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Preface
This review book, used in conjuction with free online YouTube videos, is designed to help students

prepare for exams, or for self-study. The topics covered here are most of the standard topics covered
in a first course in differential equations.

The chapters and sections of this review book, organized by topics, can be read independently.
Each chapter or section consists of three parts: (1) Theory; (2) YouTube Example; and (3) Additional
Practice. In Theory, a summary of the topic and associated solution method is given. It is assumed that
the student has seen the material before in lecture or in a standard textbook so that the presentation
is concise. In YouTube Example, an online YouTube video illustrates how to solve an example problem
given in the review book. Students are encouraged to view the video before proceeding to Additional
Practice, which provides additional practice exercises similar to the YouTube example. The solutions
to all of the practice exercises are given in this review book’s Appendix.

For students who self-study, or desire additional explanatory materials, a complete set of free
lecture notes by the author entitled An Introduction to Differential Equations can be downloaded by
clicking HERE. This set of lecture notes also contains links to additional YouTube tutorials. The
lecture notes and tutorials have been extensively used by the author over several years when teaching
an introductory differential equations course at the Hong Kong University of Science and Technology.

iii

http://www.math.ust.hk/~machas/differential-equations.pdf
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First-order Differential Equations
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2 CHAPTER 1. FIRST-ORDER DIFFERENTIAL EQUATIONS

1.1 Separable Equations

1.1.1 Theory

A separable first-order ode for y = y(x) can be written in the form

y′ =
f (x)
g(y)

,

with initial conditions y(x0) = y0. To solve a separable equation, treat y′ = dy/dx like a fraction and
multiply by g(y)dx to obtain

g(y)dy = f (x)dx.

Then integrate both sides to obtain

∫ y

y0

g(y)dy =
∫ x

x0

f (x)dx.

Perform the integrations and solve for y when possible. If there are multiple solutions for y, choose
the one that satisfies the initial condition.

1.1.2 YouTube Example

To review separable odes, click HERE, which solves

(1 + y)y′ = x, y(0) = 0.

1.1.3 Additional Practice

1. Solve the following separable odes for y = y(x).

a) y′ =
√

xy, y(1) = 0

b) y2 − xy′ = 0, y(1) = 1

c) ex−yy′ + ey−x = 0, y(0) = 0

d) y′ + (sin x)y = 0, y(π/2) = 1

e) y′ = y(1− y), y(0) = y0 (y0 > 0)

Solutions to the Additional Practice

https://www.youtube.com/watch?v=IDxS5SqBXGE&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=1
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1.2 Linear Equations

1.2.1 Theory

A linear first-order ode for y = y(x) can be written in the form

y′ + p(x)y = g(x),

with initial condition y(x0) = y0. To solve a linear equation, if necessary multiply by an integrating
factor given by

µ(x) = exp
(∫ x

x0

p(x)dx
)

to obtain (
µ(x)y(x)

)′
= µ(x)g(x).

Then integrate to obtain

y(x) =
1

µ(x)

(
y0 +

∫ x

x0

µ(x)g(x)dx
)

.

1.2.2 YouTube Example

To review linear odes, click HERE, which solves

xy′ + y = ex, y(1) = 0.

1.2.3 Additional Practice

1. Solve the following linear odes for y = y(x).

a) x2y′ = 1− 2xy, y(1) = 2

b) x4y′ + 4x3y = e−x, y(1) = −1/e

c) y′ + 2xy = x, y(0) = 1/2

d) (1 + x2)y′ + 2xy = 2x, y(0) = 0

e) y′ + λy = a + be−λx, y(0) = 0 (λ > 0)

Solutions to the Additional Practice

https://www.youtube.com/watch?v=jX3IqgPiQJ8&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=2
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1.3 Exact Equations

1.3.1 Theory

An exact first-order ode for y = y(x) can be written in the form

M(x, y) + N(x, y)y′ = 0,

or equivalently,
M(x, y)dx + N(x, y)dy = 0,

where for some function f = f (x, y), the functions M(x, y) and N(x, y) satisfy M = ∂ f /∂x and
N = ∂ f /∂y. An exact ode can therefore be rewritten in the form

∂ f
∂x

+
∂ f
∂y

dy
dx

= 0,

or equivalently,
d

dx
f
(
x, y(x)

)
= 0.

Integrate to obtain
f (x, y) = c,

where c is a constant.

To test whether a given differential equation is exact, compute ∂2 f /∂x∂y in two ways to obtain the
necessary condition

∂M/∂y = ∂N/∂x.

If this condition is satisfied, determine the function f (x, y) by first integrating with respect to x the
equation

∂ f
∂x

= M(x, y)

to obtain an equation in the form
f (x, y) = F(x, y) + h(y),

where h(y) is the constant (independent of x) of integration. To determine h(y), differentiate with
respect to y to obtain

h′(y) = N(x, y)− ∂F
∂y

.

Then integrate to obtain h(y). Absorb all the constants of integration into the final constant c.

1.3.2 YouTube Example

To review exact odes, click HERE, which solves

2xy + (x2 − y2)y′ = 0.

1.3.3 Additional Practice

1. Show that the following odes are exact and find the general solutions.

a) (2x− 3y) + (2y− 3x)y′ = 0

https://www.youtube.com/watch?v=PnTVxmpjETk&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=3
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b) (x2 + 2xy− y2) + (x2 − 2xy− y2)y′ = 0

c)
y
x
+ (ln x)y′ = 0

d) (ax + by)dx + (bx + cy)dy = 0

e) (cos θ + 2r sin2 θ)dr + r sin θ(2r cos θ − 1)dθ = 0

Solutions to the Additional Practice
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1.4 Bernoulli Equations

1.4.1 Theory

A Bernoulli first-order ode for y = y(x) can be written in the form

y′ + p(x)y = q(x)yn, n 6= 0, 1.

To solve a Bernoulli equation, write as

y−ny′ + p(x)y1−n = q(x),

and let
u = y1−n,

with derivative
u′ = (1− n)y−ny′.

Substitute into the Bernoulli equation to obtain the linear equation

u′ + (1− n)p(x)u = (1− n)q(x).

Solve this equation using an integrating factor and then transform back to y.

1.4.2 YouTube Example

To review Bernoulli odes, click HERE, which solves

xy′ + y = x2y2.

1.4.3 Additional Practice

1. Solve the following Bernoulli odes for y = y(x).

a) xy′ + y = x4y3, y(1) = 1

b) xy′ + y = y2

c) x2y′ − y2 = 2xy

d) xy2y′ + y3 = x, y(1) = 1

e) y′ = y(1− y), y(0) = y0

Solutions to the Additional Practice

https://www.youtube.com/watch?v=c9meD54w9IY&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=4
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1.5 Homogeneous Equations

1.5.1 Theory

A first-order homogeneous ode for y = y(x) can be written in the form

y′ = F(y/x)

for some function F. To solve a homogeneous equation, let

u = y/x.

Then
y′ = xu′ + u.

Substitute into the homogeneous equation to obtain the separable equation

xu′ + u = F(u).

Solve by separating variables and then transform back to y.

1.5.2 YouTube Example

To review homogeneous odes, click HERE, which solves

x2y′ = x2 + xy + y2.

1.5.3 Additional Practice

1. Solve the following homogeneous odes for y = y(x).

a) (x− y)y′ = x + y

b) (x + y)y′ = x− y

c) xy′ = y +
√

x2 + y2

d) (x2 + y2)y′ = xy

e) xyy′ = x2 + y2

Solutions to the Additional Practice

https://www.youtube.com/watch?v=lOLkBRzALJ0&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=5
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1.6 Riccati Equations

1.6.1 Theory

A Riccati first-order ode for y = y(x) can be written in the form

y′ = P(x)y2 + Q(x)y + R(x).

If a particular solution y = Y(x) of this equation is known, then to solve a Riccati equation, let

y(x) = Y(x) +
1

u(x)
,

with derivative

y′ = Y′ − u′

u2 .

