipe of constant cross sectional area. A small quantity of dye is placed uniformly across a
cross section of the pipe and allowed to diffuse up and down the pipe. We define u(x, t)
to be the concentration (mass per unit length) of the dye at position x along the pipe, and
our goal is to find the equation satisfied by u.

J(x) J(x + ∆x)

x x + ∆x
The mass of dye at time t in a pipe volume located between x and x + ∆x is given to order
∆x by

M = u(x, t)∆x.

This mass of dye diffuses in and out of the cross sectional ends as shown above. We
assume the rate of diffusion is proportional to the concentration gradient, a relationship
known as Fick’s first law of diffusion. Fick’s law assumes the mass flux J (mass per unit
time) across a cross section of the pipe is given by

J = −Dux,

where D > 0 is the diffusion constant, and we have used the notation ux = ∂u/∂x. The
mass flux is opposite in sign to the gradient of concentration so that the flux is from high
concentration to low concentration. The time rate of change in the mass of dye is given
by the difference between the mass flux in and the mass flux out of the cross sectional
volume. A positive mass flux signifies diffusion from left to right. Therefore, the time rate
of change of the dye mass is given by

dM
dt

= J(x, t)− J(x + ∆x, t);

or rewriting in terms of u(x, t),

ut(x, t)∆x = −Dux(x, t) + Dux(x + ∆x, t) = D (ux(x + ∆x, t)− ux(x, t)) .

Dividing by ∆x and taking the limit ∆x → 0 results in the diffusion equation, given by

ut = Duxx.
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Problems for Lecture 52

1. Consider the one-dimensional diffusion equation in a pipe of length L. Nondimen-
sionalize the diffusion equation using L as the unit of length and L2/D as the unit of
time.

Solutions to the Problems



Lecture 53 | Solution of the diffu-
sion equation (separa-
tion of variables)

View this lecture on YouTube

We solve the diffusion equation for a dye in a pipe of length L with diffusion constant D,

ut = Duxx,

where u(x, t) is the dye concentration. We will use the method of separation of variables.
We assume that u(x, t) can be written as a product of two other functions, one dependent
only on position x and the other dependent only on time t. That is, we make the ansatz,

u(x, t) = X(x)T(t).

We will find all possible solutions of this type—there will be an infinite number—and
apply the principle of superposition to combine them to construct a general solution.

Substitution of our ansatz into the diffusion equation results in

XT′ = DX′′T,

which we rewrite by separating the x and t dependence to opposite sides of the equation:

X′′

X
=

1
D

T′

T
.

The left-hand side of this equation is independent of t and the right-hand side is indepen-
dent of x. Both sides of this equation are therefore independent of both t and x and must
be equal to a constant, which we call −λ. Introduction of this separation constant results in
the two ordinary differential equations

X′′ + λX = 0, T′ + λDT = 0. (53.1)

To proceed further, boundary conditions need to be specified at the pipe ends. We will
assume here that the ends open up into large reservoirs of clear fluid so that u(0, t) =

u(L, t) = 0 for all times. Applying these boundary conditions to our ansatz results in

u(0, t) = X(0)T(t) = 0, u(L, t) = X(L)T(t) = 0.

Since these boundary conditions are valid for all t, we must have X(0) = X(L) = 0. These
are called homogeneous Dirichlet boundary conditions. In the next lecture, we proceed
to solve for X = X(x).
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LECTURE 53. SOLUTION OF THE DIFFUSION EQUATION (SEPARATION OF
VARIABLES) 129

Problems for Lecture 53

1. If the ends of the pipe were closed preventing a further diffusion of dye, then the mass
flux through the pipe’s ends would be zero, and the appropriate boundary conditions
would be ux(0, t) = ux(L, t) = 0 for all times. Determine the appropriate boundary
conditions on X = X(x).

Solutions to the Problems



Lecture 54 | Solution of the
diffusion equation
(eigenvalues)

View this lecture on YouTube

We now solve the equation for X = X(x) with homogeneous Dirichlet boundary con-
ditions:

X′′ + λX = 0, X(0) = X(L) = 0.

Clearly, the trivial solution X(x) = 0 is a solution, and we will see that nontrivial solutions
exist only for discrete values of λ. These discrete values and the corresponding functions
X = X(x) are called the eigenvalues and eigenfunctions of the ode.

The form of the general solution of the ode depends on the sign of λ. One can show
that nontrivial solutions exist only when λ > 0. We therefore write λ = µ2, and determine
the general solution of

X′′ + µ2X = 0

to be
X(x) = A cos µx + B sin µx.

The boundary condition at x = 0 results in A = 0, and the boundary condition at x = L
results in

B sin µL = 0.

The solution B = 0 results in the unsought trivial solution. Therefore, we must have

sin µL = 0,

which is an equation for µ, with solutions given by µn = nπ/L, where n is a nonzero
integer. We have thus determined all the unique eigenvalues λ = µ2 > 0 to be

λn = (nπ/L)2 , n = 1, 2, 3, . . . ,

with corresponding eigenfunctions

Xn = sin (nπx/L).

There is no need here to include the multiplication by an arbitrary constant, which will
be added later.
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Problems for Lecture 54

1. Show that the equations

X′′ + λX = 0, X(0) = X(L) = 0

have no nontrivial solutions for λ ≤ 0.

2. Solve the following equation for X = X(x) with given boundary conditions:

X′′ + λX = 0, X′(0) = X′(L) = 0.

Solutions to the Problems



Practice Quiz | Separable
partial differential
equations

1. The units of the diffusion constant D in the diffusion equation ut = Duxx are

a) lt2

b) lt−2

c) l2t

d) l2t−1

2. The one-dimensional wave equation is given by utt = c2uxx. With u(x, t) = X(x)T(t),
the separated ordinary differential equations can be written as

a) X′ + λX = 0, T′ + λc2T = 0

b) X′′ + λX = 0, T′ + λc2T = 0

c) X′ + λX = 0, T′′ + λc2T = 0

d) X′′ + λX = 0, T′′ + λc2T = 0

3. The eigenvalues and eigenfunctions of the differential equation X′′ + λX = 0, with
mixed boundary conditions X(0) = 0 and X′(L) = 0, are given by

a) λn =
(nπ

L

)2
, Xn = sin

(nπx
L

)
, n = 1, 2, 3, . . .

b) λn =
(nπ

L

)2
, Xn = cos

(nπx
L

)
, n = 0, 1, 2, 3, . . .

c) λn =

(
(2n− 1)π

2L

)2

, Xn = sin
(
(2n− 1)πx

2L

)
, n = 1, 2, 3, . . .

d) λ0 = 0, X0 = 1,

λn =

(
(2n− 1)π

2L

)2

, Xn = cos
(
(2n− 1)πx

2L

)
, n = 1, 2, 3, . . .

Solutions to the Practice quiz
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Lecture 55 | Solution of the
diffusion equation
(Fourier series)

View this lecture on YouTube

With the eigenvalues λn = (nπ/L)2, the differential equation for T = T(t) becomes

T′ +
(

n2π2D/L2
)

T = 0,

which has solution proportional to

Tn = e−n2π2Dt/L2
.

Therefore, with ansatz u(x, t) = X(x)T(t) and eigenvalues λn, we conclude that the func-
tions

un(x, t) = sin (nπx/L)e−n2π2Dt/L2

satisfy the diffusion equation and the spatial boundary conditions for every positive inte-
ger n.

The principle of linear superposition for homogeneous linear differential equations
then states that the general solution to the diffusion equation with the spatial boundary
conditions is given by

u(x, t) =
∞

∑
n=1

bnun(x, t) =
∞

∑
n=1

bn sin (nπx/L)e−n2π2Dt/L2
.

The final solution step is to determine the unknown coefficients bn by satisfying conditions
on the initial dye concentration. We assume that u(x, 0) = f (x), where f (x) is some
specific function defined on 0 ≤ x ≤ L. At t = 0, we have

f (x) =
∞

∑
n=1

bn sin (nπx/L).

We immediately recognize this equation as a Fourier sine series for an odd function f (x)
with period 2L. A Fourier sine series results because of the boundary condition f (0) = 0.
From our previous solution for the coefficients of a Fourier sine series, we determine that

bn =
2
L

ˆ L

0
f (x) sin

nπx
L

dx.
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Problems for Lecture 55

1. Determine the solution to the diffusion equation ut = Duxx for the concentration u =

u(x, t) with closed pipe ends corresponding to the boundary conditions ux(0) = ux(L) =
0, and with general initial conditions given by u(x, 0) = f (x). Use the results of the
previously solved problems.

Solutions to the Problems



Lecture 56 | Diffusion equation
(example)

View this lecture on YouTube

Example: Determine the concentration of a dye in a pipe of length L, where the dye is initially
concentrated uniformly across the center of the pipe with total mass M0, and the ends of the pipe
open onto a large reservoir.

We solve the diffusion equation with homogeneous Dirichlet boundary conditions, and
model the initial concentration of the dye by a delta-function centered at x = L/2, that is,
u(x, 0) = M0δ(x− L/2). The Fourier sine series coefficients are therefore given by

bn =
2
L

ˆ L

0
M0δ(x− L

2
) sin

nπx
L

dx

=
2M0

L
sin (nπ/2)

=


2M0/L if n = 1, 5, 9, . . . ;
−2M0/L if n = 3, 7, 11, . . . ;

0 if n = 2, 4, 6, . . . .

With bn determined, the solution for u(x, t) is given by

u(x, t) =
2M0

L

∞

∑
n=0

(−1)n sin
(
(2n + 1)πx

L

)
e−(2n+1)2π2Dt/L2

.

When t � L2/D, the leading-order term in the series is a good approximation and is
given by

u(x, t) ≈ 2M0

L
sin (πx/L)e−π2Dt/L2

.

The mass of the dye in the pipe is decreasing in time, diffusing into the reservoirs located
at both ends. The total mass in the pipe at time t can be found from

M(t) =
ˆ L

0
u(x, t)dx,

and when t� L2/D, we have

M(t) =
4M0

π
e−π2Dt/L2

.
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Problems for Lecture 56

1. Determine the concentration of a dye in a pipe of length L at position x and time t,
where the dye is initially concentrated uniformly across the center of the pipe with total
mass M0, and the ends of the pipe are closed.

