
Scientific Computing

Jeffrey R. Chasnov

HKUST

The Hong Kong University of Science and Technology
Department of Mathematics
Clear Water Bay, Kowloon

Hong Kong

Copyright c○ 2013-2017 by Jeffrey Robert Chasnov

This work is licensed under the Creative Commons Attribution 3.0 Hong Kong License. To view
a copy of this license, visit http://creativecommons.org/licenses/by/3.0/hk/ or send a letter to
Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Preface
What follows are my lecture notes for Math 164: Scientific Computing, taught at

Harvey Mudd College during Spring 2013 while I was on a one semester sabbatical
leave from the Hong Kong University of Science & Technology. These lecture notes
are based on two courses previously taught by me at HKUST: Introduction to Scientific
Computation and Introduction to Numerical Methods.

Math 164 at Harvey-Mudd is primarily for Math majors and supposes no previous
knowledge of numerical analysis or methods. This course consists of both numerical
methods and computational physics. The numerical methods content includes stan-
dard topics such as IEEE arithmetic, root finding, linear algebra, interpolation and
least-squares, integration, differentiation, and differential equations. The physics con-
tent includes nonlinear dynamical systems with the pendulum as a model, and com-
putational fluid dynamics with a focus on the steady two-dimensional flow past either
a rectangle or a circle.

Course work is divided into three parts. In the first part, numerical methods are
learned and MATLAB is used to solve various computational math problems. The
second and third parts requires students to work on project assignments in dynamical
systems and in computational fluid dynamics. In the first project, students are given
the freedom to choose a dynamical system to study numerically and to write a paper
detailing their work. In the second project, students compute the steady flow past
either a rectangle or a circle. Here, students are given the option to focus on either
the efficiency of the numerical methods employed or on the physics of the flow field
solutions. Written papers should be less than eight pages in length and composed using
the LATEX typesetting software.

All web surfers are welcome to download these notes at
http://www.math.ust.hk/~machas/scientific-computing.pdf

and to use these notes freely for teaching and learning. I welcome any comments,
suggestions or corrections sent by email to jeffrey.chasnov@ust.hk.

iii

http://www.math.ust.hk/~machas/scientific-computing.pdf

Contents

I Numerical methods 1

1 IEEE arithmetic 5
1.1 Definitions . 5
1.2 IEEE double precision format . 5
1.3 Machine numbers . 6
1.4 Special numbers . 8
1.5 Roundoff error . 9

2 Root finding 11
2.1 Bisection Method . 11

2.1.1 Estimate
√

2 = 1.41421 . . . using x0 = 1 and x1 = 2. 11
2.2 Newton’s Method . 12

2.2.1 Estimate
√

2 using x0 = 1. 12
2.3 Secant Method . 12

2.3.1 Estimate
√

2 using x0 = 1 and x1 = 2. 13
2.4 A fractal from Newton’s Method . 13
2.5 Order of convergence . 14

2.5.1 Newton’s Method . 14
2.5.2 Secant Method . 15

3 Integration 17
3.1 Elementary formulas . 17

3.1.1 Midpoint rule . 17
3.1.2 Trapezoidal rule . 18
3.1.3 Simpson’s rule . 18

3.2 Composite rules . 19
3.2.1 Trapezoidal rule . 19
3.2.2 Simpson’s rule . 20

3.3 Adaptive integration . 20

4 Differential equations 23
4.1 Initial value problem . 23

4.1.1 Euler method . 23
4.1.2 Modified Euler method . 23
4.1.3 Second-order Runge-Kutta methods 24
4.1.4 Higher-order Runge-Kutta methods 25
4.1.5 Adaptive Runge-Kutta Methods . 26
4.1.6 System of differential equations . 27

v

CONTENTS

4.2 Boundary value problems . 28
4.2.1 Shooting method . 28

5 Linear algebra 31
5.1 Gaussian Elimination . 31
5.2 LU decomposition . 32
5.3 Partial pivoting . 35
5.4 MATLAB programming . 36

6 Finite difference approximation 39
6.1 Finite difference formulas . 39
6.2 Example: the Laplace equation . 40

7 Iterative methods 43
7.1 Jacobi, Gauss-Seidel and SOR methods . 43
7.2 Newton’s method for a system of equations 45

8 Interpolation 47
8.1 Piecewise linear interpolation . 47
8.2 Cubic spline interpolation . 48
8.3 Multidimensional interpolation . 51

9 Least-squares approximation 53

II Dynamical systems and chaos 55

10 The simple pendulum 59
10.1 Governing equations . 59
10.2 Period of motion . 61

10.2.1 Analytical solution . 61
10.2.2 Numerical solution . 63

11 The damped, driven pendulum 65
11.1 The linear pendulum . 65

11.1.1 Damped pendulum . 65
11.1.2 Driven pendulum . 66
11.1.3 Damped, driven pendulum . 66

11.2 The nonlinear pendulum . 68

12 Concepts and tools 71
12.1 Fixed points and linear stability analysis 71
12.2 Bifurcations . 73

12.2.1 Saddle-node bifurcation . 73
12.2.2 Transcritical bifurcation . 74
12.2.3 Pitchfork bifurcations . 75
12.2.4 Hopf bifurcations . 78

12.3 Phase portraits . 78

vi CONTENTS

CONTENTS

12.4 Limit cycles . 79
12.5 Attractors and basins of attraction . 80
12.6 Poincaré sections . 80
12.7 Fractal dimensions . 80

12.7.1 Classical fractals . 80
12.7.2 Correlation Dimension . 86

13 Pendulum dynamics 89
13.1 Phase portrait of the undriven pendulum 89
13.2 Basin of attraction of the undriven pendulum 89
13.3 Spontaneous symmetry-breaking bifurcation 90
13.4 Period-doubling bifurcations . 94
13.5 Period doubling in the logistic map . 97
13.6 Computation of the Feigenbaum constant 101
13.7 Strange attractor of the chaotic pendulum 103

III Computational fluid dynamics 107

14 The governing equations 111
14.1 Multi-variable calculus . 111

14.1.1 Vector algebra . 111
14.2 Continuity equation . 112
14.3 Momentum equation . 113

14.3.1 Material derivative . 113
14.3.2 Pressure forces . 113
14.3.3 Viscous forces . 113
14.3.4 Navier-Stokes equation . 114
14.3.5 Boundary conditions . 114

15 Laminar flow 115
15.1 Plane Couette flow . 115
15.2 Channel flow . 115
15.3 Pipe flow . 116

16 Stream function, vorticity equations 117
16.1 Stream function . 117
16.2 Vorticity . 118
16.3 Two-dimensional Navier-Stokes equation 119

17 Flow past an obstacle 123
17.1 Flow past a rectangle . 123

17.1.1 Finite difference approximation . 123
17.1.2 Boundary conditions . 125

17.2 Flow past a circle . 128
17.2.1 Log-polar coordinates . 128
17.2.2 Finite difference approximation . 130
17.2.3 Boundary conditions . 131

CONTENTS vii

CONTENTS

17.2.4 Solution using Newton’s method 132
17.3 Visualization of the flow fields . 135

viii CONTENTS

Part I

Numerical methods

1

The first part of this course consists of a concise introduction to numerical methods.
We begin by learning how numbers are represented in the computer using the IEEE
standard, and how this can result in round-off errors in numerical computations. We
will then learn some fundamental numerical methods and their associated MATLAB
functions. The numerical methods included are those used for root finding, integration,
solving differential equations, solving systems of equations, finite difference methods,
and interpolation.

3

4

Chapter 1

IEEE arithmetic
1.1 Definitions

The real line is continuous, while computer numbers are discrete. We learn here how
numbers are represented in the computer, and how this can lead to round-off errors.
A number can be represented in the computer as a signed or unsigned integer, or as a
real (floating point) number. We introduce the following definitions:

Bit = 0 or 1
Byte = 8 bits
Word = Reals: 4 bytes (single precision)

8 bytes (double precision)
= Integers: 1, 2, 4, or 8 byte signed

1, 2, 4, or 8 byte unsigned

Typically, scientific computing in MATLAB is in double precision using 8-byte real
numbers. Single precision may be used infrequently in large problems to conserve
memory. Integers may also be used infrequently in special situations. Since double
precision is the default—and what will be used in this class—we will focus here on its
representation.

1.2 IEEE double precision format

Double precision makes use of 8 byte words (64 bits), and usually results in sufficiently
accurate computations. The format for a double precision number is

s︷︸︸︷
�
0

e︷ ︸︸ ︷
�
1
�
2
�
3
�
4
�
5
�
6
�
7
�
8
�
9
�
10
�
11

f︷ ︸︸ ︷
�
12
· · · · · · · ·�

63

= (−1)s × 2e−1023 × 1.f,

where s is the sign bit, e is the biased exponent, and 1.f (using a binary point) is
the significand. We see that the 64 bits are distributed so that the sign uses 1-bit,
the exponent uses 11-bits, and the significand uses 52-bits. The distribution of bits
between the exponent and the significand is to reconcile two conflicting desires: that
the numbers should range from very large to very small values, and that the relative
spacing between numbers should be small.

5

1.3. MACHINE NUMBERS

1.3 Machine numbers

We show for illustration how the numbers 1, 2, and 1/2 are represented in double
precision. For the number 1, we write

1.0 = (−1)0 × 2(1023−1023) × 1.0 . (1.1)

From (1.1), we find s = 0, e = 1023, and f = 0. Now

1023 = 011 1111 1111(base 2),

so that the machine representation of the number 1 is given by

0011 1111 1111 0000 . . . 0000 . (1.2)

One can view the machine representation of numbers in MATLAB using the format hex
command. MATLAB then displays the hex number corresponding to the binary ma-
chine number. Hex maps four bit binary numbers to a single character, where the
binary numbers corresponding to the decimal 0–9 are mapped to the same decimal
numbers, and the binary numbers corresponding to 10–15 are mapped to a–f. The hex
representation of the number 1 given by (1.2) is therefore given by

3ff0 0000 0000 0000.

For the number 2, we have

2.0 = (−1)0 × 2(1024−1023) × 1.0,

with binary representation

0100 0000 0000 0000 . . . 0000,

and hex representation
4000 0000 0000 0000.

For the number 1/2, we have

2.0 = (−1)0 × 2(1022−1023) × 1.0,

with binary representation

0011 1111 1110 0000 . . . 0000,

and hex representation
4fe0 0000 0000 0000.

The numbers 1, 2 and 1/2 can be represented exactly in double precision. But very
large integers, and most real numbers can not. For example, the number 1/3 is inexact,
and so is 1/5, which we consider here. We write

1
5
= (−1)0 × 1

8
× (1 +

3
5
),

= (−1)0 × 21020−1023 × (1 +
3
5
),

6 CHAPTER 1. IEEE ARITHMETIC

1.3. MACHINE NUMBERS

so that s = 0, e = 1020 = 011 1111 1100 (base 2), and f = 3/5. The reason 1/5 is inexact
is that 3/5 does not have a finite representation in binary. To convert 3/5 to binary, we
multiply successively by 2 as follows:

0.6 . . . 0.
1.2 . . . 0.1
0.4 . . . 0.10
0.8 . . . 0.100
1.6 . . . 0.1001

etc.

so that 3/5 exactly in binary is 0.1001, where the bar denotes an endless repetition.
With only 52 bits to represent f, the fraction 3/5 is inexact and we have

f = 1001 1001 . . . 1001 1010,

where we have rounded the repetitive end of the number 1001 to the nearest binary
number 1010. Here the rounding is up because the 53-bit is a 1 followed by not all
zeros. But rounding can also be down if the 53 bit is a 0. Exactly on the boundary
(the 53-bit is a 1 followed by all zeros), rounding is to the nearest even number. In this
special situation that occurs only rarely, if the 52-bit is a 0, then rounding is down, and
if the 52 bit is a 1, then rounding is up.

The machine number 1/5 is therefore represented as

0011 1111 1100 1001 1001 . . . 1001 1010,

or in hex,
3fc999999999999a .

The small error in representing a number such as 1/5 in double precision usually makes
little difference in a computation. One is usually satisfied to obtain results accurate to
a few significant digits. Nevertheless, computational scientists need to be aware that
most numbers are not represented exactly.

For example, consider subtracting what should be two identical real numbers that
are not identical in the computer. In MATLAB, if one enters on the command line

5*1/5− 5*(1/5)

the resulting answer is 0, as one would expect. But if one enters

5^2*1/5^2 − 5^2*(1/5)^2

the resulting answer is −2.2204e−16, a number slightly different than zero. The rea-
son for this error is that although the number 52 ∗ 1/52 = 25/25 = 1 can be represented
exactly, the number 52 ∗ (1/5)2 is inexact and slightly greater than one. Testing for ex-
actly zero in a calculation that depends on the cancelation of real numbers, then, may
not work. More problematic, though, are calculations that subtract two large numbers
with the hope of obtaining a sensible small number. A total loss of precision of the
small number may occur.

CHAPTER 1. IEEE ARITHMETIC 7

1.4. SPECIAL NUMBERS

1.4 Special numbers

Both the largest and smallest exponent are reserved in IEEE arithmetic. When f = 0,
the largest exponent, e = 111 1111 1111, is used to represent ±∞ (written in MATLAB
as Inf and −Inf). When f 6= 0, the largest exponent is used to represent ‘not a
number’ (written in MATLAB as NaN). IEEE arithmetic also implements what is called
denormal numbers, also called graceful underflow. It reserves the smallest exponent,
e = 000 0000 0000, to represent numbers for which the representation changes from 1.f
to 0.f.

With the largest exponent reserved, the largest positive double precision number
has s = 0, e = 111 1111 1110 = 2046, and f = 1111 1111 . . . 1111 = 1− 2−52. Called
realmax in MATLAB, we have

realmax = 1.7977e+308 .

With the smallest exponent reserved, the smallest positive double precision number
has s = 0, e = 000 0000 0001 = 1, and f = 0000 0000 . . . 0000 = 0. Called realmin in
MATLAB, we have

realmin = 2.2251e−308 .

Above realmax, one obtains Inf, and below realmin, one obtains first denormal
numbers and then 0.

Another important number is called machine epsilon (called eps in MATLAB). Ma-
chine epsilon is defined as the distance between 1 and the next largest number. If
0 ≤ δ < eps/2, then 1 + δ = 1 in computer math. Also since

x + y = x(1 + y/x),

if 0 ≤ y/x < eps/2, then x + y = x in computer math.
Now, the number 1 in double precision IEEE format is written as

1 = 20 × 1.000 . . . 0,

with 52 0’s following the binary point. The number just larger than 1 has a 1 in the
52nd position after the decimal point. Therefore,

eps = 2−52 ≈ 2.2204e− 016.

What is the distance between 1 and the number just smaller than 1? Here, the
number just smaller than one can be written as

2−1 × 1.111 . . . 1 = 2−1(1 + (1− 2−52)) = 1− 2−53

Therefore, this distance is 2−53 = eps/2.
Here, we observe that the spacing between numbers is uniform between powers of

2, but changes by a factor of two with each additional power of two. For example, the
spacing of numbers between 1 and 2 is 2−52, between 2 and 4 is 2−51, between 4 and
8 is 2−50, etc. An exception occurs for denormal numbers, where the spacing becomes
uniform all the way down to zero. Denormal numbers implement a graceful underflow,
and are not to be used for normal computation.

8 CHAPTER 1. IEEE ARITHMETIC

1.5. ROUNDOFF ERROR

1.5 Roundoff error

Consider solving the quadratic equation

x2 + 2bx− 1 = 0,

where b is a parameter. The quadratic formula yields the two solutions

x± = −b±
√

b2 + 1.

Now, consider the solution with b > 0 and x > 0 (the x+ solution) given by

x = −b +
√

b2 + 1. (1.3)

As b→ ∞,

x = −b +
√

b2 + 1

= −b + b
√

1 + 1/b2

= b(
√

1 + 1/b2 − 1)

≈ b
(

1 +
1

2b2 − 1
)

=
1
2b

.

Now in double precision, realmin ≈ 2.2× 10−308 and in professional software one
would like x to be accurate to this value before it goes to 0 via denormal numbers.
Therefore, x should be computed accurately to b ≈ 1/(2×realmin) ≈ 2× 10307. What
happens if we compute (1.3) directly? Then x = 0 when b2 + 1 = b2, or 1 + 1/b2 = 1.
Therefore, x = 0 when 1/b2 < eps/2, or b >

√
2/eps ≈ 108.

The way that a professional mathematical software designer solves this problem is
to compute the solution for x when b > 0 as

x =
1

b +
√

b2 + 1
.

In this form, when b2 + 1 = b2, then x = 1/2b, which is the correct asymptotic form.

CHAPTER 1. IEEE ARITHMETIC 9

1.5. ROUNDOFF ERROR

10 CHAPTER 1. IEEE ARITHMETIC

Chapter 2

Root finding
The problem is to solve f (x) = 0 for x when an explicit analytical solution is impos-

sible. All methods compute a sequence x0, x1, x2, . . . that converges to the root x = r
satisfying f (r) = 0.

2.1 Bisection Method

The bisection method is conceptually the simplest method and almost always works.
However, it is also the slowest method, and most of the time should be avoided.

We first choose x0 and x1 such that x0 < r < x1. We say that x0 and x1 bracket
the root. With f (r) = 0, we want f (x0) and f (x1) to be of opposite sign, so that
f (x0) f (x1) < 0. We then assign x2 to be the midpoint of x0 and x1, that is x2 =
(x1 + x0)/2, or

x2 = x1 −
x1 − x0

2
.

The sign of f (x2) is then determined, and the value of x3 is chosen as either the mid-
point of x2 and x0 or as the midpoint of x2 and x1, depending on whether x2 and x0
bracket the root, or x2 and x1 bracket the root. The root, therefore, stays bracketed at
all times. The algorithm proceeds in this fashion and is typically stopped when the
absolute value of the increment to the last best approximation to the root (above, given
by |x1 − x0|/2) is smaller than some required precision.

2.1.1 Estimate
√

2 = 1.41421 . . . using x0 = 1 and x1 = 2.

Now
√

2 is the zero of the function f (x) = x2 − 2. We iterate with x0 = 1 and x1 = 2.
We have

x2 = 2− 2− 1
2

=
3
2
= 1.5.

Now, f (x2) = 9/4− 2 = 1/4 > 0 so that x2 and x0 bracket the root. Therefore,

x3 =
3
2
−

3
2 − 1

2
=

5
4
= 1.25.

Now, f (x3) = 25/16− 2 = −7/16 < 0 so that x3 and x2 bracket the root. Therefore,

x4 =
5
4
−

5
4 −

3
2

2
=

11
8

= 1.375,

and so on.

11

2.2. NEWTON’S METHOD

2.2 Newton’s Method

This is the fastest method, but requires analytical computation of the derivative of f (x).
If the derivative is known, then this method should be used, although convergence to
the desired root is not guaranteed.

We can derive Newton’s Method from a Taylor series expansion. We again want to
construct a sequence x0, x1, x2, . . . that converges to the root x = r. Consider the xn+1
member of this sequence, and Taylor series expand f (xn+1) about the point xn. We
have

f (xn+1) = f (xn) + (xn+1 − xn) f ′(xn) +

To determine xn+1, we drop the higher-order terms in the Taylor series, and assume
f (xn+1) = 0. Solving for xn+1, we have

xn+1 = xn −
f (xn)

f ′(xn)
.

Starting Newton’s Method requires a guess for x0, to be chosen as close as possible to
the root x = r.

2.2.1 Estimate
√

2 using x0 = 1.

Again, we solve f (x) = 0, where f (x) = x2 − 2. To implement Newton’s Method, we
use f ′(x) = 2x. Therefore, Newton’s Method is the iteration

xn+1 = xn −
x2

n − 2
2xn

.

With our initial guess x0 = 1, we have

x1 = 1− −1
2
=

3
2
= 1.5,

x2 =
3
2
−

9
4 − 2

3
=

17
12

= 1.416667,

x3 =
17
12
−

172

122 − 2
17
6

=
577
408

= 1.41426.

2.3 Secant Method

The Secant Method is second fastest to Newton’s Method, and is most often used when
it is not possible to take an analytical derivative of the function f (x). We write in place
of f ′(xn),

f ′(xn) ≈
f (xn)− f (xn−1)

xn − xn−1
.

Starting the Secant Method requires a guess for both x0 and x1. These values need not
bracket the root, but convergence is not guaranteed.

12 CHAPTER 2. ROOT FINDING

2.4. A FRACTAL FROM NEWTON’S METHOD

2.3.1 Estimate
√

2 using x0 = 1 and x1 = 2.

Again, we solve f (x) = 0, where f (x) = x2 − 2. The Secant Method iterates

xn+1 = xn −
(x2

n − 2)(xn − xn−1)

x2
n − x2

n−1

= xn −
x2

n − 2
xn + xn−1

.

With x0 = 1 and x1 = 2, we have

x2 = 2− 4− 2
3

=
4
3
= 1.33333,

x3 =
4
3
−

16
9 − 2
4
3 + 2

=
21
15

= 1.4,

x4 =
21
15
−

(
21
15

)2
− 2

21
15 + 4

3
=

174
123

= 1.41463.

2.4 A fractal from Newton’s Method

Consider the complex roots of the equation f (z) = 0, where

f (z) = z3 − 1.

These roots are the three cubic roots of unity. With

ei2πn = 1, n = 0, 1, 2, . . .

the three unique cubic roots of unity are given by

1, ei2π/3, ei4π/3.

With
eiθ = cos θ + i sin θ,

and cos (2π/3) = −1/2, sin (2π/3) =
√

3/2, the three cubic roots of unity are

r1 = 1, r2 = −1
2
+

√
3

2
i, r3 = −1

2
−
√

3
2

i.

The interesting idea here is to determine in the complex plane which initial values of
z0 converge using Newton’s method to which of the three cube roots of unity.