Substitute into the Riccati equation to obtain

Y′ − u′

u2 = P(x)(Y +
1
u
)2 + Q(x)(Y +

1
u
) + R(x).

Expand the quadratic, and use the equation satisfied by the particular solution y = Y(x),

Y′ = P(x)Y2 + Q(x)Y + R(x),

to transform the Riccati equation into the linear equation

u′ +
(
Q(x) + 2P(x)Y(x)

)
u = −P(x).

Solve using an integrating factor and then transform back to y.

1.6.2 YouTube Example

To review Riccati odes, click HERE, which solves

y′ + xy2 = − 1
x3 , Y(x) =

1
x2 .

1.6.3 Additional Practice

1. Solve the following Riccati odes for y = y(x).

a) y′ = y2 − y− 2

i) Y(x) = 2

ii) Y(x) = −1

b) y′ =
1
x

(
y2 + y− 2

)
i) Y(x) = 1

ii) Y(x) = −2

https://www.youtube.com/watch?v=1ctT7J_d_5c&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=6
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c) y′ = −2y2 +
1
x2 , Y(x) =

1
x

Solutions to the Additional Practice
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12 CHAPTER 2. SECOND-ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

2.1 Homogeneous Equations

2.1.1 Theory

A homogeneous, second-order, constant-coefficient ode for x = x(t) can be written in the form

aẍ + bẋ + cx = 0,

where a, b, and c are constants. To solve, try

x(t) = ert,

where r is a constant to be determined. Substitute into the ode and cancel the common exponential
function to derive the characteristic equation

ar2 + br + c = 0;

and factor or use the quadratic formula to obtain the two roots. Consider the following three cases.

1. Two real roots. Write the roots as r = r1, r2 and the general solution as

x(t) = c1er1t + c2er2t.

2. Complex conjugate roots. Write the roots as r = λ + iµ and its complex conjugate, and the
general solution as

x(t) = eλt (A cos µt + B sin µt) .

3. One real root. Write the root as r and the general solution as

x(t) = ert (c1 + c2t) .

2.1.2 YouTube Example

To review the case of two real roots, click HERE, which solves

ẍ + 4ẋ + 3x = 0; x(0) = 1, ẋ(0) = 1.

To review the case of complex conjugate roots, click HERE, which solves

ẍ− 2ẋ + 5x = 0, x(0) = 1, ẋ(0) = 1.

To review the case of one real root, click HERE, which solves

ẍ + 4ẋ + 4x = 0; x(0) = 1, ẋ(0) = 1.

2.1.3 Additional Practice

1. Solve the following homogeneous odes for x = x(t).

https://www.youtube.com/watch?v=TXOpf5NSyN0&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=7
https://www.youtube.com/watch?v=sJ_Vg32dves&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=8
https://www.youtube.com/watch?v=dk-shALI-wQ&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=9
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a) Two real roots:

i) ẍ + 3ẋ + 2x = 0, x(0) = 0, ẋ(0) = 1

ii) ẍ− 3ẋ + 2x = 0, x(0) = 1, ẋ(0) = 0

b) Complex conjugate roots:

i) ẍ− 2ẋ + 2x = 0, x(0) = 1, ẋ(0) = 0

ii) ẍ + 2ẋ + 2x = 0, x(0) = 0, ẋ(0) = 1

c) One real root:

i) ẍ + 2ẋ + x = 0, x(0) = 1, ẋ(0) = 0

ii) ẍ− 2ẋ + x = 0, x(0) = 0, ẋ(0) = 1

Solutions to the Additional Practice
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2.2 Inhomogeneous Equations

2.2.1 Theory

An inhomogeneous, second-order, constant-coefficient ode for x = x(t) can be written in the form

aẍ + bẋ + cx = g(t),

where a, b, and c are constants, and g(t) is nonzero. To solve, use a three-step method.

1. Find the general solution xh(t) of the homogeneous ode

aẍ + bẋ + cx = 0.

Note that xh(t) must contain two free constants.

2. Find a particular solution xp(t) of the inhomogeneous ode. Use the method of undetermined
coefficients described below.

3. Write the general solution of the inhomogeneous ode as the sum of the homogeneous and par-
ticular solutions,

x(t) = xh(t) + xp(t),

and use the initial conditions to determine the two free constants.

The general form of g(t) commonly presented is

g(t) = Ctneαt

cos βt

sin βt
,

where n, α or β may be zero. Sometimes a sum of such functions is presented. Find particular solutions
for each term in the sum separately and add them, or treat the sum as a whole.

To find a particular solution, try the trial function

x(t) =
(

a0tn + a1tn−1 + · · ·+ an

)
eαt cos βt

+
(

b0tn + b1tn−1 + · · ·+ bn

)
eαt sin βt,

where the a’s and b’s are the undetermined coefficients. Substitution into the differential equation
should result in a sufficient number of algebraic equations for the undetermined coefficients.

If any term in the trial function is a solution of the homogeneous equation, then multiply the trial
function by an extra factor of t (or t2 when the characteristic equation has repeated roots).

2.2.2 YouTube Example

To review how to find particular solutions for some common inhomogeneous terms, view the follow-
ing. For an exponential function, click HERE, which solves

ẍ + ẋ + x = 6e−2t;

https://www.youtube.com/watch?v=0j79LYMQFp0&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=10
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for a trigonometric function, click HERE, which solves

ẍ + ẋ + x = sin 2t;

and for a polynomial, click HERE, which solves

ẍ + ẋ + x = t2.

To review how to find a particular solution when the inhomogeneous term is a solution of the homo-
geneous equation, click HERE, which solves

ẍ + 3ẋ + 2x = 2e−t.

To review the three-step solution of an inhomogeneous ode initial value problem, click HERE, which
solves

ẍ + 4ẋ + 3x = e−2t, x(0) = 1, ẋ(0) = 0.

2.2.3 Additional Practice

1. Find the particular solutions for the following inhomogeneous odes.

a) Exponential inhomogeneous term:

i) ẍ + 3ẋ + 2x = e2t

ii) ẍ + 3ẋ + 2x = e−2t

b) Sine or cosine inhomogeneous term:

i) ẍ + 3ẋ + 2x = sin 2t

ii) ẍ + 3ẋ + 2x = cos 2t

c) Polynomial inhomogeneous term:

i) ẍ + 3ẋ + 2x = 2t

ii) ẍ + 3ẋ + 2x = t2 + 2t

2. Solve the inhomogeneous ode for x = x(t).

a) ẍ + 3ẋ + 2x = e−2t, x(0) = 0, ẋ(0) = 0

Solutions to the Additional Practice

https://www.youtube.com/watch?v=2kBvV8HdMig&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=11
https://www.youtube.com/watch?v=5W6hm7vmRwg&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=12
https://www.youtube.com/watch?v=bon2RElxWnM&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=13
https://www.youtube.com/watch?v=CGsUXSc8AdU&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=14
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3.1 Theory

Define the Laplace transform of a function f (t), denoted by F(s) = L{ f (t)}, as

F(s) =
∫ ∞

0
e−st f (t)dt.

Performing this integral for various functions f (t) results in the table of Appendix A. In particular, the
first and second derivatives of x(t) are transformed as

L{ẋ(t)} = sX(s)− x(0), L{ẍ(t)} = s2X(s)− sx(0)− ẋ(0).

To solve a constant-coefficient, inhomogenous differential equation for x = x(t) of the form

aẍ + bẋ + cx = g(t),

where x(0) and ẋ(0) are given, Laplace transform the differential equation for x(t) into a solvable
algebraic equation for X(s), and then inverse Laplace transform X(s) back into x(t). To find x(t) using
the table, use the techniques of partial fraction decomposition and completing the square.

Typically, the Heaviside step function, uc(t), and the Dirac delta function, δ(t− c), are encountered
when studying the Laplace transform technique. Both functions may appear in the inhomogeneous
term and are used to model piecewise-continuous and impulsive forces.

3.2 YouTube Example

To review how to solve a standard inhomogeneous ode using the Laplace transform techique, click
HERE, which solves

ẍ + 2ẋ + 5x = e−t, x(0) = 0, ẋ(0) = 0.