Solutions to the Problems



Practice Quiz | The diffusion
equation

1. The solution of T′ + λDT = 0 with eigenvalues λn =
(nπ

L

)2
results in the eigenfunc-

tions

a) Tn = cos
(

nπDt
L

)

b) Tn = sin
(

nπDt
L

)

c) Tn = exp
(

n2π2Dt
L2

)

d) Tn = exp
(
−n2π2Dt

L2

)

2. If u(x, t) = a0/2 +
∞

∑
n=1

an cos (nπx/L) exp (−n2π2Dt/L2) and u(x, 0) = f (x), the gen-

eral formula for an is given by

a) an =
2
L

ˆ L

0
f (x) cos

(nπx
L

)
dx

b) an =
2
L

ˆ L

0
f (x) sin

(nπx
L

)
dx

c) an =
2
L

ˆ L

0
f (x) cos

(nπx
L

)
exp

(
−π2D

L2

)
dx

d) an =
2
L

ˆ L

0
f (x) sin

(nπx
L

)
exp

(
−π2D

L2

)
dx

3. Suppose that a pipe with open ends has an initial dye concentration centered at one-
quarter of the pipe’s length. The long-time t >> L2/D solution for the concentration is
given by

a) u(x, t) =
√

2M0

2L
sin
(πx

L

)
exp

(
−π2Dt

L2

)

b) u(x, t) =
√

2M0

L
sin
(πx

L

)
exp

(
−π2Dt

L2

)

c) u(x, t) =
2M0

L
sin
(πx

L

)
exp

(
−π2Dt

L2

)

d) u(x, t) =
2
√

2M0

L
sin
(πx

L

)
exp

(
−π2Dt

L2

)
Solutions to the Practice quiz
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Appendix A | Complex numbers
View this lecture on YouTube

We define the imaginary unit i to be one of the two numbers (the other being −i) that
satisfies z2 + 1 = 0. Formally, we write i =

√
−1. A complex number z and its complex

conjugate z̄ are written as
z = x + iy, z̄ = x− iy,

where x and y are real numbers. We call x the real part of z and y the imaginary part, and
write

x = Re z, y = Im z.

A linear combination of z and z̄ can be used to construct the real and imaginary parts of
a number:

Re z =
1
2
(z + z̄) , Im z =

1
2i

(z− z̄) .

We can add, subtract and multiply complex numbers (using i2 = −1) to get new complex
numbers. Division of two complex numbers is simplified by writing z/w = zw/ww. The
exponential function of a complex number can be determined from a Taylor series. We
have

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
. . .

=

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
+ . . .

)
= cos θ + i sin θ.

r

The complex number x + iy = z can
be represented in the complex plane with
Re z as the x-axis and Im z as the y-axis
(see the figure). Then with x = r cos θ and
y = r sin θ, we have z = x + iy = r(cos θ +

i sin θ) = reiθ .
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Appendix B | Nondimension-
alization

View this lecture on YouTube

To nondimensionalize an equation, first determine its base dimensions. These may be
one or several of the fundamental dimensions such as time, length, mass and charge. The
Buckingham π theorem states that after nondimensionalization, the remaining number of
dimensionless parameters is the number of dimensional parameters minus the number of
base dimensions. In practice, nondimensionalizing an equation can transform equations
arising from seemingly different physical problems into an identical dimensionless equa-
tion, and can also significantly reduce the number of parameters that must be explored in
a numerical solution.

To illustrate nondimensionalization, we consider the pendulum equation given by

mlθ̈ + clθ̇ + mg sin θ = F0 cos ωt,

where the four terms of the equation are called the inertial term, the frictional force,
the restoring force, and the external force, respectively. The base dimensions are time
(t), length (l) and mass (m). The angle θ expressed in radians is dimensionless, since it
is defined as the ratio of two lengths (arc length divided by radius). The dimensional
parameters are m, l, c, g, F0, and ω, for a total of six. The Buckingham π theorem says
that after nondimensionalizing the equation, there should be no more than 6 − 3 = 3
dimensionless parameters.

Each term in this equation must have the same dimension, and from the first term we
see that each term must have dimension ml/t2, which is the units of force. The frictional
parameter denoted by c must have units m/t. The gravitational acceleration g has units
of l/t2.

If we divide the pendulum equation by ml, and define the natural frequency of the
oscillator without damping to be ω0 =

√
g/l, then the pendulum equation becomes

θ̈ +
c
m

θ̇ + ω2
0 sin θ =

F0

ml
cos ωt;

and the units of the various grouping of parameters are given by

[
c
m
] = 1/t, [ω0] = 1/t, [

F0

ml
] = 1/t2, [ω] = 1/t.

At this stage there are four dimensional parameters and one base dimension, and nondi-
mensionalization requires only the choice of a time scale. We see that there is some
freedom in the choice of time scale, and we first proceed without losing generality by
defining the dimensionless time by τ = t/t∗, where the time scale t∗ will be chosen later
from our dimensional parameters.
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Using d/dt = (dτ/dt)d/dτ = t−1
∗ d/dτ and d2/dt2 = t−2

∗ d2/dτ2, and multiplying the
equation by t2

∗, the pendulum equation transforms to

d2θ

dτ2 +
ct∗
m

dθ

dτ
+ ω2

0t2
∗ sin θ =

F0t2
∗

ml
cos (ωt∗τ).

A standard choice for t∗ arises from equating the coefficient of the inertial term to the
coefficient of the restoring force, that is, 1 = ω2

0t2
∗. This defines t∗ = 1/ω0. The resulting

dimensionless equation becomes

d2θ

dτ2 + α
dθ

dτ
+ sin θ = γ cos βτ,

where the three dimensionless parameters are given by

α =
c

mω0
, β =

ω

ω0
, γ =

F0

mg
.

Another choice for nondimensionalization is to equate the coefficient of the frictional term
and the coefficient of the restoring force, that is, ct∗/m = ω2

0t2
∗. This defines t∗ = c/(mω2

0).
The resulting dimensionless equation after multiplication by m2ω2

0/c2 becomes

α
d2θ

dτ2 +
dθ

dτ
+ sin θ = γ cos βτ,

where here

α =
m2g
lc2 , β =

lcω

mg
, γ =

F0

mg
.

This latter dimensionless equation is useful when studying very large damping effects,
corresponding to the limit α → 0. The resulting governing equation then becomes first-
order in time.



Appendix C | Matrices and
determinants

View this lecture on YouTube

A two-by-two matrix A, with two rows and two columns, can be written as

A =

(
a11 a12

a21 a22

)
.

The first row has elements a11 and a12; the second row has elements a21 and a22. The
first column has elements a11 and a21; the second column has elements a12 and a22. Ma-
trices can be multiplied by scalars and added. This is done element-by-element and the
straightforward definitions are

k

(
a11 a12

a21 a22

)
=

(
ka11 ka12

ka21 ka22

)
,

(
a11 a12

a21 a22

)
+

(
b11 b12

b21 b22

)
=

(
a11 + b11 a12 + b12

a21 + b21 a22 + b22

)
.

Matrices can also be multiplied. Matrix multiplication does not commute, and two ma-
trices can be multiplied only if the number of columns of the matrix on the left equals
the number of rows of the matrix on the right. One multiplies matrices by going across
the rows of the first matrix and down the columns of the second matrix. The two-by-two
example is given by(

a11 a12

a21 a22

)(
b11 b12

b21 b22

)
=

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
.

A system of linear algebraic equations can be written in matrix form. For instance, with
aij and bi given numbers, and xi unknowns, the (two-by-two) system of equations given
by

a11x1 + a12x2 = b1, a21x1 + a22x2 = b2,

can be written in matrix form as Ax = b, or explicitly as(
a11 a12

a21 a22

)(
x1

x2

)
=

(
b1

b2

)
.

A unique solution to Ax = b exists only when det A 6= 0, and it is possible to write this
unique solution as x = A−1b, where A−1 is the inverse matrix satisfying A−1A = AA−1 =

I. Here, I is the identity matrix satisfying AI = IA = A. For the two-by-two matrix, the
determinant is given by the product of the diagonal elements minus the product of the
off-diagonal elements:

det A = a11a22 − a12a21.
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Appendix D | Eigenvalues and
eigenvectors

View this lecture on YouTube

The eigenvalue problem for an n-by-n matrix A is given by

Ax = λx,

where the scalar λ is called the eigenvalue and the n-by-1 column vector x is called the
eigenvector. Using the identity matrix I, we can rewrite the eigenvalue equation as

(A− λI)x = 0.

When A is a two-by-two matrix, then

I =

(
1 0
0 1

)
and A− λI =

(
a11 − λ a12

a21 a22 − λ

)
.

A solution other than x = 0 of the eigenvalue equation exists provided

det (A− λI) = 0.

This equation is called the characteristic equation of A, and is given by

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0,

which is usually written as
λ2 − TrA λ + detA = 0,

where TrA is the trace of the matrix A, equal to the sum of the diagonal elements. The
eigenvalues can be real and distinct, complex conjugates, or repeated.

After determining an eigenvalue, say λ = λ1, the corresponding eigenvector v1 can be
found by solving

(A− λ1I)v1 = 0,

or explicitly in the two-by-two case,(
a11 − λ1 a12

a21 a22 − λ1

)(
v11

v21

)
=

(
0
0

)
.

The second equation represented above is always a mutiple of the first equation, and the
eigenvector is unique only up to multiplication by a constant.
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Appendix E | Partial derivatives
View this lecture on YouTube

For a function f = f (x, y) of two variables, the partial derivative of f with respect to
x is defined as

∂ f
∂x

= lim
h→0

f (x + h, y)− f (x, y)
h

,

and similarly for the partial derivative of f with respect to y. To take the partial derivative
of f with respect to x, say, take the derivative of f with respect to x holding y fixed. As
an example, consider

f (x, y) = 2x3y2 + y3.