Newton’s method generalized to the complex plane is

zn+1 = zn −
z3

n − 1
3z2

n
.

If the iteration converges to r1, we color z0 red; r2, blue; r3, green. The result will be
shown in lecture.

CHAPTER 2. ROOT FINDING 13

2.5. ORDER OF CONVERGENCE

2.5 Order of convergence

Let r be the root and xn be the nth approximation to the root. Define the error as

εn = r− xn.

If for large n we have the approximate relationship

|εn+1| = k|εn|p,

with k a positive constant and p ≥ 1, then we say the root-finding numerical method is
of order p. Larger values of p correspond to faster convergence to the root. The order
of convergence of bisection is one: the error is reduced by approximately a factor of 2
with each iteration so that

|εn+1| =
1
2
|εn|.

We now find the order of convergence for Newton’s Method and for the Secant Method.

2.5.1 Newton’s Method

We start with Newton’s Method

xn+1 = xn −
f (xn)

f ′(xn)
,

where the root r satisfies f (r) = 0. Subtracting both sides from r, we have

r− xn+1 = r− xn +
f (xn)

f ′(xn)
,

or

εn+1 = εn +
f (xn)

f ′(xn)
. (2.1)

We use Taylor series to expand the functions f (xn) and f ′(xn) about the root r, using
f (r) = 0. We have

f (xn) = f (r) + (xn − r) f ′(r) +
1
2
(xn − r)2 f ′′(r) + . . . ,

= −εn f ′(r) +
1
2

ε2
n f ′′(r) + . . . ;

f ′(xn) = f ′(r) + (xn − r) f ′′(r) +
1
2
(xn − r)2 f ′′′(r) + . . . ,

= f ′(r)− εn f ′′(r) +
1
2

ε2
n f ′′′(r) +

(2.2)

To make further progress, we will make use of the following standard Taylor series:

1
1− ε

= 1 + ε + ε2 + . . . , (2.3)

14 CHAPTER 2. ROOT FINDING

2.5. ORDER OF CONVERGENCE

which converges for |ε| < 1. Substituting (2.2) into (2.1), and using (2.3) yields

εn+1 = εn +
f (xn)

f ′(xn)

= εn +
−εn f ′(r) + 1

2 ε2
n f ′′(r) + . . .

f ′(r)− εn f ′′(r) + 1
2 ε2

n f ′′′(r) + . . .

= εn +
−εn +

1
2 ε2

n
f ′′(r)
f ′(r) + . . .

1− εn
f ′′(r)
f ′(r) + . . .

= εn +

(
−εn +

1
2

ε2
n

f ′′(r)
f ′(r)

+ . . .
)(

1 + εn
f ′′(r)
f ′(r)

+ . . .
)

= εn +

(
−εn + ε2

n

(
1
2

f ′′(r)
f ′(r)

− f ′′(r)
f ′(r)

)
+ . . .

)
= −1

2
f ′′(r)
f ′(r)

ε2
n + . . .

Therefore, we have shown that
|εn+1| = k|εn|2

as n→ ∞, with

k =
1
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ ,

provided f ′(r) 6= 0. Newton’s method is thus of order 2 at simple roots.

2.5.2 Secant Method
Determining the order of the Secant Method proceeds in a similar fashion. We start
with

xn+1 = xn −
(xn − xn−1) f (xn)

f (xn)− f (xn−1)
.

We subtract both sides from r and make use of

xn − xn−1 = (r− xn−1)− (r− xn)

= εn−1 − εn,

and the Taylor series

f (xn) = −εn f ′(r) +
1
2

ε2
n f ′′(r) + . . . ,

f (xn−1) = −εn−1 f ′(r) +
1
2

ε2
n−1 f ′′(r) + . . . ,

so that

f (xn)− f (xn−1) = (εn−1 − εn) f ′(r) +
1
2
(ε2

n − ε2
n−1) f ′′(r) + . . .

= (εn−1 − εn)

(
f ′(r)− 1

2
(εn−1 + εn) f ′′(r) + . . .

)
.

CHAPTER 2. ROOT FINDING 15

2.5. ORDER OF CONVERGENCE

We therefore have

εn+1 = εn +
−εn f ′(r) + 1

2 ε2
n f ′′(r) + . . .

f ′(r)− 1
2 (εn−1 + εn) f ′′(r) + . . .

= εn − εn
1− 1

2 εn
f ′′(r)
f ′(r) + . . .

1− 1
2 (εn−1 + εn)

f ′′(r)
f ′(r) + . . .

= εn − εn

(
1− 1

2
εn

f ′′(r)
f ′(r)

+ . . .
)(

1 +
1
2
(εn−1 + εn)

f ′′(r)
f ′(r)

+ . . .
)

= −1
2

f ′′(r)
f ′(r)

εn−1εn + . . . ,

or to leading order

|εn+1| =
1
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ |εn−1||εn|. (2.4)

The order of convergence is not yet obvious from this equation, but should be less than
quadratic because |εn−1| > |εn|. To determine the scaling law we look for a solution of
the form

|εn+1| = k|εn|p.

From this ansatz, we also have
|εn| = k|εn−1|p,

and therefore
|εn+1| = kp+1|εn−1|p

2
.

Substitution into (2.4) results in

kp+1|εn−1|p
2
=

k
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ |εn−1|p+1.

Equating the coefficient and the power of εn−1 results in

kp =
1
2

∣∣∣∣ f ′′(r)
f ′(r)

∣∣∣∣ ,

and
p2 = p + 1.

The order of convergence of the Secant Method, given by p, is therefore the positive
root of the quadratic equation p2 − p− 1 = 0, or

p =
1 +
√

5
2

≈ 1.618,

which coincidentally is a famous irrational number that is called The Golden Ratio,
and goes by the symbol Φ. We see that the Secant Method has an order of convergence
lying between the Bisection Method and Newton’s Method.

16 CHAPTER 2. ROOT FINDING

Chapter 3

Integration
We want to construct numerical algorithms that can perform definite integrals of

the form

I =
∫ b

a
f (x)dx. (3.1)

Calculating these definite integrals numerically is called numerical integration, numerical
quadrature, or more simply quadrature.

3.1 Elementary formulas

We first consider integration from 0 to h, with h small, to serve as the building blocks
for integration over larger domains. We here define Ih as the following integral:

Ih =
∫ h

0
f (x)dx. (3.2)

To perform this integral, we consider a Taylor series expansion of f (x) about the value
x = h/2:

f (x) = f (h/2) + (x− h/2) f ′(h/2) +
(x− h/2)2

2
f ′′(h/2)

+
(x− h/2)3

6
f ′′′(h/2) +

(x− h/2)4

24
f ′′′′(h/2) + . . .

3.1.1 Midpoint rule
The midpoint rule makes use of only the first term in the Taylor series expansion. Here,
we will determine the error in this approximation. Integrating,

Ih = h f (h/2) +
∫ h

0

(
(x− h/2) f ′(h/2) +

(x− h/2)2

2
f ′′(h/2)

+
(x− h/2)3

6
f ′′′(h/2) +

(x− h/2)4

24
f ′′′′(h/2) + . . .

)
dx.

Changing variables by letting y = x − h/2 and dy = dx, and simplifying the integral
depending on whether the integrand is even or odd, we have

Ih = h f (h/2)

+
∫ h/2

−h/2

(
y f ′(h/2) +

y2

2
f ′′(h/2) +

y3

6
f ′′′(h/2) +

y4

24
f ′′′′(h/2) + . . .

)
dy

= h f (h/2) +
∫ h/2

0

(
y2 f ′′(h/2) +

y4

12
f ′′′′(h/2) + . . .

)
dy.

17

3.1. ELEMENTARY FORMULAS

The integrals that we need here are∫ h
2

0
y2dy =

h3

24
,

∫ h
2

0
y4dy =

h5

160
.

Therefore,

Ih = h f (h/2) +
h3

24
f ′′(h/2) +

h5

1920
f ′′′′(h/2) + (3.3)

3.1.2 Trapezoidal rule

From the Taylor series expansion of f (x) about x = h/2, we have

f (0) = f (h/2)− h
2

f ′(h/2) +
h2

8
f ′′(h/2)− h3

48
f ′′′(h/2) +

h4

384
f ′′′′(h/2) + . . . ,

and

f (h) = f (h/2) +
h
2

f ′(h/2) +
h2

8
f ′′(h/2) +

h3

48
f ′′′(h/2) +

h4

384
f ′′′′(h/2) +

Adding and multiplying by h/2 we obtain

h
2
(

f (0) + f (h)
)
= h f (h/2) +

h3

8
f ′′(h/2) +

h5

384
f ′′′′(h/2) +

We now substitute for the first term on the right-hand-side using the midpoint rule
formula:

h
2
(

f (0) + f (h)
)
=

(
Ih −

h3

24
f ′′(h/2)− h5

1920
f ′′′′(h/2)

)
+

h3

8
f ′′(h/2) +

h5

384
f ′′′′(h/2) + . . . ,

and solving for Ih, we find

Ih =
h
2
(

f (0) + f (h)
)
− h3

12
f ′′(h/2)− h5

480
f ′′′′(h/2) + (3.4)

3.1.3 Simpson’s rule
To obtain Simpson’s rule, we combine the midpoint and trapezoidal rule to eliminate
the error term proportional to h3. Multiplying (3.3) by two and adding to (3.4), we
obtain

3Ih = h
(

2 f (h/2) +
1
2
(f (0) + f (h))

)
+ h5

(
2

1920
− 1

480

)
f ′′′′(h/2) + . . . ,

or

Ih =
h
6
(

f (0) + 4 f (h/2) + f (h)
)
− h5

2880
f ′′′′(h/2) +

Usually, Simpson’s rule is written by considering the three consecutive points 0, h and
2h. Substituting h→ 2h, we obtain the standard result

I2h =
h
3
(

f (0) + 4 f (h) + f (2h)
)
− h5

90
f ′′′′(h) + (3.5)

18 CHAPTER 3. INTEGRATION

3.2. COMPOSITE RULES

3.2 Composite rules

We now use our elementary formulas obtained for (3.2) to perform the integral given
by (3.1).

3.2.1 Trapezoidal rule

We suppose that the function f (x) is known at the n + 1 points labeled as x0, x1, . . . , xn,
with the endpoints given by x0 = a and xn = b. Define

fi = f (xi), hi = xi+1 − xi.

Then the integral of (3.1) may be decomposed as

∫ b

a
f (x)dx =

n−1

∑
i=0

∫ xi+1

xi

f (x)dx

=
n−1

∑
i=0

∫ hi

0
f (xi + s)ds,

where the last equality arises from the change-of-variables s = x − xi. Applying the
trapezoidal rule to the integral, we have

∫ b

a
f (x)dx =

1
2

n−1

∑
i=0

hi (fi + fi+1) . (3.6)

If the points are not evenly spaced, say because the data are experimental values, then
the hi may differ for each value of i and (3.6) is to be used directly.

However, if the points are evenly spaced, say because f (x) can be computed, we
have hi = h, independent of i. We can then define

xi = a + ih, i = 0, 1, . . . , n;

and since the end point b satisfies b = a + nh, we have

h =
b− a

n
.

The composite trapezoidal rule for evenly space points then becomes

∫ b

a
f (x)dx =

h
2

n−1

∑
i=0

(fi + fi+1)

=
h
2
(f0 + 2 f1 + · · ·+ 2 fn−1 + fn) . (3.7)

The first and last terms have a multiple of one; all other terms have a multiple of two;
and the entire sum is multiplied by h/2.

CHAPTER 3. INTEGRATION 19

3.3. ADAPTIVE INTEGRATION

a d c e b

Figure 3.1: Adaptive Simpson quadrature: Level 1.

3.2.2 Simpson’s rule

We here consider the composite Simpson’s rule for evenly space points. We apply
Simpson’s rule over intervals of 2h, starting from a and ending at b:

∫ b

a
f (x)dx =

h
3
(f0 + 4 f1 + f2) +

h
3
(f2 + 4 f3 + f4) + . . .

+
h
3
(fn−2 + 4 fn−1 + fn) .

Note that n must be even for this scheme to work. Combining terms, we have

∫ b

a
f (x)dx =

h
3
(f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 + · · ·+ 4 fn−1 + fn) .

The first and last terms have a multiple of one; the even indexed terms have a multiple
of 2; the odd indexed terms have a multiple of 4; and the entire sum is multiplied by
h/3.

3.3 Adaptive integration

The useful MATLAB function quad.m performs numerical integration using adaptive
Simpson quadrature. The idea is to let the computation itself decide on the grid size
required to achieve a certain level of accuracy. Moreover, the grid size need not be the
same over the entire region of integration.

We begin the adaptive integration at what is called Level 1. The uniformly spaced
points at which the function f (x) is to be evaluated are shown in Fig. 3.1. The distance
between the points a and b is taken to be 2h, so that

h =
b− a

2
.

Integration using Simpson’s rule (3.5) with grid size h yields for the integral I,

I =
h
3
(

f (a) + 4 f (c) + f (b)
)
− h5

90
f ′′′′(ξ),

where ξ is some value satisfying a ≤ ξ ≤ b.

20 CHAPTER 3. INTEGRATION

3.3. ADAPTIVE INTEGRATION

Integration using Simpson’s rule twice with grid size h/2 yields

I =
h
6
(

f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)
)
− (h/2)5

90
f ′′′′(ξl)−

(h/2)5

90
f ′′′′(ξr),

with ξl and ξr some values satisfying a ≤ ξl ≤ c and c ≤ ξr ≤ b.
We now define the two approximations to the integral by

S1 =
h
3
(

f (a) + 4 f (c) + f (b)
)
,

S2 =
h
6
(

f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)
)
,

and the two associated errors by

E1 = − h5

90
f ′′′′(ξ),

E2 = − h5

25 · 90
(

f ′′′′(ξl) + f ′′′′(ξr)
)
.

We now ask whether the value of S2 for the integral is accurate enough, or must we
further refine the calculation and go to Level 2? To answer this question, we make the
simplifying approximation that all of the fourth-order derivatives of f (x) in the error
terms are equal; that is,

f ′′′′(ξ) = f ′′′′(ξl) = f ′′′′(ξr) = C.

Then

E1 = − h5

90
C,

E2 = − h5

24 · 90
C =

1
16

E1.

Now since the integral is equal to the approximation plus its associated error,

S1 + E1 = S2 + E2,

and since
E1 = 16E2,

we can derive an estimate for the error term E2:

E2 =
1

15
(S2 − S1).

Therefore, given some specific value of the tolerance tol, if∣∣∣∣ 1
15

(S2 − S1)

∣∣∣∣ < tol,

then we can accept S2 as I. If the error estimate is larger in magnitude than tol, then
we proceed to Level 2.

CHAPTER 3. INTEGRATION 21

3.3. ADAPTIVE INTEGRATION

The computation at Level 2 further divides the integration interval from a to b into
the two integration intervals a to c and c to b, and proceeds with the above procedure
independently on both halves. Integration can be stopped on either half provided
the tolerance is less than tol/2 (since the sum of both errors must be less than tol).
Otherwise, either half can proceed to Level 3, and so on.

As a side note, the two values of I given above (for integration with step size h and
h/2) can be combined to give a more accurate value for I given by

I =
16S2 − S1

15
+ O(h7),

where the error terms of O(h5) approximately cancel. This free lunch, so to speak, is
called Richardson’s extrapolation.

22 CHAPTER 3. INTEGRATION

Chapter 4

Differential equations
We now discuss the numerical solution of ordinary differential equations. We will

include the initial value problem and the boundary value problem.

4.1 Initial value problem

We begin with the simple Euler method, then discuss the more sophisticated Runge-
Kutta methods, and conclude with the Runge-Kutta-Fehlberg method, as implemented
in the MATLAB function ode45.m. Our differential equations are for x = x(t), where
the time t is the independent variable.

4.1.1 Euler method
The Euler method is the most straightforward method to integrate a differential equa-
tion. Consider the first-order differential equation

ẋ = f (t, x), (4.1)

with the initial condition x(0) = x0. Define tn = n∆t and xn = x(tn). A Taylor series
expansion of xn+1 results in

xn+1 = x(tn + ∆t)

= x(tn) + ∆tẋ(tn) + O(∆t2)

= x(tn) + ∆t f (tn, xn) + O(∆t2).

The Euler Method is therefore written as

xn+1 = x(tn) + ∆t f (tn, xn).

We say that the Euler method steps forward in time using a time-step ∆t, starting from
the initial value x0 = x(0). The local error of the Euler Method is O(∆t2). The global
error, however, incurred when integrating to a time T, is a factor of 1/∆t larger and is
given by O(∆t). It is therefore customary to call the Euler Method a first-order method.

4.1.2 Modified Euler method
This method is a so-called predictor-corrector method. It is also the first of what we
will see are Runge-Kutta methods. As before, we want to solve (4.1). The idea is to
average the value of ẋ at the beginning and end of the time step. That is, we would like
to modify the Euler method and write

xn+1 = xn +
1
2

∆t
(

f (tn, xn) + f (tn + ∆t, xn+1)
)
.

23

4.1. INITIAL VALUE PROBLEM

The obvious problem with this formula is that the unknown value xn+1 appears on the
right-hand-side. We can, however, estimate this value, in what is called the predictor
step. For the predictor step, we use the Euler method to find

xp
n+1 = xn + ∆t f (tn, xn).

The corrector step then becomes

xn+1 = xn +
1
2

∆t
(

f (tn, xn) + f (tn + ∆t, xp
n+1)

)
.

The Modified Euler Method can be rewritten in the following form that we will later
identify as a Runge-Kutta method:

k1 = ∆t f (tn, xn),
k2 = ∆t f (tn + ∆t, xn + k1),

xn+1 = xn +
1
2
(k1 + k2).

(4.2)

4.1.3 Second-order Runge-Kutta methods
We now derive the complete family of second-order Runge-Kutta methods. Higher-
order methods can be similarly derived, but require substantially more algebra.

We again consider the differential equation given by (4.1). A general second-order
Runge-Kutta method may be written in the form

k1 = ∆t f (tn, xn),
k2 = ∆t f (tn + α∆t, xn + βk1),
xn+1 = xn + ak1 + bk2,

(4.3)

with α, β, a and b constants that define the particular second-order Runge-Kutta method.
These constants are to be constrained by setting the local error of the second-order
Runge-Kutta method to be O(∆t3). Intuitively, we might guess that two of the con-
straints will be a + b = 1 and α = β.

We compute the Taylor series of xn+1 directly, and from the Runge-Kutta method,
and require them to be the same to order ∆t2. First, we compute the Taylor series of
xn+1. We have

xn+1 = x(tn + ∆t)

= x(tn) + ∆tẋ(tn) +
1
2
(∆t)2 ẍ(tn) + O(∆t3).

Now,
ẋ(tn) = f (tn, xn).

The second derivative is more complicated and requires partial derivatives. We have

ẍ(tn) =
d
dt

f (t, x(t))
]

t=tn

= ft(tn, xn) + ẋ(tn) fx(tn, xn)

= ft(tn, xn) + f (tn, xn) fx(tn, xn).

24 CHAPTER 4. DIFFERENTIAL EQUATIONS

4.1. INITIAL VALUE PROBLEM

Therefore,

xn+1 = xn + ∆t f (tn, xn)

+
1
2
(∆t)2 (ft(tn, xn) + f (tn, xn) fx(tn, xn)

)
+ O(∆t3). (4.4)

Second, we compute xn+1 from the Runge-Kutta method given by (4.3). Combining
(4.3) into a single expression, we have

xn+1 = xn + a∆t f (tn, xn)

+ b∆t f
(
tn + α∆t, xn + β∆t f (tn, xn)

)
+ O(∆t3).

We Taylor series expand using

f
(
tn + α∆t, xn + β∆t f (tn, xn)

)
= f (tn, xn) + α∆t ft(tn, xn) + β∆t f (tn, xn) fx(tn, xn) + O(∆t2).

The Runge-Kutta formula is therefore

xn+1 = xn + (a + b)∆t f (tn, xn)

+ (∆t)2(αb ft(tn, xn) + βb f (tn, xn) fx(tn, xn)
)
+ O(∆t3). (4.5)

Comparing (4.4) and (4.5), we find

a + b = 1, αb = 1/2, βb = 1/2.

Since there are only three equations for four parameters, there exists a family of second-
order Runge-Kutta methods.

The modified Euler method given by (4.2) corresponds to α = β = 1 and a =
b = 1/2. Another second-order Runge-Kutta method, called the midpoint method,
corresponds to α = β = 1/2, a = 0 and b = 1. This method is written as

k1 = ∆t f (tn, xn),

k2 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k1

)
,

xn+1 = xn + k2.

4.1.4 Higher-order Runge-Kutta methods
The general second-order Runge-Kutta method was given by (4.3). The general form of
the third-order method is given by

k1 = ∆t f (tn, xn),
k2 = ∆t f (tn + α∆t, xn + βk1),
k3 = ∆t f (tn + γ∆t, xn + δk1 + εk2),
xn+1 = xn + ak1 + bk2 + ck3.

CHAPTER 4. DIFFERENTIAL EQUATIONS 25

4.1. INITIAL VALUE PROBLEM

The following constraints on the constants can be guessed: α = β, γ = δ + ε, and
a + b + c = 1. Remaining constraints need to be derived.

The fourth-order method has a k1, k2, k3 and k4. The fifth-order method requires at
least to k6. The table below gives the minimum order of the method and the number of
stages required.

order 2 3 4 5 6 7 8
minimum # stages 2 3 4 6 7 9 11

Because of the jump in the number of stages required between the fourth- and fifth-
order methods, the fourth-order Runge-Kutta method has some appeal. The general
fourth-order method with four stages has 13 constants and 11 constraints. A particu-
larly simple fourth-order method that has been widely used in the past by physicists is
given by

k1 = ∆t f (tn, xn),

k2 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k1

)
,

k3 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k2

)
,

k4 = ∆t f (tn + ∆t, xn + k3) ,

xn+1 = xn +
1
6
(k1 + 2k2 + 2k3 + k4) .