To review how to solve an ode with a piecewise-continuous inhomogeneous term, click HERE, which
solves

ẍ + 3ẋ + 2x =

t if 0 ≤ t < 1,

1 if t ≥ 1;
x(0) = 0, ẋ(0) = 0.

To review how to solve an ode with a Dirac delta-function inhomogeneous term, click HERE, which
solves

ẍ + 2ẋ + x = δ(t− 1), x(0) = 1, ẋ(0) = 0.

3.3 Additional Practice

1. Solve the following inhomogeneous odes using the Laplace transform technique.

a) ẍ + 2ẋ + 5x = e−2t, x(0) = 0, ẋ(0) = 0

b) ẍ + 3ẋ + 2x =

1− t if 0 ≤ t < 1,

0 if t ≥ 1;
x(0) = 0, ẋ(0) = 0

c) ẍ + 2ẋ + x = δ(t− 1), x(0) = 0, ẋ(0) = 1

Solutions to the Additional Practice

https://www.youtube.com/watch?v=Xy_MmIikhlk&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=15
https://www.youtube.com/watch?v=uvwftf9dNeM&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=16
https://www.youtube.com/watch?v=aMLkK-ID7vo&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=17
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4.1 Theory

A power series solution around x = 0 can be used to solve a linear, homogeneous equation for y = y(x)
of the form

P(x)y′′ + Q(x)y′ + R(x)y = 0,

where P(x), Q(x) and R(x) are polynomials or convergent power series with no common polynomial
factors, and P(0) 6= 0.

To solve, try

y(x) =
∞

∑
n=0

anxn,

with

y′(x) =
∞

∑
n=1

nanxn−1, y′′(x) =
∞

∑
n=2

n(n− 1)anxn−2.

Now write the sum P(x)y′′ + Q(x)y′ + R(x)y as a single power series by shifting summation indices
either up or down to match powers of x. Then set the coefficient of each power of x to zero. De-
termine a recursion relation for the unknown coefficients an. Solve this recursion relation to obtain
two independent power series, each multiplied by a single free constant (usually a0 and a1). Write the
general solution of the differential equation by summing these two power series. If initial conditions
are specified, determine the values of the free constants.

4.2 YouTube Example

To review how to find a power series solution, click HERE, which solves the Airy differential equation
given by

y′′ − xy = 0.

To review how a power series substitution may yield a polynomial solution, click HERE, which solves
the Hermite differential equation given by

y′′ − 2xy′ + 2λy = 0,

where λ is a constant. Polynomial solutions occur when λ = n is a nonnegative integer.

4.3 Additional Practice

1. Find two independent power series solutions to the following differential equations, where the
highest power of x to be computed is specified.

a) y′′ + xy′ + y = 0 (x6)

b) y′′ + xy′ − y = 0 (x6)

c) y′′ + y′ + xy = 0 (x5)

2. The Chebychev equation is given by

(1− x2)y′′ − xy′ + α2y = 0,

where α is a constant.

https://www.youtube.com/watch?v=oYJq3mhg5yE&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=18
https://www.youtube.com/watch?v=1ZrJGJ93yV8&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=19
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a) Find the first three terms in each of two power series solutions.

b) If α = n is an integer, then one of the power series solutions becomes a polynomial. Find the
polynomial solutions for n = 0, 1, 2, 3.

c) The Chebychev polynomials are the polynomial solutions Tn(x) normalized so that Tn(1) = 1.
Find T0(x), T1(x), T2(x), T3(x).

Solutions to the Additional Practice
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5.1 Theory

The Cauchy-Euler equation for y = y(x) can be written in the form

x2y′′ + αxy′ + βy = 0,

with α and β constants. Here, assume that x > 0. (To obtain solutions with x < 0, replace x by −x.)
To solve, try

y(x) = xr,

where r is a constant to be determined. Substitute into the ode and cancel the common power law
factor to derive the characteristic or indicial equation

r2 + (α− 1)r + β = 0;

and factor or use the quadratic formula to obtain the two roots. Consider the following three cases.

1. Two real roots. Write the roots as r = r1, r2 and the general solution as

y(x) = c1xr1 + c2xr2 .

2. Complex conjugate roots. Write the roots as r = λ + iµ and its complex conjugate, and the
general solution as

y(x) = xλ
(

A cos (µ ln x) + B sin (µ ln x)
)
.

3. One real root. Write the root as r and the general solution as

y(x) = xr (c1 + c2 ln x) .

5.2 YouTube Example

To review the case of two real roots, click HERE, which solves

x2y′′ + xy′ − y = 0; y(0) = 0, y(1) = 1.

To review the case of complex conjugate roots, click HERE, which solves

x2y′′ − xy′ + (1 + π2/4)y = 0; y(1) = 1, y(e) = e.

To review the case of one real root, click HERE, which solves

x2y′′ + 3xy′ + y = 0; y(1) = 1, y(e) = 1.

5.3 Additional Practice

1. Solve the following Cauchy-Euler equations for y = y(x), x > 0.

a) Two real roots:

i) x2y′′ − 2xy′ + 2y = 0; y′(0) = 1, y(1) = 0

https://www.youtube.com/watch?v=AMixzLG1h5E&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=20
https://www.youtube.com/watch?v=WCojm2jCa-E&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=21
https://www.youtube.com/watch?v=YY8KUfCzp-M&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=22
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ii) 2x2y′′ − xy′ + y = 0; y(1) = 0, y(4) = 1

b) Complex conjugate roots:

i) x2y′′ − xy′ + (1 + π2)y = 0; y(1) = 1, y(
√

e) =
√

e

ii) x2y′′ + 3xy′ + (1 + π2)y = 0; y(1) = 1, y(
√

e) =
√

e

c) One real root:

i) x2y′′ − xy′ + y = 0; y(1) = 1, y′(1) = 0

ii) 4x2y′′ + y = 0; y(1) = 1, y(e) = 0

Solutions to the Additional Practice
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6.1 Theory

A system of first-order, linear, homogeneous odes can be written in matrix form as

ẋ = Ax,

where x = x(t) is an n-dimensional column vector and A is a constant n-by-n square matrix. To solve,
try

x(t) = veλt,

where v is a constant n-dimensional column vector and λ is a constant scalar. Substitute into the ode
and cancel the common exponential function to obtain the eigenvalue problem

Av = λv,

with characteristic equation
det(A− λI) = 0.

Find n linearly independent solutions and use the principle of superposition to find the general solu-
tion. Consider eigenvalues of three different types.

1. Real eigenvalue. With eigenvalue λ and eigenvector v, write one solution as x1(t) = veλt.

2. Complex conjugate eigenvalues. With complex eigenvalues λ and λ̄, and complex eigenvectors
v and v̄, write two solutions as x1(t) = Re (veλt) and x2(t) = Im (veλt).

3. Repeated eigenvalue with fewer eigenvectors than eigenvalues. If the real eigenvalue λ has
multiplicity 2, say, and there is only one linearly independent eigenvector v, then write one
solution as x1(t) = veλt and seek a second solution by trying x(t) = (w + tv)eλt with w an
unknown constant vector. Solve the equation (A− λI)w = v for w. Higher multiplicities can
also be treated.

If A is a two-by-two matrix, then write the characteristic equation as λ2 − Tr(A)λ + det(A) = 0.
Represent the solutions in a phase portrait, which plots the trajectories of x2 versus x1 for various
initial conditions. To sketch a phase portrait, consider three cases.