We have
∂ f
∂x

= 6x2y2,
∂ f
∂y

= 4x3y + 3y2.

Second derivatives are defined as the derivatives of the first derivatives, so we have

∂2 f
∂x2 = 12xy2,

∂2 f
∂y2 = 4x3 + 6y;

and the mixed second partial derivatives are independent of the order in which the deriva-
tives are taken:

∂2 f
∂x∂y

= 12x2y,
∂2 f

∂y∂x
= 12x2y.

Partial derivatives are necessary for applying the chain rule. Consider d f = f (x + dx, y +

dy)− f (x, y). We can write d f as

d f = [ f (x + dx, y + dy)− f (x, y + dy)] + [ f (x, y + dy)− f (x, y)] =
∂ f
∂x

dx +
∂ f
∂y

dy.

If one has f = f (x(t), y(t)), say, then

d f
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

.

And if one has f = f (x(r, θ), y(r, θ)), say, then

∂ f
∂r

=
∂ f
∂x

∂x
∂r

+
∂ f
∂y

∂y
∂r

,
∂ f
∂θ

=
∂ f
∂x

∂x
∂θ

+
∂ f
∂y

∂y
∂θ

.
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Appendix F | Table of Laplace
transforms
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f (t) = L−1{F(s)} F(s) = L{ f (t)}

1. eat f (t) F(s− a)

2. 1
1
s

3. eat 1
s− a

4. tn n!
sn+1

5. tneat n!
(s− a)n+1

6a. sin bt
b

s2 + b2

6b. sinh bt
b

s2 − b2

7a. cos bt
s

s2 + b2

7b. cosh bt
s

s2 − b2

8. eat sin bt
b

(s− a)2 + b2

9. eat cos bt
s− a

(s− a)2 + b2

10. t sin bt
2bs

(s2 + b2)2

11. t cos bt
s2 − b2

(s2 + b2)2

12. uc(t)
e−cs

s

13. uc(t) f (t− c) e−csF(s)

14. δ(t− c) e−cs

15. ẋ(t) sX(s)− x(0)

16. ẍ(t) s2X(s)− sx(0)− ẋ(0)

Table of Laplace Transforms



Appendix G | Problem and
practice quiz
solutions

Solutions to the Practice quiz: Classify differential equations

1. c, d, g. Third order, ordinary, nonlinear.

2. b, c , f. Second order, ordinary, nonlinear.

3. b, d , f. Second order, partial, nonlinear.

4. b, c , e. Second order, ordinary, linear.

5. b, d , e. Second order, partial, linear.

Solutions to the Problems for Lecture 2

1. The modified Euler method is

k1 = ∆x f (xn, yn), k2 = ∆x f (xn + ∆x, yn + k1), yn+1 = yn +
1
2
(k1 + k2).

The midpoint method is

k1 = ∆x f (xn, yn), k2 = ∆x f (xn +
1
2

∆x, yn +
1
2

k1), yn+1 = yn + k2.

Solutions to the Problems for Lecture 3

1.

a)
1
y

dy =
x2 − 4
x + 4

dx

b) ey cos y dy = ex(1 + x) dx

c)
y + 1

y
dy =

x
(x + 1)

dx

d)
1

sin θ
dθ = −dt
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Solutions to the Problems for Lecture 4

1. Separate the variables, integrate, and solve for the dependent variable.

a)
ˆ y

1

dy
y1/2 = 4

ˆ x

0
x dx; 2y1/2

∣∣∣∣y
1
= 2x2

∣∣∣∣x
0
; y1/2 − 1 = x2; y = (1 + x2)2.

b)
ˆ x

x0

dx
x(1− x)

=

ˆ t

0
dt. Use

1
x(1− x)

=
1
x
+

1
1− x

. [ln x− ln (1− x)]
∣∣∣∣x
x0

= t;

ln
x(1− x0)

x0(1− x)
= t;

x(1− x0)

x0(1− x)
= et; x =

x0

x0 + (1− x0)e−t .

Solutions to the Practice quiz: Separable first-order odes

1. c.
dy
dx

= x1/2y1/2, y(1) = 0.

ˆ y

0

dy
y1/2 =

ˆ x

1
x1/2 dx; 2y1/2 =

2
3
(x3/2 − 1); y =

(x3/2 − 1)2

9
.

2. a. x
dy
dx

= y2, y(1) = 1.

ˆ y

1

dy
y2 =

ˆ x

1

dx
x

; −(1
y
− 1) = ln x;

1
y
= 1− ln x; y =

1
1− ln x

.

3. b.
dy
dx

= −(sin x)y, y(π/2) = 1.

ˆ y

1

dy
y

= −
ˆ x

π/2
sin x dx; ln y = cos x; y = ecos x.

Solutions to the Problems for Lecture 5

1.

a)
dy
dx

+
1
x

y =
sin x

x
;

b)
dy
dx

+ y = x.

2. Let z = 1/x. Then x = 1/z and dx/dt = (dx/dz)(dz/dt) = −(1/z2)dz/dt. The
differential equation becomes −(1/z2)dz/dt = (1/z)(1− (1/z)), and after multiplying
by −z2, dz/dt = −z + 1. In standard form, the linear ode is dz/dt + z = 1.
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Solutions to the Problems for Lecture 6

1.

a)
dy
dx

= x− y, y(0) = −1.

dy/dx + y = x; µ = e
´ x

0 dx = ex;

y = e−x(−1 +
´ x

0 xex dx) = e−x(−1 + xex
∣∣x
0 −
´ x

0 ex dx) = e−x(−1 + xex − ex + 1)
= x− 1.

b)
dy
dx

= 2x(1− y), y(0) = 0.

dy/dx + 2xy = 2x; µ = e
´ x

0 2x dx = ex2
;

y = e−x2 ´ x
0 2xex2

dx = e−x2 ´ x2

0 eu du = e−x2
(ex2 − 1) = 1− e−x2

.

Solutions to the Practice quiz: Linear first-order odes

1. d. (1 + x2)y′ + 2xy = 2x, y(0) = 0,

d
dx

[
(1 + x2)y

]
= 2x, (1 + x2)y

∣∣x
0 =

ˆ x

0
2x dx = x2, (1 + x2)y = x2, y =

x2

1 + x2 .

2. b. x2y′ + 2xy = 1, y(1) = 2,

d
dx

[
x2y
]
= 1, x2y

∣∣x
1 = x2y− 2 =

ˆ x

1
dx = x− 1, x2y = 1 + x, y =

1 + x
x2 .

3. d. y′ + λy = a, y(0) = 0,

µ = eλx, y = e−λx
ˆ x

0
aeλxdx =

ae−λx

λ

(
eλx − 1

)
=

a
λ

(
1− e−λx

)
.

Solutions to the Problems for Lecture 7

1. Use S(t) = S0ert +
k
r

ert(1− e−rt), with the unit of time in years, and money in US$.
Here, t = 40, S0 = 0, r = 0.06, and S(t) =1,000,000. Solving for k using S0 = 0, we have

k =
rS(t)

ert − 1
=

0.06× 1,000,000
e0.06×40 − 1

= $5,986 per year.

The total amount saved is (40 years) × ($5,986 per year) ≈ $240,000, and the amount
passively earned from the investment is $760,000, about three times as much that was
saved.
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2. Use S(t) = S0ert +
k
r

ert(1− e−rt), with the unit of time in years, and money in US$.
Here, S(t) is the amount owed the bank at time t, S0 is the total amount borrowed, r = 0.04
is the annual interest rate, and k = −1500× 12 is the annual amount of repayment. We
need to solve for S0 under the condition that S(T) = 0 when T = 30 (loan repaid after

30 years). We have 0 = S0erT +
k
r

erT(1− e−rT), or S0 = − k
r
(1− e−rT) =

1500× 12
0.04

(1−
e−0.04×30) = $314, 463 ≈ $315, 000.

Solutions to the Problems for Lecture 8

1. Use
v(t) = −mg

k
(1− e−kt/m),

where mg/k = 200 km/hr and m = 100 kg. With

g = (9.8 m/s2)(10−3 km/m)(60 s/min)2(60 min/hr)2 = 127, 008 km/hr2,

we find k = 63, 504 kg/hr. One-half of the terminal speed for free-fall (100 km/hr) is
therefore attained when

v(t) = −mg
2k

,

or
(1− e−kt/m) = 1/2,

or t = m ln 2/k ≈ 4 sec. For 95% of the terminal speed (190 km/hr ), we have

(1− e−kt/m) = 0.95,

and this equation is satisfied when t ≈ 17 sec.

Solutions to the Problems for Lecture 9

1. The current i = dq/dt, with q = CVC. During charging, VC(t) = E
(

1− e−t/RC
)

and during discharging VC(t) = E e−t/RC. With i = CdVC/dt, we have during charging,
i = (E/R)e−t/RC, and during discharging, i = −(E/R)e−t/RC. The currents strengths are
the same during both processes but are in opposite directions.

Solutions to the Practice quiz: Applications

1. a. The relevant formula is S(T) =
k
r

erT(1− e−rT), where S(T) is the amount in the
account after T years, r is the annual return, and k is the annual deposit rate. Solving

for k, we have k =
rS(T)e−rT

1− e−rT . Substituting r = 0.1, S(T) = 1,000,000, T = 40, we find

k =1,865.74. The total saved is 40k = 74,629.44 ≈ $75,000.
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2. c. Use v(t) = −mg
k
(1− e−kt/m), where mg/k = 200 km/hr, m = 100 kg and v(t) =

−150 km/hr. With g = 127,008 km/hr2, we find k = 63,504 kg/hr. Three-quarter of the
terminal speed for free-fall (150 km/hr) is therefore attained when (1− e−kt/m) = 3/4, or
t = m ln 4/k = 7.86 sec ≈ 8 sec.

3. c. Use VC = E
(

1− e−t/RC
)

. Solve for t to find t = −RC ln
(

1− VC
E

)
. With R = 3000

Ω, C = 0.001 F, VC/E = 0.95, we find t = 8.99 s ≈ 9 s.