4.1.5 Adaptive Runge-Kutta Methods
As in adaptive integration, it is useful to devise an ode integrator that automatically
finds the appropriate ∆t. The Dormand-Prince Method, which is implemented in
MATLAB’s ode45.m, finds the appropriate step size by comparing the results of a
fifth-order and fourth-order method. It requires six function evaluations per time step,
and constructs both a fifth-order and a fourth-order method from the same function
evaluations.

Suppose the fifth-order method finds xn+1 with local error O(∆t6), and the fourth-
order method finds x′n+1 with local error O(∆t5). Let ε be the desired error tolerance of
the method, and let e be the actual error. We can estimate e from the difference between
the fifth- and fourth-order methods; that is,

e = |xn+1 − x′n+1|.

Now e is of O(∆t5), where ∆t is the step size taken. Let ∆τ be the estimated step size
required to get the desired error ε. Then we have

e/ε = (∆t)5/(∆τ)5,

or solving for ∆τ,

∆τ = ∆t
(ε

e

)1/5
.

26 CHAPTER 4. DIFFERENTIAL EQUATIONS

4.1. INITIAL VALUE PROBLEM

On the one hand, if the actual error is less that the desired error, e < ε, then we accept
xn+1 and do the next time step using the larger value of ∆τ. On the other hand, if the
actual error is greater than the desired error, e > ε, then we reject the integration step
and redo the time step using the smaller value of ∆τ. In practice, one usually increases
the time step slightly less and decreases the time step slightly more to prevent the
wastefulness of too many failed time steps.

4.1.6 System of differential equations

Our numerical methods can be easily adapted to solve higher-order differential equa-
tions, or equivalently, a system of differential equations. First, we show how a second-
order differential equation can be reduced to two first-order equations. Consider

ẍ = f (t, x, ẋ).

This second-order equation can be rewritten as two first-order equations by defining
u = ẋ. We then have the system

ẋ = u, u̇ = f (t, x, u).

This trick also works for higher-order equations. For example, the third-order equation

...
x = f (t, x, ẋ, ẍ),

can be written as

ẋ = u, u̇ = v, v̇ = f (t, x, u, v).

We can generalize the Runge-Kutta method to solve a system of differential equa-
tions. As an example, consider the following system of two odes,

ẋ = f (t, x, y), ẏ = g(t, x, y),

with the initial conditions x(0) = x0 and y(0) = y0. The generalization of the commonly

CHAPTER 4. DIFFERENTIAL EQUATIONS 27

4.2. BOUNDARY VALUE PROBLEMS

used fourth-order Runge-Kutta method would be

k1 = ∆t f (tn, xn, yn),
l1 = ∆tg(tn, xn, yn),

k2 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k1, yn +
1
2

l1

)
,

l2 = ∆tg
(

tn +
1
2

∆t, xn +
1
2

k1, yn +
1
2

l1

)
,

k3 = ∆t f
(

tn +
1
2

∆t, xn +
1
2

k2, yn +
1
2

l2

)
,

l3 = ∆tg
(

tn +
1
2

∆t, xn +
1
2

k2, yn +
1
2

l2

)
,

k4 = ∆t f (tn + ∆t, xn + k3, yn + l3) ,
l4 = ∆tg (tn + ∆t, xn + k3, yn + l3) ,

xn+1 = xn +
1
6
(k1 + 2k2 + 2k3 + k4) ,

yn+1 = yn +
1
6
(l1 + 2l2 + 2l3 + l4) .

4.2 Boundary value problems

4.2.1 Shooting method

We consider the general ode of the form

d2y
dx2 = f (x, y, dy/dx),

with two-point boundary conditions y(0) = A and y(1) = B. We will first formulate
the ode as an initial value problem. We have

dy
dx

= z,
dz
dx

= f (x, y, z).

The initial condition y(0) = A is known, but the second initial condition z(0) = b is
unknown. Our goal is to determine b such that y(1) = B.

In fact, this is a root-finding problem for an appropriately defined function. We
define the function F = F(b) such that

F(b) = y(1)− B,

28 CHAPTER 4. DIFFERENTIAL EQUATIONS

4.2. BOUNDARY VALUE PROBLEMS

where y(1) is the numerical value obtained from integrating the coupled first-order
differential equations with y(0) = A and z(0) = b. Our root-finding routine will want
to solve F(b) = 0. (The method is called shooting because the slope of the solution curve
for y = y(x) at x = 0 is given by b, and the solution hits the value y(1) at x = 1. This
looks like pointing a gun and trying to shoot the target, which is B.)

To determine the value of b that solves F(b) = 0, we iterate using the secant method,
given by

bn+1 = bn − F(bn)
bn − bn−1

F(bn)− F(bn−1)
.

We need to start with two initial guesses for b, solving the ode for the two corre-
sponding values of y(1). Then the secant method will give us the next value of b to try,
and we iterate until |y(1)− B| < tol, where tol is some specified tolerance for the error.

CHAPTER 4. DIFFERENTIAL EQUATIONS 29

4.2. BOUNDARY VALUE PROBLEMS

30 CHAPTER 4. DIFFERENTIAL EQUATIONS

Chapter 5

Linear algebra
Consider the system of n linear equations and n unknowns, given by

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
...

an1x1 + an2x2 + · · ·+ annxn = bn.

We can write this system as the matrix equation

Ax = b, (5.1)

with

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bn

 .

This chapter details the numerical solution of (5.1).

5.1 Gaussian Elimination

The standard numerical algorithm to solve a system of linear equations is called Gaus-
sian Elimination. We can illustrate this algorithm by example.

Consider the system of equations

−3x1 + 2x2 − x3 = −1,
6x1 − 6x2 + 7x3 = −7,
3x1 − 4x2 + 4x3 = −6.

To perform Gaussian elimination, we form an Augmented Matrix by combining the
matrix A with the column vector b:−3 2 −1 −1

6 −6 7 −7
3 −4 4 −6

 .

Row reduction is then performed on this matrix. Allowed operations are (1) multiply
any row by a constant, (2) add multiple of one row to another row, (3) interchange the
order of any rows. The goal is to convert the original matrix into an upper-triangular
matrix.

31

5.2. LU DECOMPOSITION

We start with the first row of the matrix and work our way down as follows. First
we multiply the first row by 2 and add it to the second row, and add the first row to
the third row: −3 2 −1 −1

0 −2 5 −9
0 −2 3 −7

 .

We then go to the second row. We multiply this row by −1 and add it to the third row:−3 2 −1 −1
0 −2 5 −9
0 0 −2 2

 .

The resulting equations can be determined from the matrix and are given by

−3x1 + 2x2 − x3 = −1
−2x2 + 5x3 = −9

−2x3 = 2.

These equations can be solved by backward substitution, starting from the last equation
and working backwards. We have

−2x3 = 2→ x3 = −1
−2x2 = −9− 5x3 = −4→ x2 = 2,
−3x1 = −1− 2x2 + x3 = −6→ x1 = 2.

Therefore, x1
x2
x3

 =

 2
2
−1

 .

5.2 LU decomposition

The process of Gaussian Elimination also results in the factoring of the matrix A to

A = LU,

where L is a lower triangular matrix and U is an upper triangular matrix. Using the
same matrix A as in the last section, we show how this factorization is realized. We
have −3 2 −1

6 −6 7
3 −4 4

→
−3 2 −1

0 −2 5
0 −2 3

 = M1A,

where

M1A =

1 0 0
2 1 0
1 0 1

−3 2 −1
6 −6 7
3 −4 4

 =

−3 2 −1
0 −2 5
0 −2 3

 .

32 CHAPTER 5. LINEAR ALGEBRA

5.2. LU DECOMPOSITION

Note that the matrix M1 performs row elimination on the first column. Two times the
first row is added to the second row and one times the first row is added to the third
row. The entries of the column of M1 come from 2 = −(6/− 3) and 1 = −(3/− 3) as
required for row elimination. The number −3 is called the pivot.

The next step is−3 2 −1
0 −2 5
0 −2 3

→
−3 2 −1

0 −2 5
0 0 −2

 = M2(M1A),

where

M2(M1A) =

 1 0 0
0 1 0
0 −1 1

−3 2 −1
0 −2 5
0 −2 3

 =

−3 2 −1
0 −2 5
0 0 −2

 .

Here, M2 multiplies the second row by −1 = −(−2/− 2) and adds it to the third row.
The pivot is −2.

We now have
M2M1A = U

or
A = M−1

1 M−1
2 U.

The inverse matrices are easy to find. The matrix M1 multiples the first row by 2 and
adds it to the second row, and multiplies the first row by 1 and adds it to the third row.
To invert these operations, we need to multiply the first row by −2 and add it to the
second row, and multiply the first row by −1 and add it to the third row. To check,
with

M1M−1
1 = I,

we have  1 0 0
2 1 0
1 0 1

 1 0 0
−2 1 0
−1 0 1

 =

1 0 0
0 1 0
0 0 1

 .

Similarly,

M−1
2 =

1 0 0
0 1 0
0 1 1


Therefore,

L = M−1
1 M−1

2

is given by

L =

 1 0 0
−2 1 0
−1 0 1

1 0 0
0 1 0
0 1 1

 =

 1 0 0
−2 1 0
−1 1 1

 ,

which is lower triangular. The off-diagonal elements of M−1
1 and M−1

2 are simply com-
bined to form L. Our LU decomposition is therefore−3 2 −1

6 −6 7
3 −4 4

 =

 1 0 0
−2 1 0
−1 1 1

−3 2 −1
0 −2 5
0 0 −2

 .

CHAPTER 5. LINEAR ALGEBRA 33

5.2. LU DECOMPOSITION

Another nice feature of the LU decomposition is that it can be done by overwriting A,
therefore saving memory if the matrix A is very large.

The LU decomposition is useful when one needs to solve Ax = b for x when A is
fixed and there are many different b’s. First one determines L and U using Gaussian
elimination. Then one writes

(LU)x = L(Ux) = b.

We let
y = Ux,

and first solve
Ly = b

for y by forward substitution. We then solve

Ux = y

for x by backward substitution. If we count operations, we can show that solving
(LU)x = b is substantially faster once L and U are in hand than solving Ax = b
directly by Gaussian elimination.

We now illustrate the solution of LUx = b using our previous example, where

L =

 1 0 0
−2 1 0
−1 1 1

 , U =

−3 2 −1
0 −2 5
0 0 −2

 , b =

−1
−7
−6

 .

With y = Ux, we first solve Ly = b, that is 1 0 0
−2 1 0
−1 1 1

y1
y2
y3

 =

−1
−7
−6

 .

Using forward substitution

y1 = −1,
y2 = −7 + 2y1 = −9,
y3 = −6 + y1 − y2 = 2.

We now solve Ux = y, that is−3 2 −1
0 −2 5
0 0 −2

x1
x2
x3

 =

−1
−9

2

 .

Using backward substitution,

−2x3 = 2→ x3 = −1,
−2x2 = −9− 5x3 = −4→ x2 = 2,
−3x1 = −1− 2x2 + x3 = −6→ x1 = 2,

and we have once again determinedx1
x2
x3

 =

 2
2
−1

 .

34 CHAPTER 5. LINEAR ALGEBRA

5.3. PARTIAL PIVOTING

5.3 Partial pivoting

When performing Gaussian elimination, the diagonal element that one uses during the
elimination procedure is called the pivot. To obtain the correct multiple, one uses the
pivot as the divisor to the elements below the pivot. Gaussian elimination in this form
will fail if the pivot is zero. In this situation, a row interchange must be performed.

Even if the pivot is not identically zero, a small value can result in big round-off
errors. For very large matrices, one can easily lose all accuracy in the solution. To avoid
these round-off errors arising from small pivots, row interchanges are made, and this
technique is called partial pivoting (partial pivoting is in contrast to complete pivoting,
where both rows and columns are interchanged). We will illustrate by example the LU
decomposition using partial pivoting.

Consider

A =

−2 2 −1
6 −6 7
3 −8 4

 .

We interchange rows to place the largest element (in absolute value) in the pivot, or a11,
position. That is,

A→

 6 −6 7
−2 2 −1

3 −8 4

 = P12A,

where

P12 =

0 1 0
1 0 0
0 0 1


is a permutation matrix that when multiplied on the left interchanges the first and
second rows of a matrix. Note that P−1

12 = P12. The elimination step is then

P12A→

6 −6 7
0 0 4/3
0 −5 1/2

 = M1P12A,

where

M1 =

 1 0 0
1/3 1 0
−1/2 0 1

 .

The final step requires one more row interchange:

M1P12A→

6 −6 7
0 −5 1/2
0 0 4/3

 = P23M1P12A = U.

Since the permutation matrices given by P are their own inverses, we can write our
result as

(P23M1P23)P23P12A = U.

CHAPTER 5. LINEAR ALGEBRA 35

5.4. MATLAB PROGRAMMING

Multiplication of M on the left by P interchanges rows while multiplication on the right
by P interchanges columns. That is,

P23

 1 0 0
1/3 1 0
−1/2 0 1

P23 =

 1 0 0
−1/2 0 1

1/3 1 0

P23 =

 1 0 0
−1/2 1 0

1/3 0 1

 .

The net result on M1 is an interchange of the nondiagonal elements 1/3 and −1/2.
We can then multiply by the inverse of (P23M1P23) to obtain

P23P12A = (P23M1P23)
−1U,

which we write as
PA = LU.

Instead of L, MATLAB will write this as

A = (P−1L)U.

For convenience, we will just denote (P−1L) by L, but by L here we mean a permutated
lower triangular matrix.

5.4 MATLAB programming

In MATLAB, to solve Ax = b for x using Gaussian elimination, one types

x=A\b;

where \ solves for x using the most efficient algorithm available, depending on the
form of A. If A is a general n× n matrix, then first the LU decomposition of A is found
using partial pivoting, and then x is determined from permuted forward and backward
substitution. If A is upper or lower triangular, then forward or backward substitution
(or their permuted version) is used directly.

If there are many different right-hand-sides, one would first directly find the LU
decomposition of A using a function call, and then solve using \. That is, one would
iterate for different b’s the following expressions:

[L U]=lu(A);
y=L\b;
x=U\y;

where the second and third lines can be shortened to

x=U\(L\b);

where the parenthesis are required. In lecture, I will demonstrate these solutions in
MATLAB using the matrix A = [−3, 2, −1; 6, −6, 7; 3, −4, 4] and the
right-hand-side b = [−1; −7; −6], which is the example that we did by hand.

36 CHAPTER 5. LINEAR ALGEBRA

5.4. MATLAB PROGRAMMING

Although we do not detail the algorithm here, MATLAB can also solve the linear
algebra eigenvalue problem. Here, the mathematical problem to solve is given by

Ax = λx,

where A is a square matrix, λ are the eigenvalues, and the associated x’s are the eigen-
vectors. The MATLAB subroutine that solves this problem is eig.m. To only find the
eigenvalues of A, one types

lambda = eig(A); .

To find both the eigenvalues and eigenvectors, one types

[v,lambda] = eig(A); .

More information can be found from the MATLAB help pages. One of the nice features
about programming in MATLAB is that no great sin is commited if one uses a built-
in function without spending the time required to fully understand the underlying
algorithm.

CHAPTER 5. LINEAR ALGEBRA 37

5.4. MATLAB PROGRAMMING

38 CHAPTER 5. LINEAR ALGEBRA

Chapter 6

Finite difference approximation
We introduce here numerical differentiation, also called finite difference approxi-

mation. This technique is commonly used to discretize and solve partial differential
equations.

6.1 Finite difference formulas

Consider the Taylor series approximation for y(x + h) and y(x− h), given by

y(x + h) = y(x) + hy′(x) +
1
2

h2y′′(x) +
1
6

h3y′′′(x) +
1

24
h4y′′′′(x) + . . . ,

y(x− h) = y(x)− hy′(x) +
1
2

h2y′′(x)− 1
6

h3y′′′(x) +
1

24
h4y′′′′(x) +

The standard definitions of the derivatives give the first-order approximations

y′(x) =
y(x + h)− y(x)

h
+ O(h),

y′(x) =
y(x)− y(x− h)

h
+ O(h).

The more widely-used second-order approximation is called the central-difference ap-
proximation and is given by

y′(x) =
y(x + h)− y(x− h)

2h
+ O(h2).

The finite difference approximation to the second derivative can be found from consid-
ering

y(x + h) + y(x− h) = 2y(x) + h2y′′(x) +
1
12

h4y′′′′(x) + . . . ,

from which we find

y′′(x) =
y(x + h)− 2y(x) + y(x− h)

h2 + O(h2).

Often a second-order method is required for x on the boundaries of the domain. For
a boundary point on the left, a second-order forward difference method requires the
additional Taylor series

y(x + 2h) = y(x) + 2hy′(x) + 2h2y′′(x) +
4
3

h3y′′′(x) +

We combine the Taylor series for y(x + h) and y(x + 2h) to eliminate the term propor-
tional to h2:

y(x + 2h)− 4y(x + h) = −3y(x)− 2hy′(x) + O(h3).

39

6.2. EXAMPLE: THE LAPLACE EQUATION

Therefore,

y′(x) =
−3y(x) + 4y(x + h)− y(x + 2h)

2h
+ O(h2).

For a boundary point on the right, we send h→ −h to find

y′(x) =
3y(x)− 4y(x− h) + y(x− 2h)

2h
+ O(h2).

6.2 Example: the Laplace equation

As an example of the finite difference technique, let us consider how to discretize the
two dimensional Laplace equation(

∂2

∂x2 +
∂2

∂y2

)
Φ = 0

on the rectangular domain [0, 1]× [0, 1]. We assume here that the values of Φ are known
on the boundaries of the domain. We form a two-dimensional grid with N intervals in
each direction together with end points that lie on the boundaries by writing

xi = ih, i = 0, 1, . . . , N,
yj = jh, j = 0, 1, . . . , N,

where h = 1/N. We will also denote the value of Φ(xi, yj) by Φi,j. The finite difference
approximation for the second derivatives at the interior point (xi, yj) then results in an
equation that we write in the form

4Φi,j −Φi+1,j −Φi−1,j −Φi,j+1 −Φi,j−1 = 0, (6.1)

valid for i = 1, 2, . . . , N− 1 and j = 1, 2, . . . , N− 1. The boundary values Φ0,j, ΦN,j, Φi,0,
and Φi,N are assumed to be given.

One can observe that (6.1) represents a system of (N − 1)2 linear equations for
(N − 1)2 unknowns. We can write this as a matrix equation if we decide how to order
the unknowns Φi,j into a vector. The standard ordering is called natural ordering, and
proceeds from the bottom of the grid along rows moving towards the top. This orders
the unknowns as

Φ = [Φ1,1, Φ2,1, . . . , Φ(N−1),1, . . . , Φ1,(N−1), Φ2(,N−1), . . . , Φ(N−1),(N−1)]
T .

To illustrate the construction of the matrix equation, we consider the case N = 3,
with two interior points in each direction. The four resulting linear equations with the
boundary terms written on the right-hand-side are

4Φ1,1 −Φ2,1 −Φ1,2 = Φ0,1 + Φ1,0,
4Φ2,1 −Φ1,1 −Φ2,2 = Φ3,1 + Φ2,0,
4Φ1,2 −Φ2,2 −Φ1,1 = Φ0,2 + Φ1,3,
4Φ2,2 −Φ1,2 −Φ2,1 = Φ3,2 + Φ2,3;

40 CHAPTER 6. FINITE DIFFERENCE APPROXIMATION

6.2. EXAMPLE: THE LAPLACE EQUATION

and the corresponding matrix equation is
4 −1 −1 0
−1 4 0 −1
−1 0 4 −1

0 −1 −1 4




Φ1,1
Φ2,1
Φ1,2
Φ2,2

 =


Φ0,1 + Φ1,0
Φ3,1 + Φ2,0
Φ0,2 + Φ1,3
Φ3,2 + Φ2,3

 .

The pattern here may not be obvious, but the Laplacian matrix decomposes into 2-by-2
block matrices.

With some thought, a general result can be obtained for an Nx-by-Ny grid of internal
points (with Nx + 1 and Ny + 1 intervals in the x- and y-directions, respectively). The
Laplacian matrix then decomposes into Nx-by-Nx block matrices. The diagonal contains
Ny of these Nx-by-Nx block matrices, each of which are tridiagonal with a 4 on the
diagonal and a −1 on the off-diagonals. Immediately above and below these block
matrices on the diagonal are Ny− 1 block matrices also of size Nx-by-Nx, each of which
are diagonal with −1 along the diagonal.

MATLAB code for the Laplacian matrix can be found on the web in the function
sp_laplace.m. This code was written by Bordner and Saied in 1995, and I have
written a more modern and faster version of this code in sp_laplace_new.m.

An alternative solution method, which we will later make use of in §17.2.4, includes
the boundary values in the solution vector. If one of the boundary conditions is at
position n in this vector, then row n of the left-hand-side matrix will have just a one
on the diagonal with all other elements equal to zero (i.e, a row of the identity matrix),
and the corresponding element in the right-hand-side vector will have the value at
the boundary. Here, with the total number of grid points (including the boundary
points) in the x- and y directions given by Nx and Ny, the left-hand-side matrix is then
generated using A=sp_laplace_new(N_x,N_y), and all the rows corresponding to
the boundary values are replaced with the corresponding rows of the identity matrix.
This formulation may be slightly easier to code, and also easier to incorporate other
more general boundary conditions.