1. Two real eigenvalues. Draw two lines through the origin corresponding to trajectories following
a single eigenvector. If the eigenvalue is negative, then draw arrows on the corresponding line
pointing toward the origin; if the eigenvalue is positive, then draw arrows pointing away from
the origin. Sketch trajectories corresponding to initial conditions with mixed eigenvectors. If
both eigenvalues are negative, call the origin a sink or a stable node; if both eigenvalues are
positive, call the origin a source or an unstable node; and if the eigenvalues have opposite sign,
call the origin a saddle point. Below is a sample phase portrait for eigenvalues of opposite sign.
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2. Complex conjugate eigenvalues. If the real part is negative, call the origin a stable spiral point
and draw trajectories that spiral into the origin. If the real part is positive, call the origin an
unstable spiral point and draw trajectories that spiral out of the origin. If the eigenvalues are pure
imaginary, call the origin a center and draw trajectories that are closed ellipses. To determine
the direction of rotation, compute L = x1 ẋ2 − x2 ẋ1, using the odes to eliminate ẋ1 and ẋ2 in
favor of x1 and x2. If L is positive, then draw counterclockwise spirals and if L is negative, draw
clockwise spirals. Below is a sample phase portrait for complex conjugate eigenvalues with a
positive real part and with L < 0.
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3. Repeated eigenvalue with only one eigenvector. Draw a line through the origin corresponding to
the trajectory following the single eigenvector. If the eigenvalue is negative, then draw arrows on
the line pointing toward the origin; if the eigenvalue is positive, then draw arrows pointing away
from the origin. Draw rotating trajectories that are blocked by the drawn line and call the origin
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an improper node. To determine the direction of rotation, compute the sign of L = x1 ẋ2 − x2 ẋ1.
Below is a sample phase portrait for a negative repeated eigenvalue with L < 0.
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6.2 YouTube Example

All examples are for two-by-two matrices. To review the case of two real eigenvalues, click HERE,
which solves

ẋ1 = x2, ẋ2 = x1.

To review the case of complex conjugate eigenvalues, click HERE, which solves

ẋ1 = x1 + x2, ẋ2 = −x1 + x2.

To review the case of repeated eigenvalues with only one linearly independent eigenvector, click
HERE, which solves

ẋ1 = −x1 + x2, ẋ2 = −x1 − 3x2.

6.3 Additional Practice

1. Find the general solution of the following system of odes. Sketch the phase portraits.

a) Two real eigenvalues:

i) ẋ1 = 7x1 − 2x2, ẋ2 = 2x1 + 2x2

ii) ẋ1 = −x2, ẋ2 = −2x1 − x2

b) Complex conjugate eigenvalues:

i) ẋ1 = x1 − 2x2, ẋ2 = x1 + x2

ii) ẋ1 = −x1 − x2, ẋ2 = x1 − x2

c) Repeated eigenvalues:

https://www.youtube.com/watch?v=ok5o3AIEa4o&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=23
https://www.youtube.com/watch?v=DWwICNjbgtg&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=24
https://www.youtube.com/watch?v=0pqIFddXEZs&list=PLkZjai-2Jcxkgr0Y2yFfWiMFbKKbBXPTK&index=25
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i) ẋ1 = x1 + x2, ẋ2 = −4x1 − 3x2

Solutions to the Additional Practice
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7.1 Fixed Points and Linear Stability Analysis

7.1.1 Theory

An autonomous, nonlinear ode for x = x(t) can be written in the form

ẋ = f (x),

where f (x) is a nonlinear function of x and independent of t. To determine the fixed points of the
ode, solve the equation f (x) = 0 for x = x∗. To determine the linear stability of a fixed point, compute
f ′(x). If f ′(x∗) < 0, then the fixed point is stable, and if f ′(x∗) > 0, then the fixed point is unstable.

A two-dimensional, autonomous, system of nonlinear odes can be written in the form

ẋ = f (x, y), ẏ = g(x, y).

To determine the fixed points of this system, solve the simultaneous equations f (x, y) = 0 and
g(x, y) = 0 for (x, y) = (x∗, y∗). To determine the linear stability of a fixed point, compute the
the Jacobian matrix given by

J =

(
∂ f /∂x ∂ f /∂y
∂g/∂x ∂g/∂y

)
.

Evaluate the Jacobian matrix at the fixed point and compute its eigenvalues. If both eigenvalues have
negative real parts, then the fixed point is stable. If at least one of the eigenvalues has a positive real
part, then the fixed point is unstable. Use of the Jacobian to determine stability can be generalized to
higher-dimensional systems.

7.1.2 YouTube Example

To review how to find the fixed points of a nonlinear ode and classify their stability, click HERE, which
considers

ẋ = x2 − 1.

To review how to find the fixed points of a system of nonlinear odes and to determine their stability,
click HERE, which considers

ẋ = x(1− x− 2y), ẏ = y(1− 2x− y).

7.1.3 Additional Practice

1. Find all the fixed points of the following odes and classify their stability.

a) ẋ = 4x2 − 16

b) ẋ = x(1− x2)

c) ẋ = x(1− 2x− y), ẏ = y(1− x− 2y)

Solutions to the Additional Practice

http://youtu.be/3R-1mImE_2Q
http://youtu.be/E-sBhLIjPaM
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7.2 Bifurcation Theory

7.2.1 Theory

A bifurcation occurs in a nonlinear differential equation when a small change in a parameter results
in a qualitative change in the asymptotic solution. For example, bifurcations occur when fixed points
are created or destroyed, or change their stability.

A nonlinear differential equation with a bifurcation parameter r can be written in the form

ẋ = fr(x).

At a bifurcation point, multiple fixed points coalesce, resulting in four classic one-dimensional bifur-
cations.

1. Saddle-node bifurcation. Two fixed points—one stable and the other unstable—are created or
destroyed.

2. Transcritical bifurcation. Two fixed points cross and exchange stability.

3. Supercritical pitchfork bifurcation. A stable fixed point becomes unstable and two symmetric
stable fixed points are created.

4. Subcritical pitchfork bifurcation. A stable fixed point becomes unstable and two symmetric
unstable fixed points are destroyed. There are no local stable fixed points above the bifurcation
point, and the system usually jumps to a far away stable fixed point that may have been created
in two symmetric saddle-node bifurcations below the bifurcation point.

Identify a bifurcation point by setting both fr(x) and f ′r(x) equal to zero. The bifurcation diagrams
representing the four classic one-dimensional bifurcations are shown below.

(1)
x∗

r

x∗

r

(2)

x∗

r

(3)
x∗

r

(4)
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7.2.2 YouTube Examples

To review the normal form of a saddle-node bifurcation, click HERE, which considers

ẋ = r + x2.

To review the normal form of a transcritical bifurcation, click HERE, which considers

ẋ = rx− x2.

To review the normal form of a supercritical pitchfork bifurcation, click HERE, which considers

ẋ = rx− x3.

To review the normal form of a subcritical pitchfork bifurcation, click HERE, which considers

ẋ = rx + x3.

7.2.3 Additional Practice

1. Determine the value of r for which a bifurcation occurs, and identify the type of bifurcation. The
functions cosh x and sinh x are the usual hyperbolic cosine and sine functions and are related to the
exponential functions by cosh x = (ex + e−x)/2 and sinh x = (ex − e−x)/2.

a) ẋ = r− cosh x

b) ẋ = x(r− sinh x)

c) ẋ = rx− sinh x

d) ẋ = rx− sin x

Solutions to the Additional Practice

http://youtu.be/BrLmmV_BKuo
http://youtu.be/yBHUxmq6gK0
http://youtu.be/bptoOf2nJcM
http://youtu.be/sb5SPYzGA34
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8.1 Theory

The Fourier series of a periodic function f (x) with period 2L is given by

f (x) =
a0

2
+

∞

∑
n=1

(
an cos

nπx
L

+ bn sin
nπx

L

)
.

Determine the Fourier coefficients using the orthogonality relations for sine and cosine to obtain

an =
1
L

∫ L

−L
f (x) cos

nπx
L

dx, bn =
1
L

∫ L

−L
f (x) sin

nπx
L

dx.

If f (−x) = f (x), then f (x) is an even function and the Fourier series becomes a Fourier cosine series
with all the bn’s equal to zero and

an =
2
L

∫ L

0
f (x) cos

nπx
L

dx.

If f (−x) = − f (x), then f (x) is an odd function and the Fourier series becomes a Fourier sine series
with all the an’s equal to zero and

bn =
2
L

∫ L

0
f (x) sin

nπx
L

dx.