Solutions to the Problems for Lecture 10

1. θ̇ = u, u̇ = −u/q− sin θ + f cos ωt

2.
k1 = ∆t f (tn, xn, yn),

k2 = ∆t f (tn + ∆t, xn + k1, yn + l1),

l1 = ∆tg(tn, xn, yn)

l2 = ∆tg(tn + ∆t, xn + k1, yn + l1)

xn+1 = xn +
1
2
(k1 + k2), yn+1 = yn +

1
2
(l1 + l2).

Solutions to the Problems for Lecture 11

1. With x = xh(t) + xp(t), we compute

ẍ + p(t)ẋ + q(t)x = (ẍh + ẍp) + p
(

ẋh + ẋp
)
+ q

(
xh + xp

)
= (ẍh + pẋh + qxh) + (ẍp + pẋp + qxp)

= 0 + g(t)

= g(t),

since xh and xp were assumed to be solutions of the homogeneous and inhomogeneous
equations, respectively. Therefore, their sum is a solution of the inhomogeneous equation.

Solutions to the Problems for Lecture 12

1. With X1(t) = exp (αt) and X2(t) = exp (βt), we have

W = (exp (αt))(β exp (βt))− (α exp (αt))(exp (βt)) = (β− α) exp ((α + β)t),

which is nonzero provided α 6= β.
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Solutions to the Problems for Lecture 13

1.

a) r2 − 1 = 0, so that r = ±1;

b) r2 + 1 = 0, so that r = ±i;

c) r2 − 2r + 1 = 0, so that r = 1.

Solutions to the Practice quiz: Theory of ode

1. c. Functions that differ by a multiplying constant have a zero Wronskian. In particular,
et−t0 = (e−t0)et and sin (t− π) = − sin t. However, sin (t− π/2) = − cos t which has a
nonzero Wronskian with sin t.

2. d. The principle of superposition applies so that we can multiply solutions by constants
and add them to obtain a solution. The only proposed function that does not follow the
principle of superposition is the product of two solutions.

3. c. An ode given by aẍ + bẋ + cx = 0 has complex-conjugate roots if b2 − 4ac < 0. In
all four equations, b2 − 4ac = 1− 4c and c = ±1, so only the equations with c = 1 have
complex-conjugate roots.

Solutions to the Problems for Lecture 14

1. The characteristic equation is r2 + 4r + 3 = (r + 1)(r + 3) = 0, with roots r1 = −1
and r2 = −3. The general solution is x(t) = c1e−t + c2e−3t. The derivative is
ẋ(t) = −c1e−t − 3c2e−3t. Initial conditions are satisfied by solving c1 + c2 = 1 and
−c1 − 3c2 = 0. Solution is c1 = 3/2 and c2 = −1/2. The final solution is

x(t) =
3
2

e−t − 1
2

e−3t =
3
2

e−t(1− 1
3

e−2t).

2. The characteristic equation is r2 − 1 = 0, with roots r1 = 1 and r2 = −1. The general
solution is x(t) = c1et + c2e−t. The derivative is ẋ(t) = c1et − c2e−t. Initial conditions are
satisfied by solving c1 + c2 = x0 and c1 − c2 = u0. Solution is c1 = (x0 + u0)/2 and
c2 = (x0 − u0)/2. The final solution is

x(t) =
(

x0 + u0

2

)
et +

(
x0 − u0

2

)
e−t = x0

(
et + e−t

2

)
+ u0

(
et − e−t

2

)
.

We can define

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
,
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and write the solution as
x(t) = x0 cosh t + u0 sinh t.

The function cosh t is called the hyperbolic cosine of t, and is pronounced ‘cosh tee’, where
the ‘o‘ sounds like the o in open. The function sinh t is called the hyperbolic sine of t and
is pronounced ‘sinsh tee’, where the i sounds like the i in inch.

Solutions to the Problems for Lecture 16

1. The characteristic equation is r2 − 2r + 5 = 0, with roots r1 = 1 + 2i and r2 = r1. The
general solution is

x(t) = et (A cos 2t + B sin 2t) , ẋ(t) = et (A cos 2t + B sin 2t) + 2et (−A sin 2t + B cos 2t) .

The initial conditions x(0) = 1 yields A = 1 and ẋ(0) = 0 yields A+ 2B = 0, or B = −1/2.
The solution is

x(t) = et
(

cos 2t− 1
2

sin 2t
)

.

2. The characteristic equation is r2 + 1 = 0, with roots r1 = i and r2 = −i. The general
solution is x(t) = A cos t + B sin t. The derivative is ẋ(t) = −A sin t + B cos t. Initial
conditions are satisfied by A = x0 and B = u0. The final solution is x(t) = x0 cos t +
u0 sin t.

Solutions to the Problems for Lecture 18

1. The characteristic equation is r2 − 2r + 1 = (r− 1)2 = 0, with repeated root r = 1. The
general solution is x(t) = (c1 + c2t)et. The derivative is ẋ(t) = (c1 + c2(1 + t))et. Initial
conditions are satisfied by solving c1 = 1 and c1 + c2 = 0. Solution is c1 = 1 and c2 = −1.
Final solution is x(t) = (1− t)et.

Solutions to the Practice quiz: Homogeneous equations

1. b. The characteristic equation is r2 − 3r + 2 = 0, with roots r1 = 2, r2 = 1. The general
solution is x(t) = c1e2t + c2et, with derivative ẋ(t) = 2c1e2t + c2et. Initial conditions are
satisfied by solving x(0) = c1 + c2 = 1 and ẋ(0) = 2c1 + c2 = 0 to find c1 = −1, c2 = 2.
The final solution is x(t) = −e2t + 2et = −e2t(1− 2e−t).

2. b. The characteristic equation is r2 − 2r + 2 = 0, with complex roots r± = 1± i. The
general solution is x(t) = et (A cos t + B sin t), with derivative
ẋ(t) = et ((A + B) cos t + (B− A) sin t). Initial conditions are satisfied by A = 1 and
A + B = 0, or B = −1. The final solution is x(t) = et (cos t− sin t).
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3. a. The characteristic equation is r2 + 2r + 1 = 0, with repeated root r = −1. The gen-
eral solution is x(t) = e−t (c1 + c2t), with derivative ẋ(t) = e−t (c2 − c1 − c2t). Initial con-
ditions are satisfied by c1 = 0 and c2 − c1 = 1, or c2 = 1. The final solution is x(t) = te−t.

Solutions to the Problems for Lecture 19

1. Substituting x(t) = xh(t) + xp1(t) + xp2(t) into the inhomogeneous ode, we obtain

ẍ + pẋ + qx =
d2

dt2 (xh + xp1 + xp2) + p
d
dt
(xh + xp1 + xp2) + q(xh + xp1 + xp2)

= (ẍh + pẋh + qxh) + (ẍp1 + pẋp1 + qxp1) + (ẍp2 + pẋp2 + qxp2)

= 0 + g1 + g2

= g1 + g2,

so that the sum of the homogeneous and the two particular solutions solve the ode, and
the two free constants in xh can be used to satisfy the two initial conditions.

Solutions to the Problems for Lecture 20

1. The homogeneous equation has characteristic equation r2 + 5r + 6 = (r + 2)(r + 3) = 0,
with roots r1 = −2 and r2 = −3. Therefore, xh = c1e−2t + c2e−3t. To find the particular
solution, we try the ansatz x = Ae−t. The resulting equation is A− 5A + 6A = 1, with
solution A = 1/2. The general solution is therefore

x = c1e−2t + c2e−3t +
1
2

e−t, ẋ = −2c1e−2t − 3c2e−3t − 1
2

e−t.

Satisfying the inititial conditions results in the two equations c1 + c2 = −1/2 and −2c1 −
3c2 = 1/2, with solution c1 = −1 and c2 = 1/2. The final solution is

x(t) =
1
2

e−t − e−2t +
1
2

e−3t =
1
2

e−t
(

1− 2e−t + e−2t
)

.

Solutions to the Practice quiz: Solving inhomogeneous equations

1. a. For all three questions, we need to solve ẍ + 5ẋ + 6x = 2e−t. The homogeneous
equation has characteristic equation given by r2 + 5r + 6 = (r + 2)(r + 3) = 0, with roots
r1 = −2 and r2 = −3. The general homogeneous solution is therefore xh = c1e−2t + c2e−3t.
To find a particular solution, we try xp = Ae−t. Substitution into the inhomogeneous ode
yields A− 5A + 6A = 2, or A = 1. Therefore, the general solution to the inhomogeneous
ode is the sum of the general homogeneous solution and the particular solution, or

x(t) = c1e−2t + c2e−3t + e−t.
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The three questions then entail solving for c1 and c2.

Here x(0) = 0 and ẋ(0) = 0. We obtain the system of equations

c1 + c2 = −1

−2c1 − 3c2 = 1,

with solution c1 = −2 and c2 = 1. Therefore,

x(t) = −2e−2t + e−3t + e−t = e−t(1− 2e−t + e−2t).

2. a. Here x(0) = 1 and ẋ(0) = 0. We obtain the system of equations

c1 + c2 = 0

−2c1 − 3c2 = 1,

with solution c1 = 1 and c2 = −1. Therefore,

x(t) = e−2t − e−3t + e−t = e−t(1 + e−t − e−2t).

3. a. Here x(0) = 0 and ẋ(0) = 1. We obtain the system of equations

c1 + c2 = −1

−2c1 − 3c2 = 2,

with solution c1 = −1 and c2 = 0. Therefore,

x(t) = −e−2t + e−t = e−t(1− e−t).

Solutions to the Problems for Lecture 22

1.

a) Try x(t) = A cos t + B sin t. Equating the coefficients of cosine and sine, we obtain
5A + 3B = −2 and 3A− 5B = 0. The solution is A = −5/17 and B = −3/17.

b) Solve z̈− 3ż− 4z = 2eit. Try z(t) = Ceit. Determine C = (−5 + 3i)/17 and find

xp = Re{zp} = Re
{

1
17

(−5 + 3i)(cos t + i sin t)
}

= − 1
17

(5 cos t + 3 sin t).
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Solutions to the Problems for Lecture 23

1. Try x = At + B. Equating the coefficients of t1 and t0, we obtain A = 1 and A + B = 0,
or B = −1. The solution is xp = t− 1.