CHAPTER 6. FINITE DIFFERENCE APPROXIMATION 41

6.2. EXAMPLE: THE LAPLACE EQUATION

42 CHAPTER 6. FINITE DIFFERENCE APPROXIMATION

Chapter 7

Iterative methods
7.1 Jacobi, Gauss-Seidel and SOR methods

Iterative methods are often used for solving a system of nonlinear equations. Even
for linear systems, iterative methods have some advantages. They may require less
memory and may be computationally faster. They are also easier to code. Here, without
detailing the theoretical numerical analysis, we will simply explain the related iterative
methods that go by the names of the Jacobi method, the Gauss-Seidel method, and
the Successive Over Relaxation method (or SOR). We illustrate these three methods by
showing how to solve the two-dimensional Poisson equation, an equation that we will
later need to solve to determine the flow field past an obstacle.

The Poisson equation is given by

−∇2Φ = f ,

where

∇2 =
∂2

∂x2 +
∂2

∂y2

is the usual two-dimensional Laplacian. This could be a linear equation with f in-
dependent of Φ, or a nonlinear equation where f may be some nonlinear function of
Φ.

After discretizing the Poisson equation using the centered finite difference approxi-
mation for the second derivatives, we obtain on a grid with uniform grid spacing h,

4Φi,j −Φi+1,j −Φi−1,j −Φi,j+1 −Φi,j−1 = h2 fi,j. (7.1)

The Jacobi method simply solves the discretized equation (7.1) for Φi,j iteratively. With
superscripts indicating iteration steps, we have

Φ(n+1)
i,j =

1
4

(
Φ(n)

i+1,j + Φ(n)
i−1,j + Φ(n)

i,j+1 + Φ(n)
i,j−1 + h2 f (n)i,j

)
. (7.2)

In the old FORTRAN-77 scientific programming language, implementing the Jacobi method
required the saving of Φ in two different arrays, one corresponding to the n-th iteration, and one
corresponding to the (n + 1)-st iteration. When the iteration was done with a single array, the
method was called Gauss-Seidel. In the standard Gauss-Seidel method, the array was updated
row-by-row and had the form

Φ(n+1)
i,j =

1
4

(
Φ(n)

i+1,j + Φ(n+1)
i−1,j + Φ(n)

i,j+1 + Φ(n+1)
i,j−1 + h2 f (n)i,j

)
. (7.3)

The Gauss-Seidel method had the double advantage of requiring less memory and converging
more rapidly than the Jacobi method.

A variant of Gauss-Seidel that can also be found in textbooks is called red-black Gauss-Seidel.
In this algorithm, the grid is viewed as a checkerboard with red and black squares. An updating

43

7.1. JACOBI, GAUSS-SEIDEL AND SOR METHODS

of Φi,j is done in two passes: in the first pass, Φi,j is updated only on the red squares; in the
second pass, only on the black squares. Because of the structure of the Laplacian finite difference
operator, when solving ∇2Φ = 0 the updated values of Φ on the red squares depend only on the
values of Φ on the black squares, and the updated values on the black squares depend only on
the red squares.

Translating FORTRAN-77 directly into MATLAB, the Gauss-Seidel method in the standard
form could be implemented on a uniform grid with N − 1 and M− 1 internal grid points in the
x- and y-directions, respectively, as

for index2=2:M
for index1=2:N

phi(index1,index2)=0.25*(phi(index1+1,index2) ...
+phi(index1−1,index2)+phi(index1,index2+1)...
+phi(index1,index2−1)+h^2*f(index1,index2);

end
end

Nowadays, however, programming languages such as MATLAB operate on vectors, which are op-
timized for modern computers, and the explicit loops that used to be the workhorse of FORTRAN-
77 are now vectorized.

So to properly implement the Jacobi method, say, in MATLAB, one can predefine the vectors
index1 and index2 that contain the index numbers of the first and second indices of the matrix
variable phi. These definitions would be

index1=2:N; index2=2:M;

where index1 and index2 reference the internal grid points of the domain. The variable phi
is assumed to be known on the boundaries of the domain corresponding to the indices (1,1),
(N+1,1), (1,M+1), and (N+1,M+1). The Jacobi method in MATLAB can then be coded in one
line as

phi(index1,index2)=0.25*(phi(index1+1,index2)+phi(index1−1,index2)...
+phi(index1,index2+1)+phi(index1,index2−1)+h^2*f(index1,index2); .

The red-black Gauss-Seidel method could be implemented in a somewhat similar fashion. One
must now predefine the vectors even1, odd1, even2, and odd2, with definitions

even1=2:2:N; even2=2:2:M;
odd1=3:2:N; odd2=3:2:M; .

The red-black Gauss-Seidel method then requires the following four coding lines to implement:

phi(even1,even2)=0.25*(phi(even1+1,even2)+phi(even1−1,even2)...
+phi(even1,even2+1)+phi(even1,even2−1)+h^2*f(even1,even2);

phi(odd1,odd2)=0.25*(phi(odd1+1,odd2)+phi(odd1−1,odd2)...
+phi(odd1,odd2+1)+phi(odd1,odd2−1)+h^2*f(odd1,odd2);

phi(even1,odd2)=0.25*(phi(even1+1,odd2)+phi(even1−1,odd2)...
+phi(even1,odd2+1)+phi(even1,odd2−1)+h^2*f(even1,odd2);

phi(odd1,even2)=0.25*(phi(odd1+1,even2)+phi(odd1−1,even2)...
+phi(odd1,even2+1)+phi(odd1,even2−1)+h^2*f(odd1,even2); .

Each iteration of the red-black Gauss-Seidel method will run slower than that of the Jacobi
method, and the red-black Gauss-Seidel method will only be useful if the slower iterations are
compensated by a faster convergence.

44 CHAPTER 7. ITERATIVE METHODS

7.2. NEWTON’S METHOD FOR A SYSTEM OF EQUATIONS

In practice, however, the Jacobi method or the red-black Gauss Seidel method is replaced
by the corresponding Successive Over Relaxation method (SOR method). We will illustrate this
method using the Jacobi method, though the better approach is to use red-black Gauss-Seidel.

The Jacobi method is first rewritten by adding and subtracting the diagonal term Φ(n)
i,j :

Φ(n+1)
i,j = Φ(n)

i,j +
1
4

(
Φ(n)

i+1,j + Φ(n)
i−1,j + Φ(n)

i,j+1 + Φ(n)
i,j−1 − 4Φ(n)

i,j + h2 f (n)i,j

)
.

In this form, we see that the Jacobi method updates the value of Φi,j at each iteration. We can
either magnify or diminish this update by introducing a relaxation parameter λ. We have

Φ(n+1)
i,j = Φ(n)

i,j +
λ

4

(
Φ(n)

i+1,j + Φ(n)
i−1,j + Φ(n)

i,j+1 + Φ(n)
i,j−1 − 4Φ(n)

i,j + h2 f (n)i,j

)
,

which can be written more efficiently as

Φ(n+1)
i,j = (1− λ)Φ(n)

i,j +
λ

4

(
Φ(n)

i+1,j + Φ(n)
i−1,j + Φ(n)

i,j+1 + Φ(n)
i,j−1 + h2 f (n)i,j

)
.

When used with Gauss-Seidel, a value of λ in the range 1 < λ < 2 can often be used to accelerate
convergence of the iteration. When λ > 1, the modifier over in Successive Over Relaxation is
apt. When the right-hand-side of the Poisson equation is a nonlinear function of Φ, however, the
λ = 1 Gauss-Seidel method may fail to converge. In this case, it may be reasonable to choose a
value of λ less than one, and perhaps a better name for the method would be Successive Under
Relaxation. When under relaxing, the convergence of the iteration will of course be slowed. But
this is the cost that must sometimes be paid for stability.

7.2 Newton’s method for a system of nonlinear equations

A system of nonlinear equations can be solved using a version of the iterative Newton’s Method
for root finding. Although in practice, Newton’s method is often applied to a large nonlinear
system, we will illustrate the method here for the simple system of two equations and two
unknowns.

Suppose that we want to solve

f (x, y) = 0, g(x, y) = 0,

for the unknowns x and y. We want to construct two simultaneous sequences x0, x1, x2, . . . and
y0, y1, y2, . . . that converge to the roots. To construct these sequences, we Taylor series expand
f (xn+1, yn+1) and g(xn+1, yn+1) about the point (xn, yn). Using the partial derivatives fx =
∂ f /∂x, fy = ∂ f /∂y, etc., the two-dimensional Taylor series expansions, displaying only the linear
terms, are given by

f (xn+1, yn+1) = f (xn, yn) + (xn+1 − xn) fx(xn, yn)

+ (yn+1 − yn) fy(xn, yn) + . . .

g(xn+1, yn+1) = g(xn, yn) + (xn+1 − xn)gx(xn, yn)

+ (yn+1 − yn)gy(xn, yn) +

To obtain Newton’s method, we take f (xn+1, yn+1) = 0, g(xn+1, yn+1) = 0, and drop higher-
order terms above linear. Although one can then find a system of linear equations for xn+1 and
yn+1, it is more convenient to define the variables

∆xn = xn+1 − xn, ∆yn = yn+1 − yn.

CHAPTER 7. ITERATIVE METHODS 45

7.2. NEWTON’S METHOD FOR A SYSTEM OF EQUATIONS

The iteration equations will then be given by

xn+1 = xn + ∆xn, yn+1 = yn + ∆yn;

and the linear equations to be solved for ∆xn and ∆yn are given by(
fx fy
gx gy

)(
∆xn
∆yn

)
=

(
− f
−g

)
,

where f , g, fx, fy, gx, and gy are all evaluated at the point (xn, yn). The two-dimensional case is
easily generalized to n dimensions. The matrix of partial derivatives is called the Jacobian Matrix.

We illustrate Newton’s Method by finding numerically the steady state solution of the Lorenz
equations, given by

σ(y− x) = 0,

rx− y− xz = 0,

xy− bz = 0,

where x, y, and z are the unknown variables and σ, r, and b are the known parameters. Here, we
have a three-dimensional homogeneous system f = 0, g = 0, and h = 0, with

f (x, y, z) = σ(y− x),
g(x, y, z) = rx− y− xz,

h(x, y, z) = xy− bz.

The partial derivatives can be computed to be

fx = −σ, fy = σ, fz = 0,

gx = r− z, gy = −1, gz = −x,

hx = y, hy = x, hz = −b.

The iteration equation is therefore −σ σ 0
r− zn −1 −xn

yn xn −b

∆xn
∆yn
∆zn

 = −

 σ(yn − xn)
rxn − yn − xnzn

xnyn − bzn

 ,

with

xn+1 = xn + ∆xn,

yn+1 = yn + ∆yn,

zn+1 = zn + ∆zn.

The sample MATLAB program that solves this system is in the m-file newton_system.m.

46 CHAPTER 7. ITERATIVE METHODS

Chapter 8

Interpolation
Consider the following problem: Given the values of a known function y = f (x) at a sequence

of ordered points x0, x1, . . . , xn, find f (x) for arbitrary x. When x0 ≤ x ≤ xn, the problem is called
interpolation. When x < x0 or x > xn, the problem is called extrapolation.

With yi = f (xi), the problem of interpolation is basically one of drawing a smooth curve
through the known points (x0, y0), (x1, y1), . . . , (xn, yn). This is not the same problem as drawing
a smooth curve that approximates a set of data points that have experimental error. This latter
problem is called least-squares approximation, which is considered in the next chapter.

It is possible to interpolate the n + 1 known points by a unique polynomial of degree n.
When n = 1, the polynomial is a linear function; when n = 2, the polynomial is a quadratic
function. Although low order polynomials are sometimes used when the number of points are
few, higher-order polynomial interpolates tend to be unstable, and are not of much practical use.

Here, we will consider the more useful piece-wise polynomial interpolation. The two most
used are piecewise linear interpolation, and cubic spline interpolation. The first makes use of
linear polynomials, and the second cubic polynomials.

8.1 Piecewise linear interpolation

Here, we use linear polynomials. This is the default interpolation typically used when plotting
data.

Suppose the interpolating function is y = g(x), and as previously, there are n + 1 points to
interpolate. We construct the function g(x) out of n local linear polynomials. We write

g(x) = gi(x), for xi ≤ x ≤ xi+1,

where
gi(x) = ai(x− xi) + bi,

and i = 0, 1, . . . , n− 1.
We now require y = gi(x) to pass through the endpoints (xi, yi) and (xi+1, yi+1). We have

yi = bi,

yi+1 = ai(xi+1 − xi) + bi.

Therefore, the coefficients of gi(x) are determined to be

ai =
yi+1 − yi
xi+1 − xi

, bi = yi.

Although piecewise linear interpolation is widely used, particularly in plotting routines, it suffers
from a discontinuity in the derivative at each point. This results in a function which may not look
smooth if the points are too widely spaced. We next consider a more challenging algorithm that
uses cubic polynomials.

47

8.2. CUBIC SPLINE INTERPOLATION

8.2 Cubic spline interpolation

The n + 1 points to be interpolated are again

(x0, y0), (x1, y1), . . . (xn, yn).

Here, we use n piecewise cubic polynomials for interpolation,

gi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di, i = 0, 1, . . . , n− 1,

with the global interpolation function written as

g(x) = gi(x), for xi ≤ x ≤ xi+1.

To achieve a smooth interpolation we impose that g(x) and its first and second derivatives are
continuous. The requirement that g(x) is continuous (and goes through all n + 1 points) results
in the two constraints

gi(xi) = yi, i = 0 to n− 1, (8.1)

gi(xi+1) = yi+1, i = 0 to n− 1. (8.2)

The requirement that g′(x) is continuous results in

g′i(xi+1) = g′i+1(xi+1), i = 0 to n− 2. (8.3)

And the requirement that g′′(x) is continuous results in

g′′i (xi+1) = g′′i+1(xi+1), i = 0 to n− 2. (8.4)

There are n cubic polynomials gi(x) and each cubic polynomial has four free coefficients; there
are therefore a total of 4n unknown coefficients. The number of constraining equations from (8.1)-
(8.4) is 2n + 2(n− 1) = 4n− 2. With 4n− 2 constraints and 4n unknowns, two more conditions
are required for a unique solution. These are usually chosen to be extra conditions on the first
g0(x) and last gn−1(x) polynomials. We will discuss these extra conditions later.

We now proceed to determine equations for the unknown coefficients of the cubic polynomi-
als. The polynomials and their first two derivatives are given by

gi(x) = ai(x− xi)
3 + bi(x− xi)

2 + ci(x− xi) + di, (8.5)

g′i(x) = 3ai(x− xi)
2 + 2bi(x− xi) + ci, (8.6)

g′′i (x) = 6ai(x− xi) + 2bi. (8.7)

We will consider the four conditions (8.1)-(8.4) in turn. From (8.1) and (8.5), we have

di = yi, i = 0 to n− 1, (8.8)

which directly solves for all of the d-coefficients.
To satisfy (8.2), we first define

hi = xi+1 − xi,

and
fi = yi+1 − yi.

Now, from (8.2) and (8.5), using (8.8), we obtain the n equations

aih3
i + bih2

i + cihi = fi, i = 0 to n− 1. (8.9)

48 CHAPTER 8. INTERPOLATION

8.2. CUBIC SPLINE INTERPOLATION

From (8.3) and (8.6) we obtain the n− 1 equations

3aih2
i + 2bihi + ci = ci+1, i = 0 to n− 2. (8.10)

From (8.4) and (8.7) we obtain the n− 1 equations

3aihi + bi = bi+1 i = 0 to n− 2. (8.11)

It will be useful to include a definition of the coefficient bn, which is now missing. (The index of
the cubic polynomial coefficients only go up to n− 1.) We simply extend (8.11) up to i = n− 1
and so write

3an−1hn−1 + bn−1 = bn, (8.12)
which can be viewed as a definition of bn.

We now proceed to eliminate the sets of a- and c-coefficients (with the d-coefficients already
eliminated in (8.8)) to find a system of linear equations for the b-coefficients. From (8.11) and
(8.12), we can solve for the n a-coefficients to find

ai =
1

3hi
(bi+1 − bi) , i = 0 to n− 1. (8.13)

From (8.9), we can solve for the n c-coefficients as follows:

ci =
1
hi

(
fi − aih3

i − bih2
i

)
=

1
hi

(
fi −

1
3hi

(bi+1 − bi) h3
i − bih2

i

)
=

fi
hi
− 1

3
hi (bi+1 + 2bi) , i = 0 to n− 1. (8.14)

We can now find an equation for the b-coefficients by substituting (8.13) and (8.14) into (8.10):

3
(

1
3hi

(bi+1 − bi)

)
h2

i + 2bihi +

(
fi
hi
− 1

3
hi(bi+1 + 2bi)

)
=

(
fi+1
hi+1

− 1
3

hi+1(bi+2 + 2bi+1)

)
,

which simplifies to

1
3

hibi +
2
3
(hi + hi+1)bi+1 +

1
3

hi+1bi+2 =
fi+1
hi+1

− fi
hi

, (8.15)

an equation that is valid for i = 0 to n− 2. Therefore, (8.15) represent n− 1 equations for the
n + 1 unknown b-coefficients. Accordingly, we write the matrix equation for the b-coefficients,
leaving the first and last row absent, as

. missing
1
3 h0

2
3 (h0 + h1)

1
3 h1 . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . 1

3 hn−2
2
3 (hn−2 + hn−1)

1
3 hn−1

. missing




b0
b1
...

bn−1
bn



=



missing
f1
h1
− f0

h0
...

fn−1
hn−1
− fn−2

hn−2

missing

 .

CHAPTER 8. INTERPOLATION 49

8.2. CUBIC SPLINE INTERPOLATION

Once the missing first and last equations are specified, the matrix equation for the b-coefficients
can be solved by Gaussian elimination. And once the b-coefficients are determined, the a- and
c-coefficients can also be determined from (8.13) and (8.14), with the d-coefficients already known
from (8.8). The piecewise cubic polynomials, then, are known and g(x) can be used for interpo-
lation to any value x satisfying x0 ≤ x ≤ xn.

The missing first and last equations can be specified in several ways, and here we show the
two ways that are allowed by the MATLAB function spline.m. The first way should be used when
the derivative g′(x) is known at the endpoints x0 and xn; that is, suppose we know the values of
α and β such that

g′0(x0) = α, g′n−1(xn) = β.

From the known value of α, and using (8.6) and (8.14), we have

α = c0

=
f0
h0
− 1

3
h0(b1 + 2b0).

Therefore, the missing first equation is determined to be

2
3

h0b0 +
1
3

h0b1 =
f0
h0
− α. (8.16)

From the known value of β, and using (8.6), (8.13), and (8.14), we have

β = 3an−1h2
n−1 + 2bn−1hn−1 + cn−1

= 3
(

1
3hn−1

(bn − bn−1)

)
h2

n−1 + 2bn−1hn−1 +

(
fn−1
hn−1

− 1
3

hn−1(bn + 2bn−1)

)
,

which simplifies to
1
3

hn−1bn−1 +
2
3

hn−1bn = β− fn−1
hn−1

, (8.17)

to be used as the missing last equation.
The second way of specifying the missing first and last equations is called the not-a-knot

condition, which assumes that

g0(x) = g1(x), gn−2(x) = gn−1(x).

Considering the first of these equations, from (8.5) we have

a0(x− x0)
3 + b0(x− x0)

2 + c0(x− x0) + d0

= a1(x− x1)
3 + b1(x− x1)

2 + c1(x− x1) + d1.

Now two cubic polynomials can be proven to be identical if at some value of x, the polynomials
and their first three derivatives are identical. Our conditions of continuity at x = x1 already
require that at this value of x these two polynomials and their first two derivatives are identical.
The polynomials themselves will be identical, then, if their third derivatives are also identical at
x = x1, or if

a0 = a1.

From (8.13), we have
1

3h0
(b1 − b0) =

1
3h1

(b2 − b1),

or after simplification
h1b0 − (h0 + h1)b1 + h0b2 = 0, (8.18)

50 CHAPTER 8. INTERPOLATION

8.3. MULTIDIMENSIONAL INTERPOLATION

which provides us our missing first equation. A similar argument at x = xn−1 also provides us
with our last equation,

hn−1bn−2 − (hn−2 + hn−1)bn−1 + hn−2bn = 0. (8.19)

The MATLAB subroutines spline.m and ppval.m can be used for cubic spline interpolation
(see also interp1.m). I will illustrate these routines in class and post sample code on the course
web site.

8.3 Multidimensional interpolation

Suppose we are interpolating the value of a function of two variables,

z = f (x, y).

The known values are given by
zij = f (xi, yj),

with i = 0, 1, . . . , n and j = 0, 1, . . . , n. Note that the (x, y) points at which f (x, y) are known lie
on a grid in the x− y plane.

Let z = g(x, y) be the interpolating function, satisfying zij = g(xi, yj). A two-dimensional
interpolation to find the value of g at the point (x, y) may be done by first performing n + 1
one-dimensional interpolations in y to find the value of g at the n + 1 points (x0, y), (x1, y), . . . ,
(xn, y), followed by a single one-dimensional interpolation in x to find the value of g at (x, y).

In other words, two-dimensional interpolation on a grid of dimension (n + 1) × (n + 1) is
done by first performing n + 1 one-dimensional interpolations to the value y followed by a single
one-dimensional interpolation to the value x. Two-dimensional interpolation can be generalized
to higher dimensions. The MATLAB functions to perform two- and three-dimensional interpola-
tion are interp2.m and interp3.m.

CHAPTER 8. INTERPOLATION 51

8.3. MULTIDIMENSIONAL INTERPOLATION

52 CHAPTER 8. INTERPOLATION

Chapter 9

Least-squares approximation
The method of least-squares is commonly used to fit a parameterized curve to experimental

data. In general, the fitting curve is not expected to pass through the data points, making this
problem substantially different from the one of interpolation.

