Math 2350 Applied Linear Algebra and Differential Equations

Syllabus - Fall 2021

Course Home Page

http://www.math.ust.hk/~machas/la_ode/fall2021/
Instructor
Prof. J. R. Chasnov
Rm. 3456; Phone 2358 7448; machas@ust.hk
Office hours: by appointment

Lectures

L1: Tue, Thurs 15:00-16:20 Rm 2465
L2: Mon 16:30-17:50, Fri 12:00-13:20 Rm 2465
Teaching Assistants and Tutorials
T1a: Mon 9:30-10:20 Rm 2302 (FANG Zheyue)
T1b: Mon 16:30-17:20 Rm 1009 LSK (FANG Zheyue)
T2a: Mon 15:00-15:50 Rm 6573 (XIAN Zhuozhi)
T2b: Thur 17:00-17:50 6602 (XIAN Zhuozhi)

Course Description

Credits: 3 units; Topic: Linear algebra and differential equations
Exclusions: MATH 2111, MATH 2121, MATH 2131, MATH 2351, MATH 2352
Prerequisites: AL Pure Mathematics/AL Applied Mathematics; or MATH 1014; or MATH 1018; or MATH 1020; or MATH 1024

Student Learning Resources

Course Lecture Notes can be obtained as a pdf file from the course website.
Supplement: Matrix Algebra for Engineers
Supplement: Differential Equations for Engineers
Textbooks (for reference): Linear Algebra and its Applications by David Lay; Elementary
Differential Equations and Boundary Value Problems by Boyce \& DiPrima.

Intended Learning Outcomes

Upon successful completion of this course, students should

1. Develop an understanding of the core ideas and concepts of linear algebra and ordinary differential equations;
2. Recognize the power of abstraction and generalization, carry out mathematical work with independent judgement;
3. Apply rigorous, analytical and numeric approach to analyze and solve problems using concepts of linear algebra and differential equations;
4. Demonstrate skills in reading, interpreting and communicating mathematical content which are integrated into other disciplines or appear in everyday life;
5. Develop the mathematical maturity to undertake higher level studies in mathematically related fields.
Assessment Scheme Assessing Course ILOs
Worksheets: 10\%
1, 2, 3, 4, 5
Midterm: 40\%
$1,2,3,4,5$
Final: 50\%
$1,2,3,4,5$

Math 2350 - Fall 2021

Week 1:

0.14 Course introduction; complex numbers

Week 2:
1.1-1.8 Matrices, transposes, inverses, rotations, permutations, projections

Week 3:
2.1-2.5 Gaussian elimination, reduced row echelon form, inverses, LU decomposition

Week 4:
3.1-3.4 Vector and inner-product spaces,

Week 5:
3.5-3.7 Four fundamental vector spaces of a matrix, Gram-Schmidt, orthogonal projections Week 6:
3.9-3.10, 4.1-4.3 Least squares, determinants

Week 7:
5.1-5.3 Eigenvalues and eigenvectors, diagonalization

Week 8
6.1, 7.1, 7.2, 7.3 Introduction to odes, Euler method, separable equations, linear equations Week 9
7.4, 8.1- 8.3 Applications, Euler method 2D, superposition, Wronskian

Week 10
8.4-8.6 Homogeneous odes, difference equations, inhomogeneous odes

Week 11
8.8-8.9 Inhomogeneous odes, resonance, applications, damped resonance

Week 12
9, 10.1-10.4 Series solutions, systems of first-order linear odes
Week 13
10.5 Normal modes, Final exam review