Solutions to the Practice quiz: Particular solutions

1. b. Try xp = Ae2t. Equating the coefficients of the exponential function, we obtain

4A + 6A + 2A = 2, with solution A = 1/6. The particular solution is given by xp(t) =
1
6

e2t.

2. d. Solve the complex differential equation z̈− ż− 2z = 2e2it, and take xp = Re{zp}. Try
zp = Ce2it. Equating the coefficients of the exponential function, we obtain

−4C− 2iC− 2C = 2, or C =
−3 + i

10
. We find xp(t) =

1
10

Re{(−3 + i)(cos 2t + i sin 2t)}

= − 1
10

(3 cos 2t + sin 2t).

3. c. Try xp = At + B to obtain −3A + 2At + 2B = t + 1. Equating coefficients of powers

of t, we find 2A = 1 and −3A + 2B = 1, or A =
1
2

, B =
5
4

. The particular solution is given

by xp(t) =
1
2

t +
5
4

.

Solutions to the Problems for Lecture 24

1. The homogeneous equation has characteristic equation r2 + 3r + 2 = (r + 1)(r + 2) = 0,
with roots r1 = −1 and r2 = −2. Therefore, xh = c1e−t + c2e−2t. To find the particular
solution, we try the ansatz x = Ate−2t. The resulting equation yields A = −1. The general
solution is therefore

x = c1e−t + (c2 − t)e−2t, ẋ = −c1e−t + (−1− 2c2 + 2t)e−2t.

Satisfying the initial conditions results in the two equations c1 + c2 = 0 and −c1 − 2c2 −
1 = 0, with solution c1 = 1 and c2 = −1. The final solution is

x(t) = e−t − (1 + t)e−2t.

Solutions to the Problems for Lecture 25

1. Write the RLC circuit equation as

L
R

d2q
dt2 +

dq
dt

+
1

RC
q =
E0

R
cos ωt.
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To remove the coefficient of the restoring force, we define the dimensionless time τ to be

τ = t/RC.

After multiplication by RC, the RLC circuit equation becomes

L
R2C

d2q
dτ2 +

dq
dτ

+ q = E0C cos ωRCτ.

To remove the coefficient of the inhomogeneous term, which has units of charge, we can
define the dimensionless charge Q to be

Q =
q
E0C

,

and the resulting dimensionless equation becomes

α
d2Q
dτ2 +

dQ
dτ

+ Q = cos βτ,

with
α =

L
R2C

, β = ωRC.

Solutions to the Problems for Lecture 26

1. Write the mass on a spring equation as

m
c

d2x
dt2 +

dx
dt

+
k
c

x =
F0

c
cos ωt.

To remove the coefficient of the restoring force in the final dimensionless equation, we
define the dimensionless time τ to be

τ = kt/c.

After multiplication by c/k, the mass on a spring equation becomes

mk
c2

d2x
dτ2 +

dx
dτ

+ x =
F0

k
cos

ωc
k

τ.

To remove the coefficient of the inhomogeneous term, we can define the dimensionless
position X to be

X =
kx
F0

,

and the dimensionless equation becomes

α
d2X
dτ2 +

dX
dτ

+ X = cos βτ,
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with
α =

mk
c2 , β =

ωc
k

.

Solutions to the Problems for Lecture 28

1. The long-time solution corresponds to the particular solution. We consider the complex
ode

z̈ + αż + z = eiβt,

with xp = Re{zp}. With the ansatz zp = Aeiβt, we have −β2 A + iαβA + A = 1, or

A =
1

(1− β2) + iαβ
=

(1− β2)− iαβ

(1− β2)2 + α2β2 .

To determine the amplitude of the resulting oscillation, we make use of the polar form of
a complex number and write

(1− β2)− iαβ =
√
(1− β2)2 + α2β2 eiφ,

where tan φ = −αβ/(1− β2). The long-time solution is given by

xp = Re

{√
(1− β2)2 + α2β2

(1− β2)2 + α2β2 ei(βt+φ)

}

=
1√

(1− β2)2 + α2β2
cos (βt + φ);

and the amplitude of the resulting oscillation is therefore given by

amplitude =
1√

(1− β2)2 + α2β2
.

Solutions to the Practice quiz: Applications and resonance

1. d. We solve ẍ + ẋ = 1, with x(0) = 0 and ẋ(0) = 0. The homogeneous equation has
characteristic equation given by r2 + r = r(r + 1) = 0, with roots r1 = 0 and r2 = −1. The
general homogeneous solution is therefore xh = c1 + c2e−t. A particular solution is easily
guessed to be xp = t. The general solution to the inhomogeneous ode is therefore

x(t) = c1 + c2e−t + t.

With x(0) = 0 and ẋ(0) = 0, we obtain the system of equations

c1 + c2 = 0

c2 = 1,
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so that c1 = −1 and c2 = 1. Therefore,

x(t) = −1 + e−t + t = (t− 1) + e−t.

2. b. We solve ẍ− x = cosh t, with x(0) = 0 and ẋ(0) = 0. The hyperbolic sine and cosine

functions satisfy
d
dt

cosh t = sinh t and
d
dt

sinh t = cosh t. Furthermore, sinh (0) = 0 and
cosh (0) = 1. The general homogeneous solution is xh = A cosh t + B sinh t. Since the
inhomogeneous term is a solution of the homogeneous equation, we try as our partic-
ular solution xp = Ct cosh t + Dt sinh t. The derivatives are ẋp = C cosh t + D sinh t +
Ct sinh t + Dt cosh t and ẍp = 2C sinh t + 2D cosh t + Ct cosh t + Dt sinh t. Substituting
into the ode, we get 2C sinh t + 2D cosh t = cosh t. Therefore C = 0 and D = 1/2. The
general solution is therefore

x(t) = A cosh t + B sinh t +
1
2

t sinh t,

ẋ(t) = A sinh t + B cosh t +
1
2

sinh t +
1
2

t cosh t.

With x(0) = 0 and ẋ(0) = 0, we obtain A = 0 and B = 0. Therefore, x(t) =
1
2

t sinh t.

3. c. The fully dimensional RLC circuit equation, mass on a spring equation, and low
amplitude pendulum equation are given by

L
d2q
dt2 + R

dq
dt

+
1
C

q = E0 cos ωt,

m
d2x
dt2 + c

dx
dt

+ kx = F0 cos ωt,

ml
d2θ

dt2 + cl
dθ

dt
+ mgθ = F0 cos ωt.

Comparing the three equations, it is observed that the resistance R in the RLC circuit equa-
tion plays a role analgous to the frictional coefficent c in the mass on a spring equation,
and the pendulum equation.

Solutions to the Problems for Lecture 29

1. F(s) =
ˆ ∞

0
e−st sin bt dt. Integrate by parts letting u = sin bt and dv = e−stdt to obtain

F(s) =
b
s

ˆ ∞

0
e−st cos bt dt. Integrate by parts a second time letting u = b cos bt and dv =

(1/s)e−stdt to obtain F(s) =
b
s2 −

b2

s2 F(s). Solving for F(s), we obtain F(s) =
b

s2 + b2 .
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Solutions to the Problems for Lecture 30

1. The Laplace transform of the ode is given by

a
(

s2X− sx0 − u0

)
+ b (sX− x0) + cX = G.

Solving for X = X(s), we obtain

X(s) =
G(s) + (as + b)x0 + au0

as2 + bs + c
.

Solutions to the Problems for Lecture 31

1. The Laplace transform of the ode is

s2X + 5sX + 6X =
1

s + 1
,

with solution
X(s) =

1
(s + 1)(s + 2)(s + 3)

.

A partial fraction expansion of X = X(s) is written as

1
(s + 1)(s + 2)(s + 3)

=
a

s + 1
+

b
s + 2

+
c

s + 3
,

where the unknown coefficients can be found by using the cover-up method. Multiply
both sides by (s + 1) and set s = −1 to find a = 1/2. Multiply both sides by s + 2 and
set s = −2 to find b = −1. Multiply both sides by s + 3 and set s = −3 to find c = 1/2.
Proceeding to take the inverse Laplace transform using the table in Appendix F, we obtain

x(t) =
1
2

e−t − e−2t +
1
2

e−3t.

Solutions to the Practice quiz: The Laplace transform method

1. b. From line 9 of the Table of Laplace Transforms, we have a = −1 and b = π. The

Laplace transform is then read off the table as X(s) =
s + 1

(s + 1)2 + π2 .

2. c. Use lines 16, 15, and 3 of the Table of Laplace Transforms to take the Laplace

transform of the ode: s2X + sX− 6X =
1

s + 1
. Solve for X = X(s) to find

X(s) =
1

(s + 1)(s− 2)(s + 3)
.
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3. c. X(s) =
1

(s + 1)(s + 2)(s + 3)
=

a
s + 1

+
b

s + 2
+

c
s + 3

. Using the cover-up method,

we find a = 1/2, b = −1, c = 1/2. Then using line 3 of the Table of Laplace Transforms,

we obtain x(t) =
1
2

e−t − e−2t +
1
2

e−3t.

Solutions to the Problems for Lecture 32

1. The step-down function is given by

1− uc(t) =

{
1, t < c;
0, t ≥ c.

The step-up, step-down function, with a < b, is given by

ua(t)− ub(t) =


0, t < a;
1, a ≤ t < b;
0, t ≥ b.

2. The Laplace transform is

L{uc(t) f (t− c)} =
ˆ ∞

0
e−stuc(t) f (t− c) dt

=

ˆ ∞

c
e−st f (t− c) dt

=

ˆ ∞

0
e−s(t′+c) f (t′) dt′

= e−cs
ˆ ∞

0
e−st′ f (t′) dt′

= e−csF(s),

where we have changed variables to t′ = t− c.