We consider here only the most common situation: the fitting of a straight line through data
with the same experimental error for all the data points. We assume that the data to be fitted are
given by (xi, yi), with i = 1 to n.

We write for the fitting curve
y(x) = αx + β.

The distance ri from the data point (xi, yi) and the fitting curve is given by

ri = yi − y(xi)

= yi − (αxi + β).

A least-squares fit minimizes the sum of the squares of the ri’s. This minimum can be shown to
result in the most probable values of α and β.

We define

ρ =
n

∑
i=1

r2
i

=
n

∑
i=1

(
yi − (αxi + β)

)2.

To minimize ρ with respect to α and β, we solve

∂ρ

∂α
= 0,

∂ρ

∂β
= 0.

Taking the partial derivatives, we have

∂ρ

∂α
=

n

∑
i=1

2(−xi)
(
yi − (αxi + β)

)
= 0,

∂ρ

∂β
=

n

∑
i=1

2(−1)
(
yi − (αxi + β)

)
= 0.

These equations form a system of two linear equations in the two unknowns α and β, which is
evident when rewritten in the form

α
n

∑
i=1

x2
i + β

n

∑
i=1

xi =
n

∑
i=1

xiyi,

α
n

∑
i=1

xi + βn =
n

∑
i=1

yi.

These equations can be solved numerically, and MATLAB provides a built-in subroutine called
polyfit.m. With the data in the vectors x and y, the MATLAB call

p = polyfit(x,y,1);

returns the values p(1) = α and p(2) = β, which can then be used to draw the fitting line.

53

54 CHAPTER 9. LEAST-SQUARES APPROXIMATION

Part II

Dynamical systems and chaos

55

The second part of this course will include a discussion of dynamical systems theory and
chaos. Our main vehicle for this discussion will be the motion of the one-dimensional driven,
damped pendulum.

57

58

Chapter 10

The simple pendulum
We first consider the simple pendulum shown in Fig. 10.1. A mass is attached to a massless

rigid rod, and is constrained to move along an arc of a circle centered at the pivot point. Suppose
l is the fixed length of the connecting rod, and θ is the angle it makes with the vertical axis. We
will derive the governing equations for the motion of the mass, and an equation which can be
solved to determine the period of oscillation.

10.1 Governing equations

The governing equations for the pendulum are derived from Newton’s equation, F = ma. Be-
cause the pendulum is constained to move along an arc, we can write Newton’s equation directly
for the displacement s of the pendulum along the arc with origin at the bottom and positive
direction to the right.

The relevant force on the pendulum is the component of the gravitational force along the arc,
and from Fig. 10.1 is seen to be

Fg = −mg sin θ, (10.1)

where the negative sign signifies a force acting along the negative s direction when 0 < θ < π,
and the positive s direction when −π < θ < 0.

Newton’s equation for the simple pendulum moving along the arc is therefore

ms̈ = −mg sin θ.

Now, the relationship between the arc length s and the angle θ is given by s = lθ, and therefore
s̈ = lθ̈. The simple pendulum equation can then be written in terms of the angle θ as

θ̈ + ω2 sin θ = 0, (10.2)

with
ω =

√
g/l. (10.3)

The standard small angle approximation sin θ ≈ θ results in the well-known equation for the
simple harmonic oscillator,

θ̈ + ω2θ = 0. (10.4)

We have derived the equations of motion by supposing that the pendulum is constrained
to move along the arc of a circle. Such a constraint is valid provided the pendulum mass is
connected to a massless rigid rod. If the rod is replaced by a massless spring, say, then oscillations
in the length of the spring can occur. Deriving the equations for this more general physical
situation requires considering the vector form of Newton’s equation.

With the origin of the coordinate system located at the base of the pendulum, we define the
positive x-direction to be pointing down, and the positive y direction to be pointing to the right.
The mass is located at the position vector x = (x, y). Both gravity and the tension force T acts on
the mass, and the governing equations are given by

mẍ = mg− T cos θ,

mÿ = −T sin θ.

59

10.1. GOVERNING EQUATIONS

Figure 10.1: Forces acting on the pendulum.

It is informative to construct the equivalent governing equations in polar coordinates. To do so,
we form the complex coordinate z = x + iy, and make use of the polar form for z, given by

z = reiθ .

The governing equations then become

d2

dt2

(
reiθ
)
= g− T

m
eiθ . (10.5)

The second derivative can be computed using the product and chain rules, and one finds

d2

dt2

(
reiθ
)
=
((

r̈− rθ̇2)+ i
(
rθ̈ + 2ṙθ̇

))
eiθ .

Dividing both sides of (10.5) by eiθ , we obtain

(
r̈− rθ̇2)+ i

(
rθ̈ + 2ṙθ̇

)
= ge−iθ − T

m
. (10.6)

The two governing equations in polar coordinates, then, are determined by equating the real
parts and the imaginary parts of (10.6), and we find

r̈− rθ̇2 = g cos θ − T
m

, (10.7)

rθ̈ + 2ṙθ̇ = −g sin θ. (10.8)

If the connector is a rigid rod, as we initially assumed, then r = l, ṙ = 0, and r̈ = 0. The first
equation (10.7) is then an equation for the tension T in the rod, and the second equation (10.8)
reduces to our previously derived (10.2). If the connector is a spring, then Hooke’s law may be
applied. Suppose the spring constant is k and the unstretched spring has length l. Then

T = k(r− l)

in (10.7), and a pair of simultaneous second-order equations govern the motion. The stable
equilibrium with the mass at rest at the bottom satisfies θ = 0 and r = l + mg/k; i.e., the spring
is stretched to counterbalance the hanging mass.

60 CHAPTER 10. THE SIMPLE PENDULUM

10.2. PERIOD OF MOTION

10.2 Period of motion

In general, the period of the simple pendulum depends on the amplitude of its motion. For small
amplitude oscillations, the simple pendulum equation (10.2) reduces to the simple harmonic os-
cillator equation (10.4), and the period becomes independent of amplitude. The general solution
of the simple harmonic oscillator equation can be written as

θ(t) = A cos (ωt + ϕ).

Initial conditions on θ and θ̇ determine A and ϕ, and by redefining the origin of time, one can
always choose ϕ = 0 and A > 0. With this choice, A = θm, the maximum amplitude of the
pendulum, and the analytical solution of (10.4) is

θ(t) = θm cos ωt,

where ω is called the angular frequency of oscillation. The period of motion is related to the
angular frequency by

T = 2π/ω,

and is independent of the amplitude θm.
If sin θ ≈ θ is no longer a valid approximation, then we need to solve the simple pendulum

equation (10.2). We first derive a closed form analytical expression, and then explain how to
compute a numerical solution.

10.2.1 Analytical solution
A standard procedure for solving unfamiliar differential equations is to try and determine some
combination of variables that is independent of time. Here, we can multiply (10.2) by θ̇ to obtain

θ̇θ̈ + ω2 θ̇ sin θ = 0. (10.9)

Now,

θ̇θ̈ =
d
dt

(
1
2

θ̇2
)

, θ̇ sin θ =
d
dt

(− cos θ) ,

so that (10.9) can be written as
d
dt

(
1
2

θ̇2 −ω2 cos θ

)
= 0. (10.10)

The combination of variables in the parenthesis is therefore independent of time and is called an
integral of motion. It is also said to be conserved, and (10.10) is called a conservation law. In
physics, this integral of motion (multiplied by ml2) is identified with the energy of the oscillator.

The value of this integral of motion at t = 0 is given by −ω2 cos θm, so the derived conserva-
tion law takes the form

1
2

θ̇2 −ω2 cos θ = −ω2 cos θm, (10.11)

which is a separable first-order differential equation.
We can compute the period of oscillation T as four times the time it takes for the pendulum

to go from its initial height to the bottom. During this quarter cycle of oscillation, dθ/dt < 0 so
that from (10.11),

dθ

dt
= −
√

2ω
√

cos θ − cos θm.

After separating and integrating over a quarter period, we have∫ T/4

0
dt = −

√
2

2ω

∫ 0

θm

dθ√
cos θ − cos θm

,

CHAPTER 10. THE SIMPLE PENDULUM 61

10.2. PERIOD OF MOTION

or

T =
2
√

2
ω

∫ θm

0

dθ√
cos θ − cos θm

. (10.12)

We can transform this equation for the period into a more standard form using a trigonometric
identity and a substitution. The trig-identity is the well-known half-angle formula for sin, given
by

sin2 (θ/2) =
1
2
(1− cos θ).

Using this identity, we write

cos θ = 1− 2 sin2 (θ/2), cos θm = 1− 2 sin2 (θm/2), (10.13)

and substituting (10.13) into (10.12) results in

T =
2
ω

∫ θm

0

dθ√
sin2 (θm/2)− sin2 (θ/2)

. (10.14)

We now define the constant
a = sin (θm/2), (10.15)

and perform the substitution

sin φ =
1
a

sin (θ/2). (10.16)

Developing this substitution, we have

cos φ dφ =
1
2a

cos (θ/2) dθ. (10.17)

Now,

cos (θ/2) =
√

1− sin2 (θ/2)

=
√

1− a2 sin2 φ,

so that (10.17) can be solved for dθ:

dθ =
2a cos φ√

1− a2 sin2 φ
dφ. (10.18)

Using (10.16), the domain of integration θ ∈ [0, θm] transforms into φ ∈ [0, π/2]. Therefore,
substituting (10.16) and (10.18) into (10.14) results in the standard equation for the period given
by

T =
4
ω

∫ π/2

0

dφ√
1− a2 sin2 φ

, (10.19)

with a given by (10.15). The integral T = T(a) is called the complete elliptic integral of the first
kind.

For small amplitudes of oscillation, it is possible to determine the leading-order dependence
of the period on θm. Now a is given by (10.15), so that a Taylor series to leading order yields

a2 =
1
4

θ2
m + O(θ4

m).

62 CHAPTER 10. THE SIMPLE PENDULUM

10.2. PERIOD OF MOTION

Similarly, the Taylor series expansion of the integrand of (10.19) is given by

1√
1− a2 sin2 φ

= 1 +
1
2

a2 sin2 φ + O(a4)

= 1 +
1
8

θ2
m sin2 φ + O(θ4

m).

Therefore, from (10.19),

T =
4
ω

∫ π/2

0
dφ

(
1 +

1
8

θ2
m sin2 φ

)
+ O(θ4

m).

Using ∫ π/2

0
dφ sin2 φ =

π

4
,

we have

T =
2π

ω

(
1 +

θ2
m

16

)
+ O(θ4

m). (10.20)

10.2.2 Numerical solution

We discuss here two methods for computing the period of the pendulum T = T(θm) as a function
of the maximum amplitude. The period can be found in units of ω−1; that is, we compute ωT.

The first method makes use of our analytical work and performs a numerical integration of
(10.19). Algorithms for numerical integration are discussed in Chapter 3. In particular, use can
be made of adaptive Simpson’s quadrature, implemented in the MATLAB function quad.m.

The second method, which is just as reasonable, solves the differential equation (10.2) directly.
Nondimensionalizing using τ = ωt, equation (10.2) becomes

d2θ

dτ2 + sin θ = 0. (10.21)

To solve (10.21), we write this second-order equation as the system of two first-order equations

dθ

dτ
= u,

du
dτ

= − sin θ,

with initial conditions θ(0) = θm and u(0) = 0. We then determine the (dimensionless) time
required for the pendulum to move to the position θ = 0: this time will be equal to one-fourth of
the period of motion.

Algorithms for integration of ordinary differential equations are discussed in Chapter 4. In
particular, use can be made of a Runge-Kutta (4,5) formula, the Dormand-Prince pair, that is
implemented in the MATLAB function ode45.m.

Perhaps the simplest way to compute the period is to make use of the Event Location Property
of the MATLAB ode solver. Through the odeset option, it is possible to instruct ode45.m to
end the time integration when the event θ = 0 occurs, and to return the time at which this event
takes place.

A graph of the dimensionless period ωT versus the amplitude θm is shown in Fig. 10.2. For
comparison, the low-order analytical result of (10.20) is shown as the dashed line.

CHAPTER 10. THE SIMPLE PENDULUM 63

10.2. PERIOD OF MOTION

0 0.5 1 1.5 2 2.5 3
6

8

10

12

14

16

18

θm

ω
T

Figure 10.2: The dimensionless period of the simple pendulum ωT versus amplitude θm. The
solid line is the numerical result and the dashed line is a low-order approximation.

64 CHAPTER 10. THE SIMPLE PENDULUM

Chapter 11

The damped, driven pendulum
The simple pendulum is the mathematical idealization of a frictionless pendulum. We now

consider the effects of friction as well as an externally imposed periodic force. The frictional force
is modeled as

Ff = −γlθ̇,

where the frictional force is opposite in sign to the velocity, and thus opposes motion. The
positive parameter γ is called the coefficient of friction. The external periodic force is modeled as

Fe = F cos Ωt,

where F is the force’s amplitude and Ω is the force’s angular frequency. If we also include the
gravitational force given by (10.1), Newton’s equation can then be written as

θ̈ + λθ̇ + ω2 sin θ = f cos Ωt, (11.1)

where λ = γ/m, f = F/ml, and ω is defined in (10.3). An analytical solution of (11.1) is
possible only for small oscillations. Indeed, the damped, driven pendulum can be chaotic when
oscillations are large.

11.1 The linear pendulum

11.1.1 Damped pendulum
Here, we exclude the external force, and consider the damped pendulum using the small am-
plitude approximation sin θ ≈ θ. The governing equation becomes the linear, second-order,
homogeneous differential equation given

θ̈ + λθ̇ + ω2θ = 0, (11.2)

which is usually discussed in detail in a first course on differential equations.
The characteristic equation of (11.2) is obtained by the ansatz θ(t) = exp (αt), which yields

α2 + λα + ω2 = 0, (11.3)

with solution
α± = −1

2
λ± 1

2

√
λ2 − 4ω2. (11.4)

For convenience, we define β = λ/2 so that (11.4) becomes

α± = −β±
√

β2 −ω2. (11.5)

The discriminant of (11.5) is β2 − ω2, and its sign determines the nature of the damped oscilla-
tions.

The underdamped pendulum satisfies β < ω, and we write

α± = −β± iω∗,

65

11.1. THE LINEAR PENDULUM

where ω∗ =
√

ω2 − β2 and i =
√
−1. In this case, the general solution of (11.2) is a damped

oscillation given by
θ(t) = e−βt (A cos ω∗t + B sin ω∗t) .

The overdamped pendulum satisfies β > ω, and the general solution is an exponential decay
and is given by

θ(t) = c1eα+t + c2eα−t,

where both α+ and α− are negative.
The critically damped pendulum corresponds to the special case when β = ω, and with

α+ = α− = α < 0, the general solution is given by

θ(t) = (c1 + c2t) eαt.

11.1.2 Driven pendulum
Here, we neglect friction but include the external periodic force. The small amplitude approxi-
mation results in the governing equation

θ̈ + ω2θ = f cos Ωt. (11.6)

An interesting solution occurs exactly at resonance, when the external forcing frequency Ω ex-
actly matches the frequency ω of the unforced oscillator. Here, the inhomogeneous term of
the differential equation is a solution of the homogeneous equation. With the initial conditions
θ(0) = θ0 and θ̇(0) = 0, the solution at resonance can be determined to be

θ(t) = θ0 cos ωt +
f

2ω
t sin ωt,

which is a sum of a homogeneous solution (with coefficients determined to satisfy the initial con-
ditions) plus the particular solution. The particular solution is an oscillation with an amplitude
that increases linearly with time. Eventually, the small amplitude approximation used to derive
(11.6) will become invalid.

An interesting computation solves the pendulum equation at resonance—replacing ω2θ in
(11.6) by ω2 sin θ—with the pendulum initially at rest at the bottom (θ0 = 0). What happens to
the amplitude of the oscillation after its initial linear increase?

11.1.3 Damped, driven pendulum
Here, we consider both friction and an external periodic force. The small amplitude approxima-
tion of (11.1) is given by

θ̈ + λθ̇ + ω2θ = f cos Ωt. (11.7)

The general solution to (11.7) is determined by adding a particular solution to the general solution
of the homogeneous equation. Because of friction, the homogeneous solutions decay to zero
leaving at long times only the non-decaying particular solution. To find this particular solution,
we note that the complex ode given by

z̈ + λż + ω2z = f eiΩt, (11.8)

with z = x + iy, represents two real odes given by

ẍ + λẋ + ω2x = f cos Ωt, ÿ + λẏ + ω2y = f sin Ωt,

where the first equation is the same as (11.7). We can therefore solve the complex ode (11.8) for
z(t), and then take as our solution θ(t) = Re(z).

66 CHAPTER 11. THE DAMPED, DRIVEN PENDULUM

11.1. THE LINEAR PENDULUM

With the ansatz zp = AeiΩt, we have from (11.8)

−Ω2 A + iλΩA + ω2 A = f ,

or solving for A,

A =
f

(ω2 −Ω2) + iλΩ
. (11.9)

The complex coefficient A determines both the amplitude and the phase of the oscillation. We
first rewrite A by multiplying the numerator and denominator by the complex conjugate of the
denominator:

A =
f
(
(ω2 −Ω2)− iλΩ

)
(ω2 −Ω2)2 + λ2Ω2 .

Now, using the polar form of a complex number, we have

(ω2 −Ω2)− iλΩ =
√
(ω2 −Ω2)2 + λ2Ω2eiφ,

where tan φ = λΩ/(Ω2 −ω2). Therefore, A can be rewritten as

A =
f eiφ√

(ω2 −Ω2)2 + λ2Ω2
.

With the particular solution given by θ(t) = Re(Aeiωt), we have

θ(t) =

(
f√

(ω2 −Ω2)2 + λ2Ω2

)
Re
(

ei(Ωt+φ)
)

(11.10)

=

(
f√

(ω2 −Ω2)2 + λ2Ω2

)
cos (Ωt + φ). (11.11)

The amplitude of the pendulum’s oscillation at long times is therefore given by

f√
(ω2 −Ω2)2 + λ2Ω2

,

and the phase shift of the oscillation relative to the external periodic force is given by φ.
For example, if the external forcing frequency is tuned to match the frequency of the unforced

oscillator, that is, Ω = ω, then one obtains directly from (11.9) that A = f /(iλω), so that the
asymptotic solution for θ(t) is given by

θ(t) =
f

λω
sin ωt. (11.12)

The oscillator is observed to be π/2 out of phase with the external force, or in other words, the
velocity of the oscillator, not the position, is in phase with the force.

The solution given by (11.12) shows that large amplitude oscillations can result by either
increasing f , or decreasing λ or ω. As the amplitude of oscillation becomes large, the small
amplitude approximation sin θ ≈ θ may become inaccurate and the true pendulum solution may
diverge from (11.12).

CHAPTER 11. THE DAMPED, DRIVEN PENDULUM 67

11.2. THE NONLINEAR PENDULUM

11.2 The nonlinear pendulum

As we already eluded, the fully nonlinear damped, driven pendulum can become chaotic. To
study (11.1) numerically, or for that matter any other equation, the number of free parameters
should be reduced to a minimum. This usually means that the governing equations should
be nondimensionalized, and the dimensional parameters should be grouped into a minimum
number of dimensionless parameters. How many dimensionless parameters will there be? The
answer to this question is called the Buckingham Π Theorem.

The Buckingham Π Theorem: If an equation involves n dimensional parameters that are specified
in terms of k independent units, then the equation can be nondimensionalized to one involving n − k
dimensionless parameters.

Now, the damped, driven pendulum equation (11.1) contains four dimensional parameters, λ,
f , ω, and Ω, and has a single independent unit, namely time. Therefore, this equation can
be nondimensionalized to an equation with only three dimensionless parameters. Namely, we
nondimensionalize time using one of the dimensional parameters. Here, we choose ω, with units
of inverse time, and write

τ = ωt,

where τ is now the dimensionless time. The damped, driven pendulum equation (11.1) therefore
nondimensionalizes to

d2θ

dτ2 +

(
λ

ω

)
dθ

dτ
+ sin θ =

(
f

ω2

)
cos

((
Ω
ω

)
τ

)
, (11.13)

and the remaining three dimensionless groupings of parameters are evidently

λ

ω
,

f
ω2 ,

Ω
ω

.

We may give these three dimensionless groupings new names. Rather than introduce even more
named parameters into the problem, I will now call the dimensionless time t, and reuse some of
the other parameter names, with the understanding that the damped, driven pendulum equation
that we will now study numerically is dimensionless. We will therefore study the equation

θ̈ +
1
q

θ̇ + sin θ = f cos ωt, (11.14)

with the now dimensionless parameters named q, f and ω.
Equation (11.14) is called a non-autonomous equation. For a differential equation to be called

autonomous, the independent variable t must not appear explicitly. It is possible to write this
second-order non-autonomous differential equation as a system of three first-order autonomous
equations by introducing the dependent variable ψ = ωt. We therefore have

θ̇ = u,

u̇ = −1
q

u− sin θ + f cos ψ, (11.15)

ψ̇ = ω.

The necessary conditions for an autonomous system of differential equations to admit chaotic
solutions are (1) the system has at least three independent dynamical variables, and; (2) the
system contains at least one nonlinear coupling. Here, we see that the damped, driven pendulum

68 CHAPTER 11. THE DAMPED, DRIVEN PENDULUM

11.2. THE NONLINEAR PENDULUM

equation satisfies these conditions, where the three independent dynamical variables are θ, u and
ψ, and there are two nonlinear couplings, sin θ and cos ψ, where we already know that the first
nonlinear coupling is required for chaotic solutions.