8.2 YouTube Example

To review how to find a Fourier series, click HERE, which determines the Fourier series for the periodic
extension of

f (x) = x, −π < x ≤ π.

8.3 Additional Practice

1. Find the Fourier series for the periodic extensions of

a) f (x) = x2, −π < x ≤ π

b) f (x) =

−1, −π < x ≤ 0

1, 0 < x ≤ π

c) f (x) =

0, −π < x ≤ 0

1, 0 < x ≤ π

Solutions to the Additional Practice

 http://youtu.be/IZ6Rt5z15UM
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f (t) = L−1{F(s)} F(s) = L{ f (t)}

1. eat f (t) F(s− a)

2. 1
1
s

3. eat 1
s− a

4. tn n!
sn+1

5. tneat n!
(s− a)n+1

6. sin bt
b

s2 + b2

7. cos bt
s

s2 + b2

8. eat sin bt
b

(s− a)2 + b2

9. eat cos bt
s− a

(s− a)2 + b2

10. t sin bt
2bs

(s2 + b2)2

11. t cos bt
s2 − b2

(s2 + b2)2

12. uc(t)
e−cs

s

13. uc(t) f (t− c) e−csF(s)

14. δ(t− c) e−cs

15. ẋ(t) sX(s)− x(0)

16. ẍ(t) s2X(s)− sx(0)− ẋ(0)
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Solutions to the Additional Practice of §1.1.3

1.

a) From
∫ y

0
dy/y1/2 =

∫ x

1
x1/2dx, we obtain y(x) =

1
9

(
x3/2 − 1

)2
.

b) From
∫ y

1
dy/y2 =

∫ x

1
dx/x, we obtain y(x) =

1
1− ln x

.

c) From
∫ y

0
e−2ydy = −

∫ x

0
e−2xdx, we obtain y(x) = −1

2
ln (2− e−2x).

d) From
∫ y

1
dy/y = −

∫ x

π/2
sin xdx, we obtain y(x) = ecos x.

e) From
∫ y

y0

dy
y(1− y)

=
∫ x

0
dx and the partial fraction decomposition

1
y(1− y)

=
1
y
+

1
1− y

, we

obtain y(x) =
y0

y0 + (1− y0)e−x .
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Solutions to the Additional Practice of §1.2.3

1.

a) Since x2y′ + 2xy = (x2y)′, we obtain from direct integration y(x) =
1 + x

x2 .

b) Since x4y′ + 4x3y = (x4y)′, we obtain from direct integration y(x) = − e−x

x4 .

c) Using the integrating factor µ(x) = exp
(∫ x

0
2xdx

)
= ex2

, we obtain

y(x) = e−x2
(

1
2
+
∫ x

0
xex2

dx
)
=

1
2

.

d) Since (1 + x2)y′ + 2xy =
(
(1 + x2)y

)′
, we obtain from direct integration y(x) =

x2

1 + x2 .

e) Using the integrating factor µ(x) = exp
(∫ x

0
λdx

)
= eλx, we obtain

y(x) = e−λx
∫ x

0

(
a + be−λx

)
eλxdx =

a
λ

(
1− e−λx

)
+ bxe−λx.
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Solutions to the Additional Practice of §1.3.3

1.

a) Let M = 2x− 3y and N = 2y− 3x. Then My = Nx = −3 so the equation is exact. From fx = M
we obtain f = x2 − 3xy + h(y), and from fy = N we obtain h′(y) = 2y or h(y) = y2. The general
solution is x2 − 3xy + y2 = c.

b) Let M = x2 + 2xy− y2 and N = x2− 2xy− y2. Then My = Nx = 2x− 2y so the equation is exact.
From fx = M we obtain f = x3/3 + x2y− xy2 + h(y), and from fy = N we obtain h′(y) = −y2

or h(y) = −y3/3. The general solution is x3/3 + x2y− xy2 − y3/3 = c.

c) Since y/x + (ln x)y′ = (y ln x)′, the general solution is y ln x = c.

d) Let M = ax + by and N = bx + cy. Then My = Nx = b so the equation is exact. From fx = M we
obtain ax2/2 + bxy + h(y), and from fy = N we obtain h′(y) = cy or h(y) = cy2/2. The general
solution is x2/2 + bxy + y2/2 = k.

e) Let M(r, θ) = cos θ + 2r sin2 θ and N(r, θ) = r sin θ(2r cos θ− 1). Then Mθ = Nr = 4r sin θ cos θ−
sin θ so the equation is exact. From fr = M we obtain f = r cos θ + r2 sin2 θ + h(θ), and from
fθ = N we obtain h′(θ) = 0. The general solution is r cos θ + r2 sin2 θ = c.
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Solutions to the Additional Practice of §1.4.3

1.

a) Write as xy−3y′ + y−2 = x4 and use the substitution u = y−2 to obtain u′ − 2u/x = −2x3. With
u(1) = 1, we have the integrating factor µ = 1/x2 and

u = x2
(

1−
∫ x

1
2xdx

)
= x2(2− x2).

With y(1) = 1 the solution is y = 1/
√

u, or y(x) =
1

x
√

2− x2
.

b) Write as xy−2y′ + y−1 = 1 and use the substitution u = 1/y to obtain u′ − u/x = −1/x. We
have the integrating factor µ = 1/x and u = x(c−

∫
x−2dx) = 1 + cx. The general solution is

y(x) = 1/(1 + cx).

c) Write as x2y−2y′ − 2xy−1 = 1 and use the substitution u = 1/y to obtain x2u′ + 2xu = −1. Since
x2u′ + 2xu = (x2u)′, we obtain from direct integration u = (c− x)/x2, so that y(x) = x2/(c− x).

d) Write as 3y2y′ + 3y3/x = 3 and use the substitution u = y3 to obtain u′ + 3u/x = 3. With

u(1) = 1 we have the integrating factor µ = x3 and u = x−3
(

1 +
∫ x

1
3x3dx

)
=

1
x3

(
1
4
+

3
4

x4
)

.

With y(1) = 1 the solution is y(x) =
1
x

(
1
4
+

3
4

x4
)1/3

.

e) Write as y−2y′ − y−1 = −1 and use the substitution u = 1/y to obtain u′ + u = 1. With
u(0) = 1/y0, we have the integrating factor µ = ex and

u = e−x
(

1
y0

+
∫ x

0
exdx

)
= 1 +

(
1
y0
− 1
)

e−x.

The solution is y(x) =
y0

y0 + (1− y0)e−x .
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Solutions to the Additional Practice of §1.5.3

1.

a) Write as (1− y/x)y′ = 1 + y/x and let u = y/x to obtain

xu′ =
1 + u2

1− u
,

∫ 1− u
1 + u2 du =

∫ dx
x

,

∫ 1
1 + u2 −

1
2

∫ 2u
1 + u2 du−

∫ dx
x

= 0,

tan−1 u− 1
2

ln (1 + u2)− ln x = c,

tan−1(y/x)− ln
√

x2 + y2 = c.

b) Write as (1 + y/x)y′ = 1− y/x and let u = y/x to obtain

xu′ =
1− 2u− u2

1 + u
,

∫ 1 + u
1− 2u− u2 du =

∫ dx
x

,

−1
2

∫ −2− 2u
1− 2u− u2 du−

∫ dx
x

= 0,

−1
2

ln |1− 2u− u2| − ln |x| = c1,

ln |1− 2u− u2|+ ln x2 = c2,

x2 − 2xy− y2 = c.

c) Write as y′ = y/x +
√

1 + (y/x)2 and let u = y/x to obtain

xu′ =
√

1 + u2,∫ du√
1 + u2

−
∫ dx

x
= 0,

ln |u +
√

1 + u2| − ln |x| = c1,

y +
√

x2 + y2 = cx2.

d) Write as (1 + (y/x)2)y′ = y/x and let u = y/x to obtain

(1 + u2)(xu′ + u) = u,

∫ 1 + u2

u3 du +
∫ dx

x
= 0.