3.

a)

f (t) =

t, if t < 1;

1, if t ≥ 1

= t− u1(t) (t− 1) .

b) The Laplace transform is given by F(s) = L{ f (t)} = L{t} − L{u1(t) (t− 1)}. The
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Laplace transforms are found in Appendix F. We have

L{t} = 1
s2 (using line 4 with n = 1)

L{u1(t) (t− 1)} = e−sL{t} = e−s

s2 .

(using line 13 with c = 1 and line 4 with n = 1)

The result is F(s) =
1− e−s

s2 .

Solutions to the Problems for Lecture 33

1.

a) For a > 0, we have

ˆ ∞

−∞
f (x)δ(ax) dx =

1
a

ˆ ∞

−∞
f (x′/a)δ(x′) dx′ =

1
a

f (0) =
1
a

ˆ ∞

−∞
f (x)δ(x) dx.

Therefore δ(ax) =
1
a

δ(x). For a < 0, the limits of integration reverse upon the

substitution, and one finds δ(ax) = −1
a

δ(x). The general result is δ(ax) =
1
|a| δ(x).

b) The integral given by
ˆ x

−∞
δ(x′ − c) dx′ is zero if x < c and one if x > c. This is the

definition of uc(x).

c) The derivative of both sides of uc(x) =
ˆ x

−∞
δ(x′ − c) dx′ with respect to x, using

the fundamental theorem of calculus, results in
d

dx
uc(x) = δ(x− c). This is only a

symbolic expression because technically you can not take the derivative of a discon-
tinuous function.

Solutions to the Problems for Lecture 34

1. We compute x(1) when the Heaviside function is either zero or one. In both cases we
find

x(1) =
1
2
− 1

e
+

1
2e2

so that x = x(t) is continuous at t = 1.

2. The Laplace transform is

s2X(s) + X(s) =
1
s

(
1− e−2πs

)
,
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with solution for X = X(s) given by

X(s) =
1− e−2πs

s(s2 + 1)
.

Defining

F(s) =
1

s(s2 + 1)
,

and using the table in Appendix F, the inverse Laplace transform of X(s) is

x(t) = f (t)− u2π(t) f (t− 2π),

where f (t) is the inverse Laplace transform of F(s). A partial fraction expansion yields

F(s) =
1

s(s2 + 1)
=

1
s
− s

s2 + 1
,

and the inverse Laplace transform from the table in Appendix F is f (t) = 1− cos t. We
find

x(t) = 1− cos t− u2π(t) (1− cos (t− 2π)) ,

or more clearly,

x(t) =

1− cos t, if t < 2π;

0, if t ≥ 2π.

Solutions to the Problems for Lecture 35

1. Taking the Laplace transform of the ode using the table in Appendix F, we have

s2X + X = 1− e−2πs,

with solution for X = X(s) given by

X(s) =
1− e−2πs

(s2 + 1)
.

Defining

F(s) =
1

s2 + 1
,

the table in Appendix F yields f (t) = sin t, and the inverse Laplace transform of X(s) is

x(t) = f (t)− u2π(t) f (t− 2π) = sin t− u2π(t) sin(t− 2π),

or more clearly,

x(t) =

sin t, if t < 2π;

0, if t ≥ 2π.
.



APPENDIX G. PROBLEM AND PRACTICE QUIZ SOLUTIONS 165

Solutions to the Practice quiz: Discontinuous and impulsive inhomoge-
neous terms

1. a. Use the negative of a step-up, step-down function between t = 1 and 2, and a step-
up, step-down function between t = 3 and 4. We have x(t) = −(u1(t)− u2(t)) + (u3(t)−
u4(t)) = −u1(t) + u2(t) + u3(t)− u4(t).

2. d. Laplace transform the ode to obtain s2X− s + X =
1
s
− e−2πs

s
. Solve for X = X(s) to

obtain X(s) =
s

s2 + 1
+

(1− e−2πs)

s(s2 + 1)
. Write

1
s(s2 + 1)

=
1
s
− s

s2 + 1
, so that

X(s) =
1
s
− e−2πs

(
1
s
− s

s2 + 1

)
. Inverse Laplace transform to find

x(t) = 1− u2π(t) (1− cos (t− 2π)) =

1, if t < 2π;

cos t, if t ≥ 2π.

3. c. Laplace transform the ode to obtain s2X− s + X = 1− e−2πs. Solve for X = X(s) to

obtain X(s) =
s

s2 + 1
+

1
s2 + 1

− e−2πs

s2 + 1
. Inverse Laplace transform to find

x(t) = cos t + sin t− u2π(t) sin (t− 2π) =

cos t + sin t, if t < 2π;

cos t, if t ≥ 2π.

Solutions to the Problems for Lecture 36

1. Try

y(x) =
∞

∑
n=0

anxn,

and obtain
∞

∑
n=2

n(n− 1)anxn−2 −
∞

∑
n=0

anxn = 0.

In the first sum, shift the summation index downward by two, and then combine sums to
obtain

∞

∑
n=0

(
(n + 2)(n + 1)an+2 − an

)
xn = 0.

We therefore obtain the recursion relation

an+2 =
an

(n + 2)(n + 1)
, n = 0, 1, 2, . . . .

Even and odd coefficients decouple, and we obtain two independent sequences starting
with first term a0 or a1. Developing these sequences, we have for the first sequence,

a0, a2 =
1
2

a0, a4 =
1

4 · 3 a2 =
1
4!

a0,
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and so on; and for the second sequence,

a1, a3 =
1

3 · 2 a1, a5 =
1

5 · 4 a3 =
1
5!

a1,

and so on. Using the principle of superposition, the general solution is therefore

y(x) = a0

(
1 +

x2

2!
+

x4

4!
+ . . .

)
+ a1

(
x +

x3

3!
+

x5

5!
+ . . .

)
= a0 cosh x + a1 sinh x,

where

cosh x =
ex + e−x

2
, sinh x =

ex − e−x

2
.

Solutions to the Problems for Lecture 37

1. Substituting y = ∑∞
n=0 anxn into the differential equation, we have

y′′ + xy′ − y =
∞

∑
n=2

n(n− 1)anxn−2 +
∞

∑
n=1

nanxn −
∞

∑
n=0

anxn

=
∞

∑
n=0

(
(n + 2)(n + 1)an+2 + (n− 1)an

)
xn = 0.

The recursion relation is
an+2 = − (n− 1)

(n + 2)(n + 1)
an.

Starting with a0, we find a2 = a0/2, a4 = −a0/24, and a6 = a0/240. Starting with a1, we
find a3 = 0, a5 = 0, etc. The general solution to order x6 is given by

y(x) = a0

(
1 +

x2

2
− x4

24
+

x6

240
− . . .

)
+ a1x.

Solutions to the Problems for Lecture 38

1. The general solution of the Airy’s equation is given by

y(x) = a0y0(x) + a1y1(x).

Applying the initial conditions and the known values y0(0) = 1, y′0(0) = 0, y1(0) = 0,
and y′1(0) = 1, we have

y(0) = 1 = a0, y′(0) = 1 = a1.

Therefore, the solution is
y(x) = y0(x) + y1(x).
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Solutions to the Practice quiz: Series solutions

1. c. Using the definitions of the hyperbolic functions, we have

cosh2 t− sinh2 t =
(et + e−t)2

4
− (et − e−t)2

4
=

1
4

(
e2t + e−2t + 2

)
− 1

4

(
e2t + e−2t − 2

)
=

1
2
+

1
2
= 1.

2. d. Substituting y =
∞

∑
n=0

anxn into the differential equation, we have

y′′ + x2y =
∞

∑
n=2

n(n− 1)anxn−2 +
∞

∑
n=0

anxn+2 =
∞

∑
n=−2

(n + 4)(n + 3)an+4xn+2 +
∞

∑
n=0

anxn+2 = 0.

Rewrite as 2a2 + 6a3x +
∞

∑
n=0

[(n + 4)(n + 3)an+4 + an] xn+2 = 0. Setting coefficients of pow-

ers of x equal to zero results in a2 = a3 = 0, an+4 = − an

(n + 4)(n + 3)
. Starting with a0, we

find a4 = −a0/12. Starting with a1, we find a5 = −a1/20. Since a2 = a3 = a6 = a7 = 0, the

general solution with terms up to x5 is y(x) = a0

(
1− x4

12
+ . . .

)
+ a1

(
x− x5

20
+ . . .

)
.

3. d. Substituting y =
∞

∑
n=0

anxn into the differential equation, we have y′′ − xy′ + y =

∑∞
n=2 n(n− 1)anxn−2−∑∞

n=1 nanxn +∑∞
n=0 anxn = ∑∞

n=0

(
(n+ 2)(n+ 1)an+2 +(1−n)an

)
xn

= 0. The recursion relation is an+2 =
(n− 1)

(n + 2)(n + 1)
an. Starting with a0, we find a2 = −a0/2,

a4 = −a0/24. Starting with a1, we find a3 = 0, a5 = 0, etc. The general solution up to

terms proportional to x4 is given by y(x) = a0

(
1− x2

2
− x4

24
− . . .

)
+ a1x.

Solutions to the Problems for Lecture 39

1. The odes in matrix form are given by

d
dt

(
x1

x2

)
=

(
a c
c b

)(
x1

x2

)
,

and the characteristic equation of the matrix is given by

λ2 − (a + b)λ + ab− c2 = 0.

The roots of the characteristic equation are

λ± =
a + b±

√
(a + b)2 − 4ab + 4c2

2
=

a + b±
√
(a− b)2 + 4c2

2
.

Since the discriminant is non-negative, both roots are real (and distinct provided a 6= b or
c 6= 0).
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Solutions to the Problems for Lecture 40

1. With A =

(
0 −1
−2 −1

)
, the characteristic equation is λ2 + λ− 2 = (λ− 1)(λ + 2) = 0,

with roots λ1 = 1 and λ2 = −2. The corresponding eigenvectors are v1 =

(
1
−1

)
and

v2 =

(
1
2

)
. The general solution is x = c1et

(
1
−1

)
+ c2e−2t

(
1
2

)
, or x1 = c1et + c2e−2t and

x2 = −c1et + 2c2e−2t.