But what exactly is chaos? What we are considering here is called deterministic chaos, that
is chaotic solutions to deterministic equations such as a non-stochastic differential equation. Al-
though there is no definitive definition of chaos, perhaps its most important characteristic is a
solution’s sensitivity to initial conditions. A small change in initial conditions can lead to a large
deviation in a solution’s behavior. A solution’s sensitivity to initial conditions has been called
the Butterfly Effect, where the image of a butterfly appeared in the title of a talk that one of the
founders of the field, Edward Lorenz, gave in 1972: “Does the flap of a butterfly’s wings in Brazil
set off a tornado in Texas?”

We can easily observe that the small amplitude approximation of (11.14) can not admit chaotic
solutions. Suppose we consider two solutions θ1(t) and θ2(t) to the approximate equations, these
two solutions differing only in their initial conditions. We therefore have

θ̈1 +
1
q

θ̇1 + θ1 = f cos ωt,

θ̈2 +
1
q

θ̇2 + θ2 = f cos ωt.

If we define δ = θ2 − θ1, then the equation satisfied by δ = δ(t) is given by

δ̈ +
1
q

δ̇ + δ = 0,

which is the undriven, damped pendulum equation. Therefore, δ(t)→ 0 for large times, and the
solution for θ2 and θ1 eventually converge, despite different initial conditions. In other words,
there is no sensitivity to initial conditions in the solution. Only for large amplitudes where the
approximation sin θ ≈ θ becomes invalid, are chaotic solutions possible.

We will next learn some of the concepts and tools required for a numerical exploration of
chaos in dynamical systems.

CHAPTER 11. THE DAMPED, DRIVEN PENDULUM 69

11.2. THE NONLINEAR PENDULUM

70 CHAPTER 11. THE DAMPED, DRIVEN PENDULUM

Chapter 12

Concepts and tools
We introduce here the concepts and tools that are useful in studying nonlinear dynamical

systems.

12.1 Fixed points and linear stability analysis

Consider the one-dimensional differential equation for x = x(t) given by

ẋ = f (x). (12.1)

We say that x∗ is a fixed point, or equilibrium point, of (12.1) if f (x∗) = 0, so that at a fixed point,
ẋ = 0. The name fixed point is apt since the solution to (12.1) with initial condition x(0) = x∗ is
fixed at x(t) = x∗ for all time t.

A fixed point, however, can be stable or unstable. A fixed point is said to be stable if a small
perturbation decays in time; it is said to be unstable if a small perturbation grows in time.

We can determine stability by a linear analysis. Let x = x∗ + ε(t), where ε represents a small
perturbation of the solution from the fixed point x∗. Because x∗ is a constant, ẋ = ε̇; and because
x∗ is a fixed point, f (x∗) = 0. Taylor series expanding about ε = 0, we have

ε̇ = f (x∗ + ε)

= f (x∗) + ε f ′(x∗) + . . .

= ε f ′(x∗) +

The omitted terms in the Taylor series expansion are proportional to ε2, and can be made
negligible—at least over a short time interval—by taking ε(0) small. The differential equation
to be considered, ε̇ = f ′(x∗)ε, is therefore linear, and has the solution

ε(t) = ε(0)e f ′(x∗)t.

The perturbation of the fixed point solution x(t) = x∗ thus decays or grows exponentially de-
pending on the sign of f ′(x∗). The stability condition on x∗ is therefore

x∗ is
{

a stable fixed point if f ′(x∗) < 0,
an unstable fixed point if f ′(x∗) > 0.

For the special case f ′(x∗) = 0, we say the fixed point is marginally stable. We will see that
bifurcations usually occur at parameter values where fixed points become marginally stable.

Difference equations, or maps, may be similarly analyzed. Consider the one-dimensional
map given by

xn+1 = f (xn). (12.2)

We say that xn = x∗ is a fixed point of the map if x∗ = f (x∗). The stability of this fixed point can
then be determined by writing xn = x∗ + εn so that (12.2) becomes

x∗ + εn+1 = f (x∗ + εn)

= f (x∗) + εn f ′(x∗) + . . .

= x∗ + εn f ′(x∗) +

71

12.1. FIXED POINTS AND LINEAR STABILITY ANALYSIS

Therefore, to leading-order in ε, ∣∣∣∣ εn+1
εn

∣∣∣∣ = ∣∣ f ′(x∗)
∣∣ ,

and the stability condition on x∗ for a one-dimensional map is

x∗ is
{

a stable fixed point if | f ′(x∗)| < 1,
an unstable fixed point if | f ′(x∗)| > 1.

Here, marginal stability occurs when | f ′(x∗)| = 1, and bifurcations usually occur at parameter
values where the fixed point becomes marginally stable. If f ′(x∗) = 0, then the fixed point
is called superstable. Perturbations to a superstable fixed point decay especially fast, making
numerical calculations at superstable fixed points more rapidly convergent.

The tools of fixed point and linear stability analysis are also applicable to higher-order sys-
tems of equations. Consider the two-dimensional system of differential equations given by

ẋ = f (x, y), ẏ = g(x, y). (12.3)

The point (x∗, y∗) is said to be a fixed point of (12.3) if f (x∗, y∗) = 0 and g(x∗, y∗) = 0. Again,
the local stability of a fixed point can be determined by a linear analysis. We let x(t) = x∗ + ε(t)
and y(t) = y∗ + δ(t), where ε and δ are small independent perturbations from the fixed point.
Making use of the two dimensional Taylor series of f (x, y) and g(x, y) about the fixed point, or
equivalently about (ε, δ) = (0, 0), we have

ε̇ = f (x∗ + ε, y∗ + δ)

= f∗ + ε
∂ f∗
∂x

+ δ
∂ f∗
∂y

+ . . .

= ε
∂ f∗
∂x

+ δ
∂ f∗
∂y

+ . . . ,

δ̇ = g(x∗ + ε, y∗ + δ)

= g∗ + ε
∂g∗
∂x

+ δ
∂g∗
∂y

+ . . .

= ε
∂g∗
∂x

+ δ
∂g∗
∂y

+ . . . ,

where in the Taylor series f∗, g∗ and the similarly marked partial derivatives all denote functions
evaluated at the fixed point. Neglecting higher-order terms in the Taylor series, we thus have a
system of odes for the perturbation, given in matrix form as

d
dt

(
ε
δ

)
=

(
∂ f∗/∂x ∂ f∗/∂y
∂g∗/∂x ∂g∗/∂y

)(
ε
δ

)
. (12.4)

The two-by-two matrix in (12.4) is called the Jacobian matrix at the fixed point. An eigenvalue
analysis of the Jacobian matrix will typically yield two eigenvalues λ1 and λ2. These eigenvalues
may be real and distinct, complex conjugate pairs, or repeated. The fixed point is stable (all
perturbations decay exponentially) if both eigenvalues have negative real parts. The fixed point
is unstable (some perturbations grow exponentially) if at least one eigenvalue has a positive real
part. Fixed points can be further classified as stable or unstable nodes, unstable saddle points,
stable or unstable spiral points, or stable or unstable improper nodes.

72 CHAPTER 12. CONCEPTS AND TOOLS

12.2. BIFURCATIONS

→ ← →

r<0

→ →

r=0 r>0

dx/dt

x

(a)

(b)
x

*

r

Figure 12.1: Saddlenode bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

12.2 Bifurcations

For nonlinear systems, small changes in the parameters of the system can result in qualitative
changes in the dynamics. These qualitative changes are called bifurcations. Here we consider
four classic bifurcations of one-dimensional nonlinear differential equations: the saddle-node bi-
furcation, the transcritical bifurcation, and the supercritical and subcritical pitchfork bifurcations.
The differential equation that we will consider is in general written as

ẋ = fr(x),

where the subscript r represents a parameter that results in a bifurcation when varied across zero.
The simplest differential equations that exhibit these bifurcations are called the normal forms, and
correspond to a local analysis (i.e., Taylor series expansion) of more general differential equations
around the fixed point, together with a possible rescaling of x.

12.2.1 Saddle-node bifurcation
The saddle-node bifurcation results in fixed points being created or destroyed. The normal form
for a saddle-node bifurcation is given by

ẋ = r + x2.

The fixed points are x∗ = ±
√
−r. Clearly, two real fixed points exist when r < 0 and no real

fixed points exist when r > 0. The stability of the fixed points when r < 0 are determined by the

CHAPTER 12. CONCEPTS AND TOOLS 73

12.2. BIFURCATIONS

← → ←

r<0

dx/dt

x

(a)

← ←

r=0

←← →

r>0

x
*

r

(b)

Figure 12.2: Transcritical bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

derivative of f (x) = r + x2, given by f ′(x) = 2x. Therefore, the negative fixed point is stable and
the positive fixed point is unstable.

We can illustrate this bifurcation. First, in Fig. 12.1(a), we plot ẋ versus x for the three
parameter values corresponding to r < 0, r = 0 and r > 0. The values at which ẋ = 0 correspond
to the fixed points, and arrows are drawn indicating how the solution x(t) evolves (to the right
if ẋ > 0 and to the left if ẋ < 0). The stable fixed point is indicated by a filled circle and the
unstable fixed point by an open circle. Note that when r = 0, solutions converge to the origin
from the left, but diverge from the origin on the right.

Second, we plot the standard bifurcation diagram in Fig. 12.1(b), where the fixed point x∗ is
plotted versus the bifurcation parameter r. As is the custom, the stable fixed point is denoted by
a solid line and the unstable fixed point by a dashed line. Note that the two fixed points collide
and annihilate at r = 0, and there are no fixed points for r > 0.

12.2.2 Transcritical bifurcation
A transcritical bifurcation occurs when there is an exchange of stabilities between two fixed
points. The normal form for a transcritical bifurcation is given by

ẋ = rx− x2.

The fixed points are x∗ = 0 and x∗ = r. The derivative of the right-hand-side is f ′(x) = r− 2x, so
that f ′(0) = r and f ′(r) = −r. Therefore, for r < 0, x∗ = 0 is stable and x∗ = r is unstable, while
for r > 0, x∗ = r is stable and x∗ = 0 is unstable. The two fixed points thus exchange stability as
r passes through zero. The transcritical bifurcation is illustrated in Fig. 12.2.

74 CHAPTER 12. CONCEPTS AND TOOLS

12.2. BIFURCATIONS

→ ←

r<0

dx/dt

x

(a)

→ ←

r=0

←→ ← →

r>0

x
*

r

(b)

Figure 12.3: Supercritical pitchfork bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

12.2.3 Pitchfork bifurcations

The pitchfork bifurcations occur when one fixed point becomes three at the bifurcation point.
Pitchfork bifurcations are usually associated with the physical phenomena called symmetry
breaking. Pitchfork bifurcations come in two types. In the supercritical pitchfork bifurcation,
the stability of the original fixed point changes from stable to unstable and a new pair of stable
fixed points are created above (super-) the bifurcation point. In the subcritical bifurcation, the
stability of the original fixed point again changes from stable to unstable but a new pair of now
unstable fixed points are created below (sub-) the bifurcation point.

Supercritical pitchfork bifurcation

The normal form for the supercritical pitchfork bifurcation is given by

ẋ = rx− x3. (12.5)

Note that the linear term results in exponential growth when r > 0 and the nonlinear term
stabilizes this growth. The fixed points are x∗ = 0 and x∗ = ±

√
r, the latter fixed points existing

only when r > 0. The derivative of f is f ′(x) = r − 3x2 so that f ′(0) = r and f ′(±
√

r) = −2r.
Therefore, the fixed point x∗ = 0 is stable for r < 0 and unstable for r > 0 while the fixed points
x = ±

√
r exist and are stable for r > 0. Notice that the fixed point x∗ = 0 becomes unstable as

r crosses zero and two new stable fixed points x∗ = ±
√

r are born. The supercritical pitchfork
bifurcation is illustrated in Fig. 12.3.

CHAPTER 12. CONCEPTS AND TOOLS 75

12.2. BIFURCATIONS

x
*

r

Figure 12.4: Subcritical pitchfork bifurcation diagram.

The pitchfork bifurcation illustrates the physics of symmetry breaking. The differential equa-
tion (12.5) is invariant under the transformation x → −x. Fixed point solutions of this equation
that obey this same symmetry are called symmetric; fixed points that do not are called asym-
metric. Here, x∗ = 0 is the symmetric fixed point and x = ±

√
r are asymmetric. Asymmetric

fixed points always occur in pairs, and mirror each others stability characteristics. Only the initial
conditions determine which asymmetric fixed point is asymptotically attained.

Subcritical pitchfork bifurcation

In the subcritical case, the cubic term is destabilizing. The normal form (to order x3) is

ẋ = rx + x3.

The fixed points are x∗ = 0 and x∗ = ±
√
−r, the latter fixed points existing only when r ≤ 0.

The derivative of the right-hand-side is f ′(x) = r + 3x2 so that f ′(0) = r and f ′(±
√
−r) = −2r.

Therefore, the fixed point x∗ = 0 is stable for r < 0 and unstable for r > 0 while the fixed points
x = ±

√
−r exist and are unstable for r < 0. There are no stable fixed points when r > 0.

The absence of stable fixed points for r > 0 indicates that the neglect of terms of higher-order
in x than x3 in the normal form may be unwarranted. Keeping to the intrinsic symmetry of the
equations (only odd powers of x so that the equation is invariant when x → −x) we can add a
stabilizing nonlinear term proportional to x5. The extended normal form (to order x5) is

ẋ = rx + x3 − x5,

and is somewhat more difficult to analyze. The fixed points are solutions of

x(r + x2 − x4) = 0.

The fixed point x∗ = 0 exists for all r, and four additional fixed points can be found from the
solutions of the quadratic equation in x2:

x∗ = ±
√

1
2
(1±

√
1 + 4r).

These fixed points exist only if x∗ is real. Clearly, for the inner square-root to be real, r ≥ −1/4.
Also observe that 1−

√
1 + 4r becomes negative for r > 0. We thus have three intervals in r to

76 CHAPTER 12. CONCEPTS AND TOOLS

12.2. BIFURCATIONS

consider, and these regions and their fixed points are

r < −1
4

: x∗ = 0 (one fixed point);

−1
4
< r < 0 : x∗ = 0, x∗ = ±

√
1
2
(1±

√
1 + 4r) (five fixed points);

r > 0 : x∗ = 0, x∗ = ±
√

1
2
(1 +

√
1 + 4r) (three fixed points).

Stability is determined from f ′(x) = r + 3x2 − 5x4. Now, f ′(0) = r so x∗ = 0 is stable for r < 0
and unstable for r > 0. The calculation for the other four roots can be simplified by noting that
x∗ satisfies r + x2

∗ − x4
∗ = 0, or x4

∗ = r + x2
∗. Therefore,

f ′(x∗) = r + 3x2
∗ − 5x4

∗

= r + 3x2
∗ − 5(r + x2

∗)

= −4r− 2x2
∗

= −2(2r + x2
∗).

With x2
∗ =

1
2 (1±

√
1 + 4r), we have

f ′(x∗) = −2
(

2r +
1
2
(1±

√
1 + 4r)

)
= −

(
(1 + 4r)±

√
1 + 4r

)
= −
√

1 + 4r
(√

1 + 4r± 1
)

.

Clearly, the plus root is always stable since f ′(x∗) < 0. The minus root exists only for − 1
4 < r < 0

and is unstable since f ′(x∗) > 0. We summarize the stability of the various fixed points:

r < −1
4

: x∗ = 0 (stable);

−1
4
< r < 0 : x∗ = 0, (stable)

x∗ = ±
√

1
2
(1 +

√
1 + 4r) (stable);

x∗ = ±
√

1
2
(1−

√
1 + 4r) (unstable);

r > 0 : x∗ = 0 (unstable)

x∗ = ±
√

1
2
(1 +

√
1 + 4r) (stable).

The bifurcation diagram is shown in Fig. 12.4. Notice that there in addition to a subcritical
pitchfork bifurcation at the origin, there are two symmetric saddlenode bifurcations that occur
when r = −1/4.

We can imagine what happens to the solution to the ode as r increases from negative values,
supposing there is some noise in the system so that x(t) fluctuates around a stable fixed point.
For r < −1/4, the solution x(t) fluctuates around the stable fixed point x∗ = 0. As r increases
into the range −1/4 < r < 0, the solution will remain close to the stable fixed point x∗ = 0.
However, a so-called catastrophe occurs as soon as r > 0. The x∗ = 0 fixed point is lost and the

CHAPTER 12. CONCEPTS AND TOOLS 77

12.3. PHASE PORTRAITS

solution will jump up (or down) to the only remaining fixed point. A similar catastrophe can
happen as r decreases from positive values. In this case, the jump occurs as soon as r < −1/4.
Since the behavior of x(t) is different depending on whether we increase or decrease r, we say
that the system exhibits hysteresis. The existence of a subcritical pitchfork bifurcation can be
very dangerous in engineering applications since a small change in the physical parameters of a
problem can result in a large change in the equilibrium state. Physically, this can result in the
collapse of a structure.

12.2.4 Hopf bifurcations
A new type of bifurcation can occur in two dimensions. Suppose there is some control parameter
µ. Furthermore, suppose that for µ < 0, a two-dimensional system approaches a fixed point
by exponentially-damped oscillations. We know that the Jacobian matrix at the fixed point with
µ < 0 will have complex conjugate eigenvalues with negative real parts. Now suppose that when
µ > 0 the real parts of the eigenvalues become positive so that the fixed point becomes unstable.
This change in stability of the fixed point is called a Hopf bifurcation. The Hopf bifurcations also
come in two types: a supercritical Hopf bifurcation and a subcritical Hopf bifurcation. For the
supercritical Hopf bifurcation, as µ increases slightly above zero, the resulting oscillation around
the now unstable fixed point is quickly stabilized at small amplitude, and one obtains a limit
cycle. For the subcritical Hopf bifurcation, as µ increases slightly above zero, the limit cycle
immediately jumps to large amplitude.

12.3 Phase portraits

The phase space of a dynamical system consists of the independent dynamical variables. For
example, the phase space of the damped, driven pendulum equations given by (11.15) is three
dimensional and consists of θ, u and φ. The unforced equations have only a two-dimensional
phase space, consisting of θ and u.

An important feature of paths in phase space is that they can never cross except at a fixed
point, which may be stable if all paths go into the point, or unstable if some paths go out. This
is a consequence of the uniqueness of the solution to a differential equation. Every point on the
phase-space diagram represents a possible initial condition for the equations, and must have a
unique trajectory associated with that initial condition.

The simple pendulum is a conservative system, exhibiting a conservation law for energy,
and this implies a conservation of phase space area (or volume). The damped pendulum is
nonconservative, however, and this implies a shrinking of phase space area (or volume).

Indeed, it is possible to derive a general condition to determine whether phase space volume
is conserved or shrinks. We consider here, for convenience, equations in a three-dimensional
phase space given by

ẋ = F(x, y, z), ẏ = G(x, y, z), ż = H(x, y, z).

We can consider a small volume of phase space Γ = Γ(t), given by

Γ(t) = ∆x∆y∆z, (12.6)

where
∆x = x1(t)− x0(t), ∆y = y1(t)− y0(t), ∆z = z1(t)− z0(t).

The initial phase-space volume at time t represents a box with one corner at the point (x0(t), y0(t), z0(t))
and the opposing corner at (x1(t), y1(t), z1(t)). This initial phase-space box then evolves over
time.

78 CHAPTER 12. CONCEPTS AND TOOLS

12.4. LIMIT CYCLES

To determine how an edge emanating from (x0, y0, z0) with length ∆x evolves, we write using
a first-order Taylor series expansion in ∆t

x0(t + ∆t) = x0(t) + ∆tF(x0, y0, z0),

x1(t + ∆t) = x1(t) + ∆tF(x1, y0, z0).

Therefore,
∆x(t + ∆t) = ∆x(t) + ∆t

(
F(x1, y0, z0)− F(x0, y0, z0)

)
. (12.7)

Subtracting ∆x(t) from both sides and dividing by ∆t, we have as ∆t→ 0,

d
dt
(∆x) =

(
F(x1, y0, z0)− F(x0, y0, z0)

)
.

With ∆x small, we therefore obtain to first order in ∆x,

d
dt
(∆x) = ∆x

∂F
∂x

,

where the partial derivative is evaluated at the point (x0(t), y0(t), z0(t)).
Similarly, we also have

d
dt
(∆y) = ∆y

∂G
∂y

,
d
dt
(∆z) = ∆z

∂H
∂z

.

Since
dΓ
dt

=
d(∆x)

dt
∆y∆z + ∆x

d(∆y)
dt

∆z + ∆x∆y
d(∆z)

dt
,

we have
dΓ
dt

=

(
∂F
∂x

+
∂G
∂y

+
∂H
∂z

)
Γ, (12.8)

valid for the evolution of an infinitesimal box.
We can conclude from (12.8) that phase-space volume is conserved if the divergence on the

right-hand-side vanishes, or that phase-space volume contracts exponentially if the divergence is
negative.

For example, we can consider the equations for the damped, driven pendulum given by
(11.15). The divergence in this case is derived from

∂

∂θ
(u) +

∂

∂u

(
−1

q
u− sin θ + f cos ψ

)
+

∂

∂ψ
(ω) = −1

q
;

and provided q > 0 (i.e., the pendulum is damped), phase-space volume contracts. For the
undamped pendulum (where q→ ∞), phase-space volume is conserved.

12.4 Limit cycles

The asymptotic state of a nonlinear system may be a limit cycle instead of a fixed point. A stable
limit cycle is a periodic solution on which all nearby solutions converge. Limit cycles can also
be unstable. Determining the existence of a limit cycle from a nonlinear system of equations
through analytical means is usually impossible, but limit cycles are easily found numerically.
The damped, driven pendulum equations has no fixed points, but does have limit cycles.

CHAPTER 12. CONCEPTS AND TOOLS 79

12.5. ATTRACTORS AND BASINS OF ATTRACTION

12.5 Attractors and basins of attraction

An attractor is a stable configuration in phase space. For example, an attractor can be a stable
fixed point or a limit cycle. The damped, non-driven pendulum converges to a stable fixed point
corresponding to the pendulum at rest at the bottom. The damped, driven pendulum for certain
values of the parameters converges to a limit cycle. We will see that the chaotic pendulum also
has an attractor of a different sort, called a strange attractor.