− 1
2u2 + ln |u|+ ln |x| = c1,

− x2

2y2 + ln |y| = c1,
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y = c exp (x2/2y2).

e) Write as (y/x)y′ = 1 + (y/x)2, and let u = y/x to obtain

u(xu′ + u) = 1 + u2,

∫ dx
x

=
∫

udu,

ln |x| = 1
2

u2 + c1,

x = c exp(y2/2x2).

Note that this solution could have been obtained from Question 4 by the substitutions y→ x and
x → y.
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Solutions to the Additional Practice of §1.6.3

1.

a) i) Let y = 2 + 1/u to obtain u′ + 3u = −1. With the integrating factor µ = e3x, the solution is

u = −1/3 + c1e−3x. We find y(x) =
2ce−3x + 1
ce−3x − 1

.

ii) Let y = −1 + 1/u to obtain u′ − 3u = −1. With the integrating factor µ = e−3x, the solution
is u = 1/3 + c2e3x. By redefining constants, the same result can be found as (a).

b) i) Let y = 1 + 1/u to obtain u′ + 3u/x = −1/x. With the integrating factor µ = x3, the

solution is u = c1/x3 − 1/3. We find y(x) =
c + 2x3

c− x3 .

ii) Let y = −2 + 1/u to obtain u′ − 3u/x = −1/x. With the integrating factor µ = 1/x3, the
solution is u = 1/3 + c2x3. By redefining constants, the same result can be found as (a).

c) Let y = 1/x + 1/u to obtain u′ − 4u/x = 2. With the integrating factor µ = 1/x4, the solution is

u = c1x4 − 2x/3. We find y(x) =
cx3 + 1

cx4 − 2x
.
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Solutions to the Additional Practice of §2.1.3

1.

a) i) Try x = ert. We obtain r2 + 3r + 2 = (r + 1)(r + 2) = 0 so that x(t) = c1e−t + c2e−2t. Initial
conditions result in c1 + c2 = 0 and −c1 − 2c2 = 1, yielding c1 = 1 and c2 = −1. The
solution is x(t) = e−t − e−2t = e−t(1− e−t).

ii) Try x = ert. We obtain r2 − 3r + 2 = (r − 1)(r − 2) = 0 so that x(t) = c1et + c2e2t. Initial
conditions result in c1 + c2 = 1 and c1 + 2c2 = 0, yielding c1 = 2 and c2 = −1. The solution
is x(t) = 2et − e2t = −e2t(1− 2e−t).

b) i) Try x = ert. We obtain r2 − 2r + 2 = 0 with roots r± = 1± i so that x(t) = et(A cos t +
B sin t). Initial conditions result in A = 1 and A + B = 0, yielding B = −1. The solution is
x(t) = et(cos t− sin t).

ii) Try x = ert. We obtain r2 + 2r + 2 = 0 with roots r± = −1± i so that x(t) = e−t(A cos t +
B sin t). Initial conditions result in A = 0 and −A + B = 1, yielding B = 1. The solution is
x(t) = e−t sin t.

c) i) Try x = ert. We obtain r2 + 2r + 1 = (r + 1)2 = 0 so that x(t) = e−t(c1 + c2t). Initial
conditions result in c1 = 1 and c2− c1 = 0, yielding c2 = 1. The solution is x(t) = e−t(1+ t).

ii) Try x = ert. We obtain r2− 2r+ 1 = (r− 1)2 = 0 so that x(t) = et(c1 + c2t). Initial conditions
result in c1 = 0 and c1 + c2 = 1, yielding c2 = 1. The solution is x(t) = tet.
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Solutions to the Additional Practice of §2.2.3

1.

a) i) Try x = Ae2t. We obtain 4A + 6A + 2A = 1, or A = 1/12. The particular solution is

xp =
1
12

e2t.

ii) The inhomogeneous term is a solution of the homogeneous equation. Try x = ty, with
y = Ae−2t a solution of the homogeneous equation. We have ẋ = y + tẏ, ẍ = 2ẏ + tÿ. Since
ÿ + 3ẏ + 2y = 0, we have 2ẏ + 3y = e−2t or −4A + 3A = 1, or A = −1. The particular
solution is xp = −te−2t.

b) i) Try x = A sin 2t + B cos 2t so that ẋ = 2A cos 2t− 2B sin 2t and ẍ = −4A sin 2t− 4B cos 2t.
Then ẍ + 3ẋ + 2x = (−4A − 6B + 2A) sin 2t + (−4B + 6A + 2B) cos 2t = sin 2t. Matching
coefficients, we have−2A− 6B = 1 and 6A− 2B = 0, with solution A = −1/20, B = −3/20.

The particular solution is xp = − 1
20

(sin 2t + 3 cos 2t).

ii) Same as (a) except we have −2A − 6B = 0 and 6A − 2B = 1, with solution A = 3/20,

B = −1/20. The particular solution is xp =
1
20

(3 sin 2t− cos 2t).

c) i) Try x = At + B, so that ẋ = A and ẍ = 0. Then ẍ + 3ẋ + 2x = 2At + (3A + 2B) = 2t.
Matching coefficients, we have 2A = 2 and 3A + 2B = 0, or A = 1 and B = −3/2. The
particular solution is xp = t− 3/2.

ii) Try x = At2 + Bt + C, so that ẋ = 2At + B and ẍ = 2A. Then ẍ + 3ẋ + 2x = 2At2 + (6A +

2B)t + (2A + 3B + 2C) = t2 + 2t. Matching coefficients, we have 2A = 1, 6A + 2B = 2,
and 2A + 3B + 2C = 0, or A = 1/2, B = −1/2, and C = 1/4. The particular solution is

xp =
1
2

t2 − 1
2

t +
1
4

.

2.

a) The homogeneous solution is xh = c1e−t + c2e−2t and the particular solution is xp = −te−2t. The
general solution is x = c1e−t + c2e−2t − te−2t. Using ẋ = −c1e−t − 2c2e−2t − e−2t + 2te−2t, initial
conditions result in c1 + c2 = 0 and c1 + 2c2 = −1, or c1 = 1 and c2 = −1. The solution is
x(t) = e−t(1− (1 + t)e−t).
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Solutions to the Additional Practice of §3.3

1.

a) The Laplace transform of the equation results in X(s) =
1

(s + 2)(s2 + 2s + 5)
. Partial fraction

decomposition results in X(s) =
1
5

(
1

s + 2

)
− 1

5

(
s

s2 + 2s + 5

)
. Completing the square results

in s2 + 2s + 5 = (s + 1)2 + 22 and

X(s) =
1
5

(
1

s + 2

)
− 1

5

(
s + 1

(s + 1)2 + 22 −
1
2

(
2

(s + 1)2 + 22

))
. From the Laplace transform table,

we have x(t) =
1
5

e−2t − 1
5

(
e−t cos 2t− 1

2
e−t sin 2t

)
, which we write as x(t) =

1
5

e−t
(

e−t − cos 2t +
1
2

sin 2t
)

.

b) We write the inhomogeneous term as h(t) = (1− t) + u1(t)(t− 1). The Laplace transform of the
equation results in

X(s) =
(

s− 1
s2(s + 1)(s + 2)

)
+ e−s

(
1

s2(s + 1)(s + 2)

)
= F(s) + e−sG(s). The inverse Laplace

transform yields x(t) = f (t) + u1(t)g(t − 1). To determine f (t) and g(t) we need to take in-
verse Laplace transforms. Partial fraction decomposition results in

F(s) =
5
4

(
1
s

)
− 1

2

(
1
s2

)
− 2

(
1

s + 1

)
+

3
4

(
1

s + 2

)
and

G(s) = −3
4

(
1
s

)
+

1
2

(
1
s2

)
+

(
1

s + 1

)
− 1

4

(
1

s + 2

)
. From the Laplace transform table, we have

f (t) =
5
4
− 1

2
t− 2e−t +

3
4

e−2t and

g(t) = −3
4
+

1
2

t + e−t − 1
4

e−2t.

c) The Laplace transform of the equation results in X(s) =
1 + e−s

(s + 1)2 . From the Laplace transform

table, we have x(t) = te−t + u1(t)(t− 1)e−(t−1).
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Solutions to the Additional Practice of §4.3

1.

a) Substituting y = ∑∞
n=0 anxn into the differential equation, we have

y′′ + xy′ + y =
∞

∑
n=2

n(n− 1)anxn−2 +
∞

∑
n=1

nanxn +
∞

∑
n=0

anxn

=
∞

∑
n=0

(n + 2)(n + 1)an+2xn +
∞

∑
n=0

nanxn +
∞

∑
n=0

anxn

=
∞

∑
n=0

(
(n + 2)(n + 1)an+2 + (n + 1)an

)
xn = 0.