Solutions to the Problems for Lecture 41

1. With A =

(
1 −2
1 1

)
, the characteristic equation is λ2 − 2λ + 3 = 0, with root λ =

1 + i
√

2 and its complex conjugate. The corresponding eigenvectors are v =

(
2i√
2

)
and

its complex conjugate. The general solution is constructed from the linearly independent
solutions X1 = Re

{
veλt

}
and X2 = Im

{
veλt

}
, and is

x = et

(
A

(
−2 sin (

√
2 t)√

2 cos (
√

2 t)

)
+ B

(
2 cos (

√
2 t)√

2 sin (
√

2 t)

))
,

or

x1 = et
(
−2A sin (

√
2 t) + 2B cos (

√
2 t)
)

, x2 = et
(√

2A cos (
√

2 t) +
√

2B sin (
√

2 t)
)

.

Solutions to the Practice quiz: Systems of differential equations

1. c. The system of equations in matrix form is
d
dt

(
x1

x2

)
=

(
a b
c d

)(
x1

x2

)
. The character-

istic equation of the matrix is given by λ2 − (a + d)λ + (ad− bc) = 0. The second-order
ode with the same characteristic equation is given by ẍ− (a + d)ẋ + (ad− bc)x = 0.

2. b. The system of equations in matrix form is
d
dt

(
x1

x2

)
=

(
1 2
2 1

)(
x1

x2

)
. Try x = veλt to

obtain the eigenvalue problem Av = λv. The characteristic equation of A from det (A−
λI) = 0 is λ2 − 2λ − 3 = (λ − 3)(λ + 1) = 0, with roots λ1 = 3 and λ2 = −1. The
eigenvectors are found by solving

(A− λiI)vi = 0, and we find that λ1 = 3 has eigenvector v1 =

(
1
1

)
and λ2 = −1 has

eigenvector v2 =

(
1
−1

)
. The general solution is x = c1

(
1
1

)
e3t + c2

(
1
−1

)
e−t, and the

components are x1 = c1e3t + c2e−t and x2 = c1e3t − c2e−t.
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3. d. The system of equations in matrix form is
d
dt

(
x1

x2

)
=

(
−2 1
−1 −2

)(
x1

x2

)
. Try

x = veλt to obtain the eigenvalue problem Av = λv. The characteristic equation of A
from det (A− λI) = 0 is λ2 + 4λ + 5 = 0, with roots λ = −2 + i and its complex conju-
gate. The eigenvector associated with λ is found by solving (A− λI)v = 0, and we find

that v1 =

(
1
i

)
. The general solution is x = e−2t

(
A Re

{(
1
i

)
eit

}
+ B Im

{(
1
i

)
eit

})

= e−2t

(
A

(
cos t
− sin t

)
+ B

(
sin t
cos t

))
, and the components are x1 = e−2t(A cos t + B sin t)

and x2 = e−2t(−A sin t + B cos t).

Solutions to the Problems for Lecture 42

1. The nature of the fixed points are determined by the eigenvalues of the relevant matri-
ces. We first write the odes as matrix equations, and then compute the eigenvalues.

a)

ẋ =

(
−3

√
2√

2 −2

)
x.

The eigenvalues of the matrix are found from

0 = det (A− λI) = λ2 + 5λ + 4 = (λ + 4)(λ + 1).

The eigenvalues are λ1 = −4 and λ2 = −1. Since the eigenvalues are both negative,
the fixed point is a stable node.

b)

ẋ =

(
1 1
4 1

)
x.

The eigenvalues of the matrix are found from

0 = det (A− λI) = λ2 − 2λ− 3 = (λ + 1)(λ− 3).

The eigenvalues are λ1 = −1 and λ2 = 3. Since the eigenvalues are of opposite sign,
the fixed point is a saddle point and is unstable.

c)

ẋ =

(
−1/2 1
−1 −1/2

)
x.

The eigenvalues of the matrix are found from

0 = det (A− λI) = λ2 + λ +
5
4

.

The eigenvalues are complex and given by λ = −1
2
± i. Since the real part of these

complex eigenvalues is negative, the fixed point is a stable spiral point.
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Solutions to the Problems for Lecture 43

1. With A =

(
2 1
1 2

)
, the characteristic equation is λ2− 4λ+ 3 = (λ− 3)(λ− 1) = 0, with

roots λ1 = 3 and λ2 = 1. The corresponding eigenvectors are v1 =

(
1
1

)
and v2 =

(
1
−1

)
.

The phase portrait can be sketched by drawing the lines x2 = x1 corresponding to the first
eigenvector direction, and x2 = −x1 corresponding to the second eigenvector. Because
both eigenvalues are positive, the motion is away from the origin and the fixed point is
unstable. Also, λ1 > λ2, so the motion is faster along the first eigenvector with x2 = x1

and the curves bend in this direction. A computer-generated phase portrait is shown
below.

-2 -1 0 1 2
-2

-1

0

1

2

Solutions to the Problems for Lecture 44

1. With A =

(
−1 3

2 4

)
, the characteristic equation is λ2 − 3λ− 10 = (λ + 2)(λ− 5) = 0,

with roots λ1 = −2 and λ2 = 5. The corresponding eigenvectors are v1 =

(
1

−1/3

)

and v2 =

(
1
2

)
. The phase portrait can be sketched by drawing the lines x2 = −x1/3

corresponding to the first eigenvector, and x2 = 2x1 corresponding to the second eigen-
vector. Because the eigenvalues have opposite sign, the fixed point is a saddle point. Also,
λ1 < 0 < λ2 so the motion along the first eigenvector moves towards the origin, and the
motion along the second eigenvector moves away from the origin. A computer-generated
phase portrait is shown below.
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Solutions to the Problems for Lecture 45

1. With A =

(
1 1
−1 1

)
, the characteristic equation is λ2− 2λ + 2 = 0, with roots λ = 1+ i

and λ̄. The corresponding eigenvectors are v =

(
1
i

)
and v̄. The phase portrait is an

unstable spiral point. To determine the handedness, we compute the derivatives at the
point (x1, x2) = (0, 1) and find (ẋ1, ẋ2) = (1, 1). The stability and direction of motion
indicates a clockwise spiral moving outwards. A computer-generated phase portrait is
shown below.

-2 -1 0 1 2
-2

-1

0

1

2
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Solutions to the Practice quiz: Phase portraits

1. a. See Problems for Lecture 43: Stable and unstable nodes.

2. b. See Problems for Lecture 44: Saddle points.

3. c. See Problems for Lecture 45: Spiral points.

Solutions to the Problems for Lecture 46

1.

m
d2

dt2

(
x1

x2

)
=

(
−2k k

k −k

)(
x1

x2

)
.

Solutions to the Problems for Lecture 48

1. The governing equation may be written as

m
k

d2

dt2

(
x1

x2

)
=

(
−2 1

1 −1

)(
x1

x2

)
.

With ansatz x = vert, the matrix equation becomes Av = λv, with λ = mr2/k.The eigen-
values of A are found from det(A− λI) = λ2 + 3λ + 1 = 0, or λ1 = −(3−

√
5)/2 and

λ2 = −(3 +
√

5)/2. The corresponding eigenvectors are computed to be

v1 =
(

1 (
√

5 + 1)/2
)T

and v2 =
(

1 −(
√

5− 1)/2
)T

. The approximate values of the
angular frequencies and the eigenvectors are

ω1 = 0.62

√
k
m

, v1 =

(
1

1.62

)
;

ω2 = 1.62

√
k
m

, v2 =

(
1
−0.62

)
.

Solutions to the Practice quiz: Normal modes

1. c. Newton’s law and Hooke’s law results in mẍ1 = −2kx1 − k(x1 − x2) and

mẍ2 = −k(x2 − x1). In matrix form, this is written as m
d2

dt2

(
x1

x2

)
=

(
−3k k

k −k

)(
x1

x2

)
.

2. a. The governing equations are given by
m
k

d2

dt2

(
x1

x2

)
=

(
−3 1

1 −1

)(
x1

x2

)
. Try

x(t) = vert, and obtain Av = λv, with λ =
mr2

k
. The characteristic equation of A is
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λ2 + 4λ + 2 = 0, with solutions λ± = −2 ±
√

2. The angular frequencies of the nor-

mal modes are given by

√
|λ±|k

m
=


√

(2−
√

2)k
m ≈ 0.77

√
k
m ,√

(2+
√

2)k
m ≈ 1.85

√
k
m .

3. c. We find the eigenvectors of the matrix A =

(
−3 1

1 −1

)
with eigenvalues λ1 = −2 +

√
2

and λ2 = −2−
√

2. We solve (A − λiI)vi = 0 for vi. For λ1, we have(
−1−

√
2 1

1 1−
√

2

)(
v11

v21

)
= 0, or v21 = (1 +

√
2)v11 ≈ 2.41v11. For λ2, we have(

−1 +
√

2 1
1 1 +

√
2

)(
v12

v22

)
= 0, or v22 = (1−

√
2)v12 ≈ −0.41v12. Therefore, v1 =

(
1

2.41

)

and v2 =

(
1
−0.41

)
.

Solutions to the Problems for Lecture 49

1.

a) Computing f (x + 2L), we have

f (x + 2L) =
a0

2
+

∞

∑
n=1

(
an cos

nπ(x + 2L)
L

+ bn sin
nπ(x + 2L)

L

)
=

a0

2
+

∞

∑
n=1

(
an cos

(nπx
L

+ 2nπ
)
+ bn sin

(nπx
L

+ 2nπ
))

=
a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
= f (x).

b) Computing the average value of f (x), we have

〈 f (x)〉 = 1
2L

ˆ L

−L
f (x)dx

=
1

2L

ˆ L

−L

a0

2
dx +

∞

∑
n=1

(
an

2L

ˆ L

−L
cos

nπx
L

dx +
bn

2L

ˆ L

−L
sin

nπx
L

dx

)
=

a0

2
.