The domain of attraction of a stable fixed point, or of a limit cycle, is called the attractor’s
basin of attraction. The basin of attraction consists of all initial conditions for which solutions
asymptotically converge to the attractor. For nonlinear systems, basins of attraction can have
complicated geometries.

12.6 Poincaré sections

The Poincaré section is a method to reduce by one or more dimensions the phase space diagrams
of higher dimensional systems. Most commonly, a three-dimensional phase space can be reduced
to two-dimensions, for which a plot may be easier to interpret. For systems with a periodic
driving force such as the damped, driven pendulum system given by (11.15), the two-dimensional
phase space (θ, u) can be viewed stroboscopically, with the strobe period taken to be the period of
forcing, that is 2π/ω. For the damped, driven pendulum, the third dynamical variable ψ satisfies
ψ = ψ0 + ωt, and the plotting of the phase-space variables (θ, u) at the times t0, t0 + 2π/ω,
t0 + 4π/ω, etc., is equivalent to plotting the values of (θ, u) every time the phase-space variable
ψ in incremented by 2π.

For systems without periodic forcing, a plane can be placed in the three-dimensional phase
space, and a point can be plotted on this plane every time the orbit passes through it. For
example, if the dynamical variables are x, y and z, a plane might be placed at z = 0 and the
values of (x, y) plotted every time z passes through zero. Usually, one also specifies the direction
of passage, so that a point is plotted only when ż > 0, say.

12.7 Fractal dimensions

The attractor of the chaotic pendulum is called strange because it occupies a fractional dimension
of phase space. To understand what is meant by fractional dimensions, we first review some
classical fractals.

12.7.1 Classical fractals

Cantor set

Perhaps the most famous classical fractal is the Cantor set. To construct the Cantor set, we start
with the line segment S0 = [0, 1]. We then remove the middle one-third of this line segment, and
denote the remaining set as S1 = [0, 1/3]∪ [2/3, 1]. Then we remove the middle one-third of both
remaining line segments, and denote this set as S2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].
Repeating this process ad infinitum, the Cantor set is defined as

S = lim
n→∞

Sn. (12.9)

An illustration showing how to construct the Cantor set is shown in Fig. 12.5.

80 CHAPTER 12. CONCEPTS AND TOOLS

12.7. FRACTAL DIMENSIONS

Figure 12.5: Construction of the Cantor set.

The Cantor set has some unusual properties. First, we compute its length. Let ln denote the
length of the set Sn. Clearly, l0 = 1. Since S1 is constructed by removing the middle third of S0,
we have l1 = 2/3. To construct S2, we again remove the middle third of the two line segments of
S1, reducing the length of S1 by another factor of 2/3, so that l2 = (2/3)2, and so on. We obtain
ln = (2/3)n, and the limn→∞ ln = 0. Therefore, the Cantor set has zero length.

The Cantor set, then, does not consist of line segments. Yet, the Cantor set is certainly not an
empty set. We can see that at stage 1, there are two interior endpoints 1/3 and 2/3, and these
will never be removed; at stage 2, there are the additional interior endpoints 1/9, 2/9, 7/9 and
8/9; and at stage 3, we add eight more interior endpoints. We see, then, that at stage k we add 2k

more interior endpoints. An infinite but countable number of endpoints are therefore included
in the Cantor set.

But the Cantor set consists of much more than just these endpoints, and we will in fact show
that the Cantor set is an uncountable set. Recall from analysis, that an infinite set of points can
be either countable or uncountable. A countable set of points is a set that can be put in a one-
to-one correspondence with the set of natural numbers. As is well known, the infinite set of all
rational numbers is countable whereas the infinite set of real numbers is uncountable. By listing
the endpoints of the Cantor set above, each stage adding 2k more endpoints, we have shown that
the set of all endpoints is a countable set.

In order to prove that the Cantor set is uncountable, it is helpful to make use of the base 3
representation of numbers. Recall that any number N, given by

N = . . . a ∗ B3 + b ∗ B2 + c ∗ B + d ∗ B0 + e ∗ B−1 + f ∗ B−2 + g ∗ B−3 + . . . ,

can be written in base B as
N = . . . abcd.efg . . . (base B),

CHAPTER 12. CONCEPTS AND TOOLS 81

12.7. FRACTAL DIMENSIONS

where the period separating the integer part of the number from the fractional part is in general
called a radix point. For base 10, of course, the radix point is called a decimal point, and for base
2, a binary point.

Now, consider the Cantor set. In the first stage, all numbers lying between 1/3 and 2/3 are
removed. The remaining numbers, then, must be of the form 0.0 . . . (base 3) or 0.2 . . . (base 3),
since (almost) all the numbers having the form 0.1 . . . (base 3) have been removed. The single
exception is the endpoint 1/3 = 0.1 (base 3), but this number can also be written as 1/3 = 0.02
(base 3), where the bar over a number or numbers signifies an infinite repetition. In the second
stage, all numbers lying between 1/9 and 2/9, say, are removed, and these numbers are of the
form 0.01 . . . (base 3). We can see, then, that the Cantor set can be defined as the set of all
numbers on the unit interval that contain no 1’s in their base 3 representation.

Using base 3 notation, it is easy to find a number that is not an endpoint, yet is in the Cantor
set. For example, the number 1/4 is not an endpoint. We can convert 1/4 to base 3 by the
following calculation:

1
4
× 3 = 0.75,

0.75× 3 = 2.25,

0.25× 3 = 0.75,

0.75× 3 = 2.25,

and so on, from which we find that 1/4 = 0.02 (base 3). The number 1/4, therefore, has no 1’s in
its base 3 expansion and so is an element of the Cantor set.

We can now prove that the Cantor set is an uncountable set. The proof is similar to that used
to prove that the real numbers are uncountable. If we suppose that the Cantor set is countable,
then we can list all of its elements using a base 3 expansion; that is,

x1 = 0.x11x12x13 . . . (base 3),

x2 = 0.x21x22x23 . . . (base 3),

x3 = 0.x31x32x33 . . . (base 3),

and so on, where all the xij’s must be either a 0 or a 2 (i.e., no 1’s are allowed). It is now simple
to name a number y not on this list. We have

y = 0.y11y22y33 . . . ,

where y11 6= x11, y22 6= x22, y33 6= x33, etc.. That is, if x11 = 0, then y11 = 2; if x11 = 2, then
y11 = 0, and so on. By constructing a number not on the list, we have obtained a reductio ad
absurdum, and we can conclude that the Cantor set is uncountable.

Note that the endpoints of the Cantor set are just those numbers written in base 3 that end
with either all 0’s or all 2’s, and these indeed form only a very small subset of the entire Cantor
set.

From the base 3 representation, we can now see that the Cantor set has the following interest-
ing characteristic. On the one hand, any small interval around a point in the Cantor set contains
another point in the Cantor set. On the other hand, there is an interval between any two points in
the Cantor set that is not in the Cantor set. For example, take the point 1/4 = 0.02 in the Cantor
set, and the interval [1/4− 3−4, 1/4+ 3−4]. In base 3, the interval is given by [0.020102, 0.021002].
There are, of course, an infinite number of points in the Cantor set in this interval, one of them
being 0.0202 to the left of 1/4, and 0.02022 to the right of 1/4. If the interval was established
using 3−n, for any n, we can still find other points in the interval that are in the Cantor set.
Also, between any two points in the Cantor set, there is an interval that was removed during the

82 CHAPTER 12. CONCEPTS AND TOOLS

12.7. FRACTAL DIMENSIONS

construction of the Cantor set. So the Cantor set consists of neither line segments nor a set of
discrete points.

The Cantor set is also self-similar, meaning that it contains smaller copies of itself at all scales.
The Cantor set is called a fractal, and is said to have a fractal dimension. Integer dimensions

are more familiar to us: we say that a line has dimension 1; an area, dimension 2; and a volume,
dimension 3.

For self-similar sets, we can place the definition of dimension on a more mathematical basis.
A line segment, a square, and a cube can also be considered self-similar. Suppose that a self-
similar set S is composed of m copies of itself scaled down by a factor of r. As examples, the
line segment [0, 1] is composed of two copies of itself scaled down by a factor of two; namely,
the segments [0, 1/2] and [1/2, 1]. A square is composed of four copies of itself scaled down by
a factor of two. And a cube is composed of eight copies of itself scaled down by a factor of two.
We write

m = rD,

where D is called the similarity dimension of the set. With r = 2, the line segment has m = 2,
the square has m = 4, and the cube has m = 8, yielding the usual dimensions D = 1, 2 and 3,
respectively.

Now the Cantor set is composed of two copies of itself scaled down by a factor of three.
Therefore,

2 = 3D,

and the similarity dimension of the Cantor set is given by D = log 2/ log 3 ≈ 0.6309, which has
dimension smaller than that of a line, but larger than that of a point.

Sierpinski triangle

Figure 12.6: Construction of the Sierpinski triangle.

Other classical fractals can be constructed similarly to the Cantor set. The Sierpinski triangle
starts with an equilateral triangle, S0, with unit sides. We then draw lines connecting the three
midpoints of the three sides. The just formed equilateral middle triangle of side length 1/2 is

CHAPTER 12. CONCEPTS AND TOOLS 83

12.7. FRACTAL DIMENSIONS

then removed from S0 to form the set S1. This process is repeated on the remaining equilateral
triangles, as illustrated in Fig. 12.6. The Sierpinski triangle S is defined as the limit of this
repetition; that is, S = limn→∞ Sn.

The Sierpinski triangle is composed of three copies of itself scaled down by a factor of two,
so that

3 = 2D,

and the similarity dimension is D = log 3/ log 2 ≈ 1.5850, which has dimension between a line
and an area.

Similar to the Cantor set, the Sierpinksi triangle, though existing in a two-dimensional space,
has zero area. If we let Ai be the area of the set Si, then since area is reduced by a factor of 3/4
with each iteration, we have

An =

(
3
4

)n
A0,

so that A = limn→∞ An = 0.

Sierpinski carpet

Figure 12.7: Construction of the Sierpinski Carpet

The Sierpinski carpet starts with a square, S0, with unit sides. Here, we remove a center
square of side length 1/3; the remaining set is called S1. This process is then repeated as illus-
trated in Fig. 12.7.

Here, the Sierpinski carpet is composed of eight copies of itself scaled down by a factor of
three, so that

8 = 3D, (12.10)

and the similarity dimension is D = log 8/ log 3 ≈ 1.8928, somewhat larger than the Sierpinski
triangle. One can say, then, that the Sierpinski carpet is more space filling than the Sierpinski
triangle, though it still has zero area.

Koch curve

Like the Cantor set, we start with the unit interval, but now we replace the middle one-third by
two line segments of length 1/3, as illustrated in 12.8, to form the set S1. This process is then
repeated on the four line segments of length 1/3 to form S2, and so on, as illustrated in Fig. 12.8.

84 CHAPTER 12. CONCEPTS AND TOOLS

12.7. FRACTAL DIMENSIONS

Figure 12.8: Construction of the Koch curve.

Here, the Koch curve is composed of four copies of itself scaled down by a factor of three, so
that

4 = 3D, (12.11)

and the similarity dimension is D = log 4/ log 3 ≈ 1.2619. The Koch curve therefore has a
dimension lying between a line and an area. Indeed, with each iteration, the length of the Koch
curve increases by a factor of 4/3 so that its length is infinite.

Koch snow flake

Figure 12.9: Construction of the Koch snow flake.

Here, we start with an equilateral triangle. Similar to the Koch curve, we replace the middle
one-third of each side by two line segments, as illustrated in 12.9. The boundary of the Koch
snow flake has the same fractal dimension as the Koch curve, and is of infinite length. The area
bounded by the boundary is obviously finite, however, and can be shown to be 8/5 of the area of
the original triangle. Interestingly, here an infinite perimeter encloses a finite area.

CHAPTER 12. CONCEPTS AND TOOLS 85

12.7. FRACTAL DIMENSIONS

12.7.2 Correlation Dimension
Modern studies of dynamical systems have discovered sets named strange attractors. These sets
share some of the characteristics of classical fractals: they are not space filling yet have structure
at arbitrarily small scale. However, they are not perfectly self-similar in the sense of the classical
fractals, having arisen from the chaotic evolution of some dynamical system. Here, we attempt to
generalize the definition of dimension so that it is applicable to strange attractors and relatively
easy to compute. The definition and numerical algorithm described here was first proposed in a
paper by Grassberger and Procaccia (1993).

Definitions

Consider a set S of N points. Denote the points in this set as xi, with i = 1, 2, . . . , N and denote the
distance between two points xi and xj as rij. Note that there are N(N − 1)/2 distinct distances.
We define the correlation integral C(r) to be

C(r) = lim
N→∞

2
N(N − 1)

× {number of distinct distances rij less than r}.

If C(r) ∝ rD over a wide range of r when N is sufficiently large, then D is to be called the
correlation dimension of the set S. Note that with this normalization, C(r) = 1 for r larger than
the largest possible distance between two points on the set S.

The correlation dimension agrees with the similarity dimension for an exactly self-similar set.
As a specific example, consider the Cantor set. Suppose N points that lie on the Cantor set are
chosen at random to be in S. Since every point on the set is within a distance r = 1 of every other
point, one has C(1) = 1. Now, approximately one-half of the points in S lie between 0 and 1/3,
and the other half lie between 2/3 and 1. Therefore, only 1/2 of the possible distinct distances
rij will be less than 1/3 (as N → ∞), so that C(1/3) = 1/2. Continuing in this fashion, we find
in general that C(1/3s) = 1/2s. With r = 1/3s, we have

s = − log r
log 3

,

so that

C(r) = 2log r/ log 3

= exp (log 2 log r/ log 3)

= rlog 2/ log 3,

valid for small values of r. We have thus found a correlation dimension, D = log 2/ log 3, in
agreement with the previously determined similarity dimension.

Numerical computation

Given a finite set S of N points, we want to formulate a fast numerical algorithm to compute C(r)
over a sufficiently wide range of r to accurately determine the correlation dimension D from a
log-log plot of C(r) versus r. A point xi in the set S may be a real number, or may be a coordinate
pair. If the points come from a Poincaré section, then the fractal dimension of the Poincaré section
will be one less than the actual fractal dimension of the attractor in the full phase space.

Define the distance rij between two points xi and xj in S to be the standard Euclidean distance.
To obtain an accurate value of D, one needs to throw away an initial transient before collecting
points for the set S.

86 CHAPTER 12. CONCEPTS AND TOOLS

12.7. FRACTAL DIMENSIONS

Since we are interested in a graph of log C versus log r, we compute C(r) at points r that are
evenly spaced in log r. For example, we can compute C(r) at the points rs = 2s, where s takes on
integer values.

First, one counts the number of distinct distance rij that lie in the interval rs−1 ≤ rij < rs.
Denote this count by M(s). An approximation to the correlation integral C(rs) using the N data
points is then obtained from

C(rs) =
2

N(N − 1)

s

∑
s′=−∞

M(s′).

One can make use of a built-in MATLAB function to speed up the computation. The function
call

[F,E] = log2(x);

returns the floating point number F and the integer E such that x = F*2^E, where 0.5 ≤ |F| < 1
and E is an integer. To count each rij in the appropriate bin M(s), one can compute all the values
of rij and place them into the Matlab array r. Then one uses the vector form of log2.m to
compute the corresponding values of s:

[~,s] = log2(r); .

One can then increment the count in a Matlab array M that corresponds to the particular integer
values of s. The Matlab function cumsum.m can then be used to compute the Matlab array C.

Finally, a least-squares analysis of the data is required to compute the fractal dimension D.
By directly viewing the log-log plot, one can choose which adjacent points to fit a straight line
through, and then use the method of least-squares to compute the slope. The MATLAB function
polyfit.m can determine the best fit line and the corresponding slope. Ideally, one would also
compute a statistical error associated with this slope, and such an error should go to zero as the
number of points computed approaches infinity.

CHAPTER 12. CONCEPTS AND TOOLS 87

12.7. FRACTAL DIMENSIONS

88 CHAPTER 12. CONCEPTS AND TOOLS

Chapter 13

Pendulum dynamics
13.1 Phase portrait of the undriven pendulum

The undriven pendulum has only a two dimensional space, forming a phase plane where it is
easy to visualize the phase portraits. The phase portrait of the small amplitude simple pendulum
is particularly easy to draw. The dimensionless form of the simple pendulum equation is

θ̈ + θ = 0,

and the solutions for θ = θ(t) and u = θ̇(t) are given by

θ(t) = θm cos (t + ϕ), u(t) = −θm sin (t + ϕ).

The phase portrait in the θ-u phase plane consists of concentric circles, with clockwise motion
along these circles, as seen in the small diameter circles of Fig. 13.1. As the amplitude increases,
the approximation sin θ ≈ θ loses validity, and the relevant dimensionless equation becomes

θ̈ + sin θ = 0.

Beyond the small diameter circles of Fig. 13.1, one observes that the connected lines become
elongated in u as the amplitude increases, implying the pendulum is slowed down when the
amplitude becomes large (i.e., the period of the pendulum is lengthened). Eventually, a final
closed curve is drawn, called the separatrix, that separates the pendulum’s motion from periodic
to rotary, the latter motion corresponding to a pendulum that swings over the top in a circular
motion. Exactly on the separatrix trajectory, the pendulum comes to rest at the angle π, or 180◦,
which is an unstable fixed point of the pendulum.

The simple pendulum is a conservative system, exhibiting a conservation law for energy, and
this implies a conservation of phase space area (or volume). If one evolves over time a given
initial area of the phase space of Fig. 13.1, the area of this phase space will be conserved. When
the pendulum is damped, however, the area of this phase space will shrink to zero.

13.2 Basin of attraction of the undriven pendulum

We consider the damped, undriven pendulum with governing equation

θ̈ +
1
q

θ̇ + sin θ = 0,

and the stable fixed point given by (θ, θ̇) = (0, 0). How can we determine the basin of attraction
of this fixed point? Of course, with θ̇ = 0, only the values −π < θ < π will lie in the basin of
attraction. But we also need to compute the basin of attraction for nonzero initial values of θ̇.

As is often the case, to devise a numerical algorithm it is best to appeal directly to the physics.
We want to find the borderline of initial conditions between either the attractive fixed points (0, 0)
and (2π, 0), or the attractive fixed points (0, 0) and (−2π, 0). The initial conditions just on the
border result in the pendulum reaching either the unstable fixed points (π, 0) or (−π, 0). A small

89

13.3. SPONTANEOUS SYMMETRY-BREAKING BIFURCATION

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

θ

u

Figure 13.1: Phase portrait of the simple pendulum.

perturbation from (π, 0) will result in one of the attractive points (0, 0) or (2π, 0); from (−π, 0),
one of the attractive points (0, 0) or (−2π, 0).

The algorithm then initializes the calculation at either the unstable fixed point (π, 0) or
(−π, 0), with a small perturbation in either the position or velocity that results in the final attract-
ing point being (0, 0). We can call these values final conditions because the differential equations
are then integrated backward in time to determine all possible initial conditions that can result
in these final conditions. You can convince yourself that the four final conditions that should be
used are the two pairs (π,−ε), (π− ε, 0), and (−π, ε), (−π + ε, 0), with ε very small. The first of
each pair corresponds to the immediately previous motion being rotary, and the second of each
pair corresponds to the immediately previous motion being oscillatory.

A graph of the basins of attraction of (0, 0) for q = 4, corresponding to an underdamped
pendulum (critical damping is q = 1/2) is shown in Fig. 13.2. The attracting fixed point is
marked by an ‘x’, and the region inside the two curved lines is the basin of attraction.

13.3 Spontaneous symmetry-breaking bifurcation

An interesting supercritical pitchfork bifurcation occurs in the pendulum equations, where at the
bifurcation point one stable limit cycle splits into two. The single limit cycle displays a symmetry
that is no longer respected individually by the two new limit cycles. This type of pitchfork
bifurcation is a manifestation of what is called spontaneous symmetry breaking.

90 CHAPTER 13. PENDULUM DYNAMICS

13.3. SPONTANEOUS SYMMETRY-BREAKING BIFURCATION

−20 −15 −10 −5 0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8

θ

θ̇

Figure 13.2: Basin of attraction of (θ, θ̇) = (0, 0) for the unforced, underdamped pendulum
with q = 4. The cross marks the attracting fixed point.

The pendulum equation (11.14), written again here, is given by

θ̈ +
1
q

θ̇ + sin θ = f cos ωt. (13.1)

Using sin (−θ) = − sin θ and cos (ωt− π) = − cos ωt, the pendulum equation can be seen to be
invariant under the transformation

θ → −θ, t→ t− π/ω, (13.2)

with the physical interpretation that the equations of motion make no distinction between the
right and left sides of the vertical, a consequence of the symmetry of both the pendulum and the
external force.

Consider again the asymptotic small amplitude solution given by (11.10), which in dimen-
sionless variables is

θ(t) =
f√

(1−ω2)2 + (ω/q)2
cos (ωt + φ),

with

tan φ =
ω/q

ω2 − 1
.

We can observe that this solution is also invariant under (13.2): the small amplitude solution
obeys θ(t) = −θ(t− π/ω). We say that this solution is symmetric, meaning it obeys the same
symmetry as the governing equations; that is, the motion of the small amplitude pendulum is
symmetrical about the vertical.