We obtain the recursion relation
an+2 = − an

(n + 2)
.

Starting with a0, we find a2 = −a0/2, a4 = a0/8, and a6 = −a0/48. Starting with a1, we find
a3 = −a1/3, a5 = a1/15, and a7 = −a1/105. The general solution to order x7 is given by

y(x) = a0

(
1− x2

2
+

x4

8
− x6

48
+ . . .

)
+ a1

(
x− x3

3
+

x5

15
− x7

105
+ . . .

)
.

b) Substituting y = ∑∞
n=0 anxn into the differential equation, we have

y′′ + xy′ − y =
∞

∑
n=2

n(n− 1)anxn−2 +
∞

∑
n=1

nanxn −
∞

∑
n=0

anxn

=
∞

∑
n=0

(n + 2)(n + 1)an+2xn +
∞

∑
n=0

nanxn −
∞

∑
n=0

anxn

=
∞

∑
n=0

(
(n + 2)(n + 1)an+2 + (n− 1)an

)
xn = 0.

We obtain the recursion relation

an+2 = − (n− 1)
(n + 2)(n + 1)

an.

Starting with a0, we find a2 = a0/2, a4 = −a0/24, and a6 = a0/240. Starting with a1, we find
a3 = 0, a5 = 0, etc. The general solution to order x6 is given by

y(x) = a0

(
1 +

x2

2
− x4

24
+

x6

240
− . . .

)
+ a1x.
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c) Substituting y = ∑∞
n=0 anxn into the differential equation, we have

y′′ + y′ + xy

=
∞

∑
n=2

n(n− 1)anxn−2 +
∞

∑
n=1

nanxn−1 +
∞

∑
n=0

anxn+1

=
∞

∑
n=0

(n + 2)(n + 1)an+2xn +
∞

∑
n=0

(n + 1)an+1xn +
∞

∑
n=1

an−1xn

= 2a2 + a1 +
∞

∑
n=1

(
(n + 2)(n + 1)an+2 + (n + 1)an+1 + an−1

)
xn

= 0.

We obtain a1 + 2a2 = 0, and for n ≥ 1,

(n + 2)(n + 1)an+2 + (n + 1)an+1 + an−1 = 0.

The relevant system of equations for the first five coefficients are given by

a1 + 2a2 = 0, 6a3 + 2a2 + a0 = 0,

12a4 + 3a3 + a1 = 0, 20a5 + 4a4 + a2 = 0.

With a0 and a1 free, the solutions for the remaining coefficients are

a2 = −1
2

a1, a3 = −1
6

a0 +
1
6

a1,

a4 =
1

24
a0 −

1
8

a1, a5 =
1

120
a0 −

1
20

a1.

The solution to order x5 is

y(x) = a0

(
1− 1

6
x3 +

1
24

x4 +
1

120
x5 + . . .

)
+ a1

(
x− 1

2
x2 +

1
6

x3 − 1
8

x4 − 1
20

x5 + . . .
)

.

2.

a) Substituting y = ∑∞
n=0 anxn into the differential equation, we have

(1− x2)y′′ − xy′ + α2y

= (1− x2)
∞

∑
n=2

n(n− 1)anxn−2 −
∞

∑
n=1

nanxn + α2
∞

∑
n=0

anxn

=
∞

∑
n=0

(
(n + 2)(n + 1)an+2 − n(n− 1)an − nan + α2an

)
xn

=
∞

∑
n=0

(
(n + 2)(n + 1)an+2 + (α2 − n2)an

)
xn = 0.

We obtain the recursion relation

an+2 = − (α2 − n2)

(n + 2)(n + 1)
an.
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Starting with a0, we find a2 = −α2

2
a0, a4 =

α2(α2 − 4)
24

a0. Starting with a1, we find a3 = − (α2 − 1)
6

a1,

a5 =
(α2 − 9)(α2 − 1)

120
a1. The first three terms in each of two power series solutions are given by

y(x) = a0

(
1− α2

2
x2 +

α2(α2 − 4)
24

x4 + . . .
)

+ a1

(
x− (α2 − 1)

6
x3 +

(α2 − 9)(α2 − 1)
120

x5 + . . .
)

.

b) y(x) = a0, y(x) = a1x, y(x) = a0(1− 2x2), y(x) = a1(x− 4
3

x3).

c) T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x.
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Solutions to the Additional Practice of §5.3

1.

a) i) Try y = xr. We obtain r(r− 1)− 2r + 2 = 0, or (r− 1)(r− 2) = 0, with roots r = 1, 2. The
general solution is y(x) = c1x + c2x2, with y′(x) = c1 + 2c2x. Boundary conditions result in
c1 = 1 and c1 + c2 = 0, yielding c2 = −1. The solution is y(x) = x− x2.

ii) Try y = xr. We obtain 2r(r − 1)− r + 1 = 0, or (2r − 1)(r − 1) = 0, with roots r = 1/2, 1.
The general solution is y(x) = c1

√
x + c2x. Boundary conditions result in c1 + c2 = 0 and

2c1 + 4c2 = 1, yielding c1 = −1/2 and c2 = 1/2. The solution is y(x) =
1
2
(x−

√
x).

b) i) Try y = xr. We obtain r(r− 1)− r + 1+π2 = 0 with roots r± = 1± iπ. The general solution
is y(x) = x

(
A cos (π ln x) + B sin (π ln x)

)
. Boundary conditions result in A = 1 and B = 1.

The solution is y(x) = x
(
cos (π ln x) + sin (π ln x)

)
.

ii) Try y = xr. We obtain r(r − 1) + 3r + 1 + π2 = 0 with roots r± = −1± iπ. The general

solution is y(x) =
1
x
(

A cos (π ln x) + B sin (π ln x)
)
. Boundary conditions result in A = 1

and B = e. The solution is y(x) =
1
x
(
cos (π ln x) + e sin (π ln x)

)
.

c) i) Try y = xr. We obtain r(r− 1)− r + 1 = 0, or (r− 1)2 = 0, with repeated root r = 1. The
general solution is y(x) = x(c1 + c2 ln x), with y′(x) = c1 + c2(1 + ln x). Boundary condi-
tions result in c1 = 1 and c1 + c2 = 0, yielding c2 = −1. The solution is y(x) = x(1− ln x).

ii) Try y = xr. We obtain 4r(r − 1) + 1 = 0, or (2r − 1)2 = 0, with repeated root r = 1/2.
The general solution is y(x) =

√
x(c1 + c2 ln x). Boundary conditions result in c1 = 1 and

√
e(c1 + c2) = 0, yielding c2 = −1. The solution is y(x) =

√
x(1− ln x).
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Solutions to the Additional Practice of §6.3

1.

a) i) With A =

(
7 −2
2 2

)
, the characteristic equation is λ2 − 9λ + 18 = (λ− 6)(λ− 3) = 0, with

roots λ1 = 6 and λ2 = 3. The corresponding eigenvectors are v1 =

(
2
1

)
and v2 =

(
1
2

)
.

The general solution is x = c1e6t

(
2
1

)
+ c2e3t

(
1
2

)
. The phase portrait is shown below.