Therefore, a0 = 2 〈 f (x)〉.

Solutions to the Problems for Lecture 50

1. If f (x) is an odd function, then its Fourier sine series is given by

f (x) =
∞

∑
n=1

bn sin
nπx

L
,
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and f (0) =
∞

∑
n=1

bn sin 0 = 0. If f (x) is an even function, then its Fourier cosine series is

given by

f (x) =
a0

2
+

∞

∑
n=1

an cos
nπx

L
,

and

f ′(x) = −π

L

∞

∑
n=1

nan sin
nπx

L
.

Therefore, f ′(0) = −π

L

∞

∑
n=1

nan sin 0 = 0.

Solutions to the Problems for Lecture 51

1. The function f (x) is odd and L = π. The coefficients of the Fourier sine series are given
by

bn =
2
π

ˆ π

0
sin nx dx

= − 2
nπ

cos nx|π0

=
2

nπ
(1− cos nπ)

=
4

nπ
×

1, if n odd;

0, if n even.

The Fourier sine series is therefore

f (x) =
4
π

(
sin x +

sin 3x
3

+
sin 5x

5
+ . . .

)
.

Solutions to the Practice quiz: Fourier series

1. b. f (0) =
a0

2
+

∞

∑
n=1

(an cos 0 + bn sin 0) =
a0

2
+

∞

∑
n=1

an.

2. c. The square wave in the figure is an odd function of period 2π, with f (x) = 1 for

0 < x < π. The Fourier sine series is given by f (x) =
∞

∑
n=1

bn sin nx with

bn =
2
π

ˆ π

0
f (x) sin nx dx =

2
π

ˆ π

0
sin nx dx = −2 cos nx

πn

∣∣∣∣π
0
=

 4
πn , n odd;

0, n even.

Therefore, f (x) =
4
π

(
sin x +

sin 3x
3

+
sin 5x

5
+ . . .

)
.

3. b. This is the function f (x) of Question 2 where f (x) is shifted to the left by π/2. If we
denote this shifted function by g(x), then g(x) = f (x + π/2). We have
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g(x) =
4
π

(
sin (x + π/2) +

sin (3 (x + π/2))
3

+
sin (5 (x + π/2))

5
+ . . .

)
. With sin (x + π/2)

= cos x, sin (3 (x + π/2)) = − cos 3x, etc., we have g(x) =
4
π

(
cos x− cos 3x

3
+

cos 5x
5
− . . .

)
.

Solutions to the Problems for Lecture 52

1. We consider
∂u
∂t

= D
∂2u
∂x2 ,

and define the dimensionless time as τ = tD/L2 and the dimensionless position as s =

x/L. Changing variables, the nondimensional diffusion equation becomes

∂u
∂τ

=
∂2u
∂s2 ,

which is an equation without any parameters.

Solutions to the Problems for Lecture 53

1. We have
ux(0, t) = X′(0)T(t) = 0, ux(L, t) = X′(L)T(t) = 0.

Since these boundary conditions are valid for all t, we must have X′(0) = X′(L) = 0.
These are called homogeneous Neumann boundary conditions.

Solutions to the Problems for Lecture 54

1. If λ = 0, the general solution of X′′ = 0 is given by

X(x) = A + Bx,

and X(0) = 0 yields A = 0, and X(L) = 0 yields B = 0. If λ < 0, we write λ = −µ2, and
determine the general solution of

X′′ − µ2X = 0

to be
X(x) = Aeµx + Be−µx.

The boundary condition at x = 0 results in A + B = 0, and the boundary condition at
X = L results in AeµL + Be−µL = 0. Combining these two equations yields

A
(

eµL − e−µL
)
= 0.

The only solution for nonzero µ is given by A = 0, and since B = −A, there are no
nontrivial solutions.
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2. Nontrivial solutions only exist for λ ≥ 0. If λ = 0, the general solution of X′′ = 0 is
given by

X(x) = A + Bx,

and the boundary conditions X′(0) = X′(L) = 0 require B = 0. We can write the eigen-
function associated with λ = 0 as X0(x) = 1. If λ > 0, we let λ = µ2, and the general
solution of the ode and its derivative is given by

X(x) = A cos µx + B sin µx, X′(x) = −µA sin µx + µB cos µx.

The boundary condition X′(0) = 0 requires B = 0 and the boundary condition X′(L) = 0
results in sin µL = 0, with solutions given by µn = nπ/L, where n is a nonzero inte-
ger. The eigenvalues are therefore λn = (nπ/L)2 for n = 1, 2, 3, . . . with corresponding
eigenfunctions Xn(x) = cos (nπx/L).

Solutions to the Practice quiz: Separable partial differential equations

1. d. The units on both sides of an equation must agree. We have [ut] = [D][uxx], or
ut−1 = [D]ul−2, where u denotes concentration, t denotes time, and l denotes length.
Therefore, [D] = l2t−1.

2. d. To solve utt = c2uxx, we substitute u(x, t) = X(x)T(t) to obtain XT′′ = c2X′′T.
Separating, we obtain X′′/X = T′′/c2T = −λ, where λ is the separation constant. The
two differential equations can be written as X′′ + λX = 0 and T′′ + λc2T = 0.

3. c. The differential equation X′′ + λX = 0 with boundary conditions X(0) = 0 and
X′(L) = 0 has nontrivial solutions only when λ > 0. We let λ = µ2 > 0, and solve X′′ +
µ2X = 0 to find X(x) = A cos µx + B sin µx. Applying the boundary conditions, we have
X(0) = 0 = A and X′(L) = 0 = µB cos µL. Since B 6= 0, we must have cos µL = 0. The

allowed values of µ are given by µn =
(2n− 1)π

2L
for n = 1, 2, 3, . . . . The eigenvalues and

eigenfunctions are therefore given by λn =

(
(2n− 1)π

2L

)2

and Xn = sin
(
(2n− 1)πx

2L

)
,

for n = 1, 2, 3, . . . .

Solutions to the Problems for Lecture 55

1. With the eigenvalues λn = (nπ/L)2, for n = 0, 1, 2, 3, . . . , the differential equation for
T = T(t) becomes

T′ +
(

n2π2D/L2
)

T = 0,

which has solution proportional to

Tn = e−n2π2Dt/L2
.
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Therefore, with ansatz u(x, t) = X(x)T(t) and eigenvalues λn, we conclude that the func-
tions

un(x, t) = cos (nπx/L)e−n2π2Dt/L2

satisfy the diffusion equation and the spatial boundary conditions for every nonnegative
integer n.

The principle of linear superposition for homogeneous linear differential equations
then states that the general solution to the diffusion equation with the spatial boundary
conditions is given by

u(x, t) =
a0

2
+

∞

∑
n=1

anun(x, t) =
a0

2
+

∞

∑
n=1

an cos (nπx/L)e−n2π2Dt/L2
,

where following the usual convention we have separated out the n = 0 solution. In the
final step, we assume that u(x, 0) = f (x), where f (x) is some specific function defined on
0 ≤ x ≤ L. At t = 0, we have

f (x) =
a0

2
+

∞

∑
n=1

an cos (nπx/L).

We immediately recognize this equation as a Fourier cosine series for an even function
f (x) with period 2L. A Fourier cosine series results because of the boundary condition
f ′(0) = 0. From our previous solution for the coefficients of a Fourier cosine series, we
determine that

an =
2
L

ˆ L

0
f (x) cos

nπx
L

dx.

Solutions to the Problems for Lecture 56

1. We solve the diffusion equation with homogeneous Neumann boundary conditions,
and model the initial concentration of the dye by a delta-function centered at x = L/2,
that is, u(x, 0) = M0δ(x− L/2). The Fourier cosine series coefficients are therefore given
by

an =
2
L

ˆ L

0
M0δ(x− L

2
) cos

nπx
L

dx

=
2M0

L
cos (nπ/2)

=


2M0/L if n = 0, 4, 8, . . . ;
−2M0/L if n = 2, 6, 10, . . . ;

0 if n = 1, 3, 5, . . . .

The coefficients an are nonzero only for even values of n, so we can redefine n and write
the solution for u(x, t) as

u(x, t) =
M0

L
+

2M0

L

∞

∑
n=1

(−1)n cos
(

2nπx
L

)
exp

(
−4n2π2Dt

L2

)
.
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As one would expect for a pipe with closed ends, after a sufficiently long time, the mass
of the dye becomes uniformly distributed across the length of the pipe.

Solutions to the Practice quiz: The diffusion equation

1. d. The solution of T′ + λDT for T = T(t) up to a multiplicative constant is T =

exp (−λDt). Replacing λ by the eigenvalue λn = (nπ/L)2, we obtain the eigenfunction

Tn = exp
(
−n2π2Dt

L2

)
.

2. a. We have u(x, t) = a0/2 +
∞

∑
n=1

an cos (nπx/L) exp (−n2π2Dt/L2) and u(x, 0) = f (x).

Therefore, f (x) = a0/2 +
∞

∑
n=1

an cos (nπx/L). This is a Fourier cosine series for f (x) and

the coefficients are given by an =
2
L

ˆ L

0
f (x) cos

(nπx
L

)
dx .

3. b. The solution for the concentration in a pipe with open ends is given by

u(x, t) =
∞

∑
n=1

bn sin
(nπx

L

)
exp

(
−n2π2Dt

L2

)
.

With u(x, 0) = f (x), we have bn =
2
L

ˆ L

0
f (x) sin

(nπx
L

)
dx. Here, f (x) = M0δ

(
x− L

4

)
.

We have bn =
2
L

ˆ L

0
M0δ

(
x− L

4

)
sin
(nπx

L

)
dx =

2M0

L
sin
(nπ

4

)
. The leading-order

term corresponds to n = 1 where we have b1 =
2M0

L
sin (π/4) =

√
2M0

L
. Therefore

u(x, t) =
√

2M0

L
sin
(πx

L

)
exp

(
−π2Dt

L2

)
.
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