−2 −1 0 1 2
−2

−1

0

1

2

x1

x
2

phase portrait

ii) With A =

(
0 −1
−2 −1

)
, the characteristic equation is λ2 + λ− 2 = (λ− 1)(λ + 2) = 0, with

roots λ1 = 1 and λ2 = −2. The corresponding eigenvectors are v1 =

(
1
−1

)
and v2 =

(
1
2

)
.

The general solution is x = c1et

(
1
−1

)
+ c2e−2t

(
1
2

)
. The phase portrait is shown below.
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b) i) With A =

(
1 −2
1 1

)
, the characteristic equation is λ2 − 2λ + 3 = 0, with root λ = 1 + i

√
2

and its complex conjugate. The corresponding eigenvector is v =

(
1

−i
√

2/2

)
. The gen-

eral solution is constructed from the linearly independent solutions x1 = Re
(

veλt
)

and

x2 = Im
(

veλt
)

, and is x = et

(
c1 cos(

√
2t) + c2 sin(

√
2t)√

2
2

(
c1 sin(

√
2t)− c2 cos(

√
2t)
)). To determine the direc-

tion of rotation, compute L = x1 ẋ2 − x2 ẋ1 = x2
1 + 2x2

2 > 0, and find that the rotation is
counterclockwise. The phase portrait is shown below.

−2 −1 0 1 2
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−1

0

1

2

x1

x
2

phase portrait

ii) With A =

(
−1 −1

1 −1

)
, the characteristic equation is λ2 + 2λ + 2 = 0, with root λ =
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−1 + i and its complex conjugate. The corresponding eigenvector is v =

(
1
−i

)
. The gen-

eral solution is constructed from the linearly independent solutions x1 = Re
(

veλt
)

and

x2 = Im
(

veλt
)

, and is x = e−t

(
c1 cos t + c2 sin t
c1 sin t− c2 cos t

)
. To determine the direction of rotation,

compute L = x1 ẋ2− x2 ẋ1 = x2
1 + x2

2 > 0, and find that the rotation is counterclockwise. The
phase portrait is shown below.

−2 −1 0 1 2
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−1

0

1

2

x1

x
2

phase portrait

c) i) With A =

(
1 1
−4 −3

)
, the characteristic equation is λ2 + 2λ + 1 = (λ + 1)2 = 0, with

repeated root λ = −1 . The corresponding eigenvector is v =

(
1
−2

)
. To find a second

solution, try x = (w + tv)eλt, to obtain (A − λI)w = v. Write w =

(
w1

w2

)
and find

w2 = 1− 2w1. Then w =

(
0
1

)
+ w1

(
1
−2

)
, where we may choose w1 = 0. The general

solution is x = e−t

(
c1

(
1
−2

)
+ c2

((
0
1

)
+ t

(
1
−2

)))
. The phase portrait is shown below.
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62 APPENDIX B. PROBLEM SOLUTIONS

Solutions to the Additional Practice of §7.1.3

1.

a) Fixed points are determined from f (x) = 4x2 − 16 = 0, with solutions x∗ = ±2. Linear stability
is determined from f ′(x) = 8x, with f ′(−2) = −16 < 0 and f ′(2) = 16 > 0. Therefore x∗ = −2
is stable and x∗ = 2 is unstable.

b) Fixed points are determined from f (x) = x(1 − x2) = 0, with solutions x∗ = 0,±1. Linear
stability is determined from f ′(x) = 1 − 3x2, with f ′(0) = 1 > 0 and f ′(±1) = −2 < 0.
Therefore x∗ = 0 is unstable and x∗ = ±1 is stable.

c) Fixed points are determined from f (x, y) = x(1− 2x− y) = 0 and g(x, y) = y(1− x− 2y) = 0.
Three obvious fixed points are (x∗, y∗) = (0, 0), (0, 1/2), (1/2, 0). The fourth fixed point satisfies
2x + y = 1 and x + 2y = 1, or (x∗, y∗) = (1/3, 1/3). The stability of these fixed points is
determined from the eigenvalues of the Jacobian matrix J at the fixed points, where

J =

(
1− 4x− y −x
−y 1− x− 4y

)
.

We have

J|(0,0) =

(
1 0
0 1

)
, J|(0,1/2) =

(
1/2 0
−1/2 −1

)
,

J|(1/2,0) =

(
−1 −1/2

0 1/2

)
, J|(1/3,1/3) =

(
−2/3 −1/3
−1/3 −2/3

)
.

The fixed points (0, 0), (0, 1/2), (1/2, 0) have at least one positive eigenvalue and are unsta-
ble. The eigenvalues of the fourth fixed point are the two solutions of the quadratic equation

λ2 +
4
3

λ +
1
3
= 0, both of which are negative. Therefore, the fixed point (1/3, 1/3) is stable.
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Solutions to the Additional Practice of §7.2.3

1.

a) f (x) = r− cosh x. At the bifurcation point, both f (x) = 0 (cosh x = r) and f ′(x) = 0 (sinh x = 0).
The bifurcation occurs when r = 1 and x = 0. Taylor series expanding cosh x to second order
yields f (x) = (r− 1)− x2/2. This is a saddle-node bifurcation with fixed points x = ±

√
2(r− 1),

which only exist when r ≥ 1. Stability of these two branches is computed using f ′(x) = −x, so
that the upper branch is stable and the lower branch is unstable.

b) f (x) = x(r − sinh x). At the bifurcation point, both f (x) = 0 (x = 0 or sinh x = r ) and
f ′(x) = 0 (sinh x + x cosh x = r). The bifurcation occurs when r = 0 and x = 0. Taylor
series expanding sinh x to second order yields f (x) = rx − x2, which is the normal form for a
transcritical bifurcation.

c) f (x) = rx− sinh x. At the bifurcation point, both f (x) = 0 (sinh x = rx) and f ′(x) = 0 (cosh x =

r). The bifurcation occurs when r = 1 and x = 0. Taylor series expanding sinh x to third order
yields f (x) = (r− 1)x− x3/6. This is a supercritical pitchfork bifurcation with fixed points x = 0
and x = ±

√
6(r− 1), the latter which only exist when r ≥ 1.

d) f (x) = rx− sin x. At the bifurcation point, both f (x) = 0 (sin x = rx) and f ′(x) = 0 (cos x = r).
We consider the bifurcation that occurs when r = 1 and x = 0. Taylor series expanding sin x to

third order yields f (x) = (r− 1)x +
1
6

x3. This is a subcritical pitchfork bifurcation. Fixed points

near the bifurcation point r = 1 are given by x = 0 and x = ±
√

6(1− r), the latter which only
exist when r ≤ 1.



64 APPENDIX B. PROBLEM SOLUTIONS

Solutions to the Additional Practice of §8.3

1.

a) f (x) is an even function and L = π. The coefficients of the Fourier cosine series are given by

an =
2
π

∫ π

0
x2 cos nx dx.

For n = 0, we have a0 =
2
π

∫ π

0
x2dx =

2π2

3
. For n > 0, we have

an =
2

nπ

(
−x2 sin nx

∣∣∣π
0
− 2

∫ π

0
x sin nx dx

)
= − 4

n2π

(
−x cos nx|π0 +

∫ π

0
cos nx dx

)
=

4 cos nπ

n2

=
4
n2 ×

−1, if n odd;

1, if n even.

The Fourier cosine series is

f (x) =
π2

3
− 4

(
cos x− cos 2x

22 +
cos 3x

32 − cos 4x
42 + . . .

)
.

b) f (x) is an odd function and L = π. The coefficients of the Fourier sine series are given by

bn =
2
π

∫ π

0
sin nx dx

= − 2
nπ

cos nx|π0

=
2

nπ
(1− cos nπ)

=
4

nπ
×

1, if n odd;

0, if n even.

The Fourier sine series is

f (x) =
4
π

(
sin x +

sin 3x
3

+
sin 5x

5
+ . . .

)
.

c) We have f (x) =
1
2
+

1
2

g(x), where the Fourier sine series for g(x) was given in Problem 2. There-
fore,

f (x) =
1
2
+

2
π

(
sin x +

sin 3x
3

+
sin 5x

5
+ . . .

)
.
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