In general, if θ = θ1(t) is a solution of (13.1), then so is θ = θ2(t), where θ2(t) = −θ1(t−π/ω).
We can prove this mathematically. Assume θ = θ1(t) satisfies (13.1). We then show that θ = θ2

CHAPTER 13. PENDULUM DYNAMICS 91

13.3. SPONTANEOUS SYMMETRY-BREAKING BIFURCATION

−4 −2 0 2 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

θ̇

−4 −2 0 2 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

Figure 13.3: Phase-space projection of the pendulum solution before and after spontaneous
symmetry breaking. The ‘x’ represents the pendulum at rest at the bottom. The ‘o’s denote the
positions (θ, θ̇) and (−θ,−θ̇) at the times t = 0 and t = π/ω, respectively. In both plots,
f = 1.5, ω = 2/3. (a) q = 1.24 and the solution is observed to be symmetric; (b) q = 1.3 and
one pair of asymmetric solutions is observed.

also satisfies (13.1) by the following calculation:

θ̈2(t) +
1
q

θ̇2(t) + sin (θ2(t)) = −θ̈1(t− π/ω)− 1
q

θ̇1(t− π/ω)− sin (θ1(t− π/ω))

= − f cos (ωt− π)

= f cos ωt.

If the two solutions θ1(t) and θ2(t) are equal, then we say that this solution is symmetric.
Here, we are considering asymptotic solutions that are independent of the initial conditions, since
the initial conditions themselves can also break the symmetry. However, if θ1(t) and θ2(t) are
not equal, we say that these solutions are asymmetric, and that spontaneous symmetry breaking
has occurred. Evidently, spontaneous symmetry breaking is a decidedly nonlinear phenomena.
After symmetry breaking occurs, the asymmetric solutions must occur in pairs, and the bifurca-
tion point looks like a pitchfork bifurcation, and can be super- or sub-critical. Any subsequent
bifurcation that occurs to one of the asymmetric solutions must also be mirrored by the other.

Spontaneous symmetry breaking occurs in the pendulum dynamics at the dimensionless
parameter values f = 1.5, ω = 2/3, and approximately q = 1.246. For q just less than 1.246, the
single stable asymptotic solution for θ = θ(t) is symmetric, and for q just greater than 1.246, there
exists a pair of stable asymptotic solutions that are asymmetric.

By projecting the phase-space trajectory onto the θ − θ̇ plane, in Fig. 13.3 we display both
the symmetric solution when q = 1.24 and the two asymmetric solutions when q = 1.30. To
explicitly observe the symmetry of the solutions, we mark the value of (θ, θ̇) at the time t =
n2π/ω, with n a positive integer (equivalent to the time t = 0), and the value of (−θ,−θ̇)
at the time t = n2π/ω + π/ω (equivalent to the time t = π/ω). For a symmetric solution,
these two points mark the same point on the trajectory, and for asymmetric solutions they mark

92 CHAPTER 13. PENDULUM DYNAMICS

13.3. SPONTANEOUS SYMMETRY-BREAKING BIFURCATION

1.2 1.22 1.24 1.26 1.28 1.3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

q

〈θ
〉

Figure 13.4: Bifurcation diagram exhibiting spontaneous symmetry breaking. Here, f = 1.5,
ω = 2/3, and q is the control parameter. We plot 〈θ〉 versus q.

−4 −3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

θ̇

Figure 13.5: Phase-space projection of the pendulum solution after spontaneous symmetry
breaking, as in Fig. 13.3b. The unstable symmetric limit cycle is the dashed-line curve.

CHAPTER 13. PENDULUM DYNAMICS 93

13.4. PERIOD-DOUBLING BIFURCATIONS

points on different trajectories. Notice that after the occurrence of symmetry breaking, one of the
asymptotic solutions undergoes an oscillation centered to the right of the vertical, and the other,
centered to the left.

We can graph a bifurcation diagram associated with the symmetry breaking of the solutions.
We fix f = 1.5 and ω = 2/3 and vary q across the bifurcation point q = 1.246. We need to
distinguish the symmetric from the asymmetric limit cycles, and one method is to compute the
average value of θ(t) over one period of oscillation; that is,

〈θ〉 = 1
T

∫ T

0
θdt,

where T = 2π/ω. For the symmetric solution, 〈θ〉 = 0, whereas 〈θ〉 takes on both positive and
negative values after symmetry breaking occurs. In Fig. 13.4, we plot the value of 〈θ〉 versus q.
At a value of approximately q = 1.246, spontaneous symmetry breaking occurs and the stable
symmetric limit cycle splits into two asymmetric limit cycles, in what is evidently a supercritical
pitchfork bifurcation.

The symmetric limit cycle still exists after the bifurcation point, and though unstable, can
also be computed. To compute the unstable cycle, one could determine the values of θ and θ̇ at
t = 0 that lie on this cycle, and then integrate over one period (over which the instability doesn’t
have sufficient time to develop). The problem of determining the correct initial conditions can be
cast as a problem in multidimensional root-finding. The key idea is that a symmetric limit cycle
satisfies θ(t) = −θ(t − π/ω). We therefore determine the solution vector of initial conditions
(θ(0), θ̇(0)) that satisfies the two equations

θ(0) + θ(π/ω) = 0,

θ̇(0) + θ̇(π/ω) = 0,

where θ(π/ω) and θ̇(π/ω) are determined by integrating from t = 0 the differential equations
using ode45.m with the initial conditions (θ(0), θ̇(0)). Root-finding can be done using either
a two-dimensional version of the secant rule or, more simply, the built-in MATLAB function
fsolve.m. Convergence to the roots is robust, and an initial guess for the roots can be taken,
for instance, as (θ(0), θ̇(0)) = (0, 0). A plot of the two stable asymmetric limit cycles, and the
unstable symmetric limit cycle when f = 1.5, ω = 2/3 and q = 1.3 is shown in Fig. 13.5.

13.4 Period-doubling bifurcations

As q increases further, another series of bifurcations occur, called period doubling bifurcations.
These too are supercritical pitchfork bifurcations. These bifurcations happen simultaneously to
the solutions with positive and negative values of I, and we need only consider one of these
branches here. Before the first bifurcation occurs, the pendulum has period 2π/ω—the same
period as the external force—and the phase-space trajectory forms a closed loop when the equa-
tions are integrated over a single period. After the first period-doubling bifurcation, which occurs
approximately at q = 1.348, the period of the pendulum becomes twice the period of the external
force. In Fig. 13.6, we plot a phase-space projection onto the θ − θ̇ plane before and after the first
period-doubling bifurcation. Before the bifurcation, we say the pendulum has period one, and
after the bifurcation we say the pendulum has period two. Note that for the pendulum of period
two, the phase-space trajectory loops around twice before closing, each loop corresponding to
one period of the external force. To further illustrate the period-two oscillation, in Fig. 13.7 we
plot the time series of θ(t) versus t over exactly two periods of the external force. Evidently, the
pendulum motion is now periodic with period twice the period of the external force (the period
of the external force is approximately 9.4).

94 CHAPTER 13. PENDULUM DYNAMICS

13.4. PERIOD-DOUBLING BIFURCATIONS

−4 −2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

θ̇

−4 −2 0 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

Figure 13.6: Phase-space projection of the pendulum solution before and after the first period-
doubling bifurcation. In both plots, f = 1.5, ω = 2/3. (a) q = 1.34 and the oscillation has
period one; (b) q = 1.36 and the oscillation has period two.

0 5 10 15 20 25 30 35 40
−4

−3

−2

−1

0

1

2

t

θ

Figure 13.7: Time series of the pendulum oscillation with period two. Here, f = 1.5, ω = 2/3,
and q = 1.36.

CHAPTER 13. PENDULUM DYNAMICS 95

13.4. PERIOD-DOUBLING BIFURCATIONS

−4 −2 0 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

θ̇

−4 −2 0 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

Figure 13.8: Phase-space projection of the pendulum solution before and after the third period-
doubling bifurcation. In both plots, f = 1.5, ω = 2/3. (a) q = 1.3740 and the oscillation has
period four; (b) q = 1.3755 and the oscillation has period eight.

The period-doubling bifurcations continue with increasing q. The second doubling from
period two to period four occurs at approximately q = 1.370 and the third doubling from period
four to period eight occurs at approximately q = 1.375. The θ − θ̇ phase-space projections for
period four and period eight are shown in Fig. 13.8.

A bifurcation diagram can be plotted that illustrates these period-doubling bifurcations. We
use a Poincaré section to plot the value of θ at the times corresponding to 2πn/ω, with n an
integer. The control parameter for the bifurcation is q, and in Fig. 13.9, we plot the bifurcation
diagram for 1.34 < q < 1.38. In general, the angle θ should be mapped into the interval −π <
θ < π, but for these parameter values there is no rotary motion. Period-doubling bifurcations are
observed, and eventually the pendulum becomes aperiodic. Additional windows of periodicity
in the aperiodic regions of q are also apparent.

The aperiodic behavior of the pendulum observed in Fig. 13.9 corresponds to a chaotic pen-
dulum. If only the pendulum exhibited the period-doubling route to chaos, then the results
shown in Fig. 13.9, though interesting, would be of lesser importance. But in fact many other
nonlinear systems also exhibit this route to chaos, and there are some universal features of Fig.
13.9, first discovered by Feigenbaum in 1975. One of these features is now called the Feigenbaum
constant, δ.

To compute the Feigenbaum constant, one first defines qn to be the value of q at which the
pendulum motion bifurcates from period 2n−1 to period 2n. We have already mentioned that
q1 ≈ 1.348, q2 ≈ 1.370, and q3 ≈ 1.375. We now define

δn =
qn+1 − qn

qn+2 − qn+1
, (13.3)

and the Feigenbaum constant as

δ = lim
n→∞

δn. (13.4)

96 CHAPTER 13. PENDULUM DYNAMICS

13.5. PERIOD DOUBLING IN THE LOGISTIC MAP

1.34 1.345 1.35 1.355 1.36 1.365 1.37 1.375 1.38
−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

q

θ

Figure 13.9: Bifurcation diagram for period-doubling in the pendulum. A Poincaré section plots
θ at the times t = 2πn/ω, with n an integer. Here, f = 1.5, ω = 2/3, and 1.34 < q < 1.38

Note that for the pendulum, we can already compute

δ1 =
1.370− 1.348
1.375− 1.370

= 4.400.

The meaning of δ can be better elucidated by writing

qn+2 − qn+1 =
qn+1 − qn

δn
;

and by continuing to iterate this equation, we obtain

qn+2 − qn+1 =
q2 − q1

δ1δ2 · · · δn
.

With all the δn’s approximately equal to δ, we then have the scaling

qn+2 − qn+1 ∝ δ−n.

A δ larger than one would then insure that the bifurcations occur increasingly closer together, so
that an infinite period (and chaos) is eventually attained. The value of δ can be computed to high
accuracy and has been found to be

δ = 4.669201609102990 . . . ,

and our value of δ1 = 4.4 is a rough approximation.

13.5 Period doubling in the logistic map

Feigenbaum originally discovered the period-doubling route to chaos by studying a simple one-
dimensional map. A one-dimensional map with a single control parameter µ can be written
as

xn+1 = fµ(xn), (13.5)

CHAPTER 13. PENDULUM DYNAMICS 97

13.5. PERIOD DOUBLING IN THE LOGISTIC MAP

where fµ(x) is some specified function. A one-dimensional map is iterated, starting with some
initial value x0, to obtain the sequence x1, x2, x3, If the sequence converges to x∗, then x∗ is a
stable fixed point of the map.

The specific one-dimensional map we will study here is the logistic map, with

fµ(x) = µx(1− x). (13.6)

The logistic map is perhaps the simplest nonlinear equation that exhibits the period-doubling
route to chaos. To constrain the values of xn to lie between zero and unity, we assume that
0 < µ < 4 and that 0 < x0 < 1.

A period-1 cycle for the logistic map corresponds to a stable fixed point. Stable fixed points
are solutions of the equation x = fµ(x), or

x = µx(1− x).

The two solutions are given by x∗ = 0 and x∗ = 1− 1/µ. The first fixed point x∗ = 0 must be
stable for 0 < µ < 1, being the only fixed point lying between zero and one that exists in this
range. To determine the stability of the second fixed point, we make use of the linear stability
analysis discussed in §12.1.

For a one-dimensional map, x∗ is a stable fixed point of (13.5) if | f ′µ(x∗)| < 1. For the logistic
map given by (13.6), f ′µ(0) = µ so that x∗ = 0 is stable for 0 < µ < 1 as we have already surmised,
and for the second fixed point

f ′µ(1− 1/µ) = 2− µ.

Therefore, we find that x∗ = 1− 1/µ is stable for 1 < µ < 3.
What happens when µ becomes larger than three? We will now show that the first period-

doubling bifurcation occurs at µ = 3. Because of the simplicity of the logistic map, we can
determine explicitly the period-2 cycle. Consider the following composite map:

gµ(x) = fµ
(

fµ(x)
)
. (13.7)

Fixed points of this map will consist of both period-1 cycles and period-2 cycles of the original
map (13.6). If x = x∗ is a fixed point of the composite map (13.7), then x∗ satisfies the equation

x = gµ(x).

A period-2 cycle of the map fµ(x) necessarily corresponds to two distinct fixed points of the
composite map (13.7). We denote these two fixed points by x0 and x1, which satisfy

x1 = fµ(x0), x0 = fµ(x1).

We will call x0, x1 the orbit of the period-2 cycle, with the later generalization of calling x0, x1,
. . . , x2n−1 the orbit of the period-2n cycle.

The period-2 cycle can now be determined analytically by solving

x = fµ
(

fµ(x)
)

= fµ
(
µx(1− x)

)
= µ

(
µx(1− x)

)(
1− µx(1− x)

)
,

which is a quartic equation for x. Two solutions corresponding to period-1 cycles are known:
x∗ = 0 and x∗ = 1− 1/µ. Factoring out these two solutions, the second by using long division,
results in the quadratic equation given by

µ2x2 − µ(µ + 1)x + (µ + 1) = 0.

98 CHAPTER 13. PENDULUM DYNAMICS

13.5. PERIOD DOUBLING IN THE LOGISTIC MAP

The period-2 cycle, then, corresponds to the two roots of this quadratic equation; that is,

x0 =
1

2µ

(
(µ + 1) +

√
(µ + 1)(µ− 3)

)
, x1 =

1
2µ

(
(µ + 1)−

√
(µ + 1)(µ− 3)

)
. (13.8)

These roots are valid solutions for µ ≥ 3. Exactly at µ = 3, the period-2 cycle satisfies x0 = x1 =
2/3, which coincides with the value of the period-1 cycle x∗ = 1− 1/µ = 2/3. At µ = 3, then, we
expect the fixed point of the composite map corresponding to a period-1 cycle to go unstable via
a supercritical pitchfork bifurcation to a pair of stable fixed points, corresponding to a period-2
cycle.

When does this period-2 cycle become unstable? At µ = 3 and x∗ = 2/3, we have

f ′µ(x∗) = µ(1− 2x∗)

= −1,

so that the period-1 cycle becomes unstable when the derivative of the map function attains the
value of −1, and it is reasonable to expect that the period-2 cycle also becomes unstable when

g′µ(x0) = −1, g′µ(x1) = −1. (13.9)

Now,

g′µ(x0) = f ′µ
(

fµ(x0)
)

f ′µ(x0)

= f ′µ(x1) f ′µ(x0),

and

g′µ(x1) = f ′µ
(

fµ(x1)
)

f ′µ(x1)

= f ′µ(x0) f ′µ(x1).

The two equations of (13.9) are therefore identical, and the period-2 cycle will go unstable at the
value of µ satisfying

f ′µ(x0) f ′µ(x1) = −1,

where x0 and x1 are given by (13.8).
The equation for µ, then, is given by

µ2(1− 2x0)(1− 2x1) = −1,

or
µ2(1− 2(x0 + x1) + 4x0x1

)
+ 1 = 0. (13.10)

Now, from (13.8),

x0 + x1 =
µ + 1

µ
, x0x1 =

µ + 1
µ2 . (13.11)

Substitution of (13.11) into (13.10) results, after simplification, in the quadratic equation

µ2 − 2µ− 5 = 0,

with the only positive solution given by

µ = 1 +
√

6

≈ 3.449490.

We therefore expect the period-2 cycle to bifurcate to a period-4 cycle at µ ≈ 3.449490.

CHAPTER 13. PENDULUM DYNAMICS 99

13.5. PERIOD DOUBLING IN THE LOGISTIC MAP

n µn
1 3
2 3.449490 . . .
3 3.544090 . . .
4 3.564407 . . .
5 3.568759 . . .
6 3.569692 . . .
7 3.569891 . . .
8 3.569934 . . .

Table 13.1: The first eight values of µn at which period-doubling bifurcations occur.

Figure 13.10: Bifurcation diagram for period-doubling in the logistic map.

100 CHAPTER 13. PENDULUM DYNAMICS

13.6. COMPUTATION OF THE FEIGENBAUM CONSTANT

If we define µn to be the value of µ at which the period-2n−1 cycle bifurcates to a period-2n

cycle, then we have determined analytically that µ1 = 3 and µ2 = 1 +
√

6. We list in Table 13.1,
the first eight approximate values of µn, computed numerically.

We can compute a bifurcation diagram for the logistic map. For 2 < µ < 4, we plot the
iterates from the map, discarding initial transients. The bifurcation diagram is shown in Fig.
13.10. Notice the uncanny similarity between the bifurcation diagram for the logistic map, and
the one we have previously computed for the damped, driven pendulum equation, Fig. 13.9.
Also note that the computation of Fig. 13.10, being on the order of seconds, is substantially faster
than that of Fig. 13.9, which took about an hour, because a one-dimensional map is much faster
to compute than the Poincaré section of a pair of coupled first-order differential equations.

13.6 Computation of the Feigenbaum constant

Period doubling in the logistic map enables an accurate computation of the Feigenbaum constant
δ, defined as

δ = lim
n→∞

δn, (13.12)

where
δn =

µn+1 − µn

µn+2 − µn+1
. (13.13)

Table 13.1 lists the known first eight values of µn at the bifurcation points. These values, and
those at even larger values of n, are in fact very difficult to compute with high precision because
of the slow convergence of the iterates at the bifurcation points. Rather, we will instead compute
the values of µ at what are called superstable cycles. This now well-known method for computing
δ was first described by Keith Briggs (1989).

Recall that for the general one-dimensional map

xn+1 = fµ(xn),

a perturbation εn to a fixed point x∗ decays as

εn+1 = f ′µ(x∗)εn.

At a so-called superstable fixed point, however, f ′µ(x∗) = 0 and the perturbation decays very
much faster as

εn+1 =
1
2

f ′′µ (x∗)ε2
n.

What are the superstable fixed points of the logistic map? Now, the values xi that are in the
orbit of a period-2n cycle are fixed points of the composite map

xn+1 = gµ(xn), (13.14)

where gµ = fµ ◦ fµ ◦ · · · ◦ fµ, where the composition is repeated 2n times. The orbit of a super-
stable cycle, then, consists of superstable fixed points of (13.14). If the period-2n cycle has orbit
x0, x1, . . . , x2n−1, we have fµ(x0) = x1, fµ(x1) = x2, . . . , fµ(x2n−1) = x0, and by the chain rule,

g′µ(xi) = f ′µ(x0) f ′µ(x1) · · · f ′µ(x2n−1),

for all xi in the orbit of the period-2n cycle. With

f ′µ(x) = µ(1− 2x),

we have g′µ(x) = 0 for x = 1/2. Therefore, if x0 = 1/2, say, is in the orbit of a period-2n cycle,
then this cycle is superstable.

CHAPTER 13. PENDULUM DYNAMICS 101

13.6. COMPUTATION OF THE FEIGENBAUM CONSTANT

At the bifurcation point creating a period-2n cycle, the cycle has marginal stability and
g′µ(x0) = 1. As µ increases, g′µ(x0) decreases, and eventually the period-2n cycle loses stabil-
ity when g′µ(x0) = −1. At some intermediate value of µ, then, there exists a value of x0 with
g′µ(x0) = 0, and here we may assign x0 = 1/2. Therefore, every period-2n cycle contains a value
of µ for which x0 = 1/2 is in the orbit of the cycle.

Accordingly, we define mn to be the value of µ at which x0 = 1/2 is in the orbit of the
period-2n cycle. We can modify the definition of the Feigenbaum constant (13.13) to be

δn =
mn+1 −mn

mn+2 −mn+1
. (13.15)

Though the values of δn computed from (13.13) and (13.15) will differ slightly, the values as
n→ ∞ should be the same.

We can easily determine the first two values of mn. For the period-1 cycle, we have

1
2
= m0

1
2

(
1− 1

2

)
,

or m0 = 2, as confirmed from Fig. 13.10. To determine m1, we make use of the period-2 cycle
given by (13.7), and Fig. (13.10), which shows that the smaller root passes through x0 = 1/2.
Therefore,

1
2
=

1
2m1

(
(m1 + 1)−

√
(m1 + 1)(m1 − 3)

)
;

and solving for m1, we obtain the quadratic equation

m2
1 − 2m1 − 4 = 0,

with solution m1 = 1 +
√

5 ≈ 3.2361. Further values of mn will be computed numerically.
To determine mn, we need to solve the equation G(µ) = 0, where

G(µ) = gµ(1/2)− 1
2

, (13.16)

and where as before, gµ(x) is the composition of fµ(x) repeated 2n times. The roots of (13.16) are
given by m0, m1, . . . mn, so that the desired root is the largest one.

We shall use Newton’s method, §2.2, to solve (13.16). To implement Newton’s method, we
need to compute both G(µ) and G′(µ). Define N = 2n. Then using the logistic map

xn+1 = µxn(1− xn), (13.17)

and iterating with x0 = 1/2, we obtain x1, x2, . . . , xN . This orbit is superstable if xN = 1/2.
Therefore, we have

G(µ) = xN − 1/2.

Moreover,
G′(µ) = x′N ,

where the derivative is with respect to µ. From (13.17), we have

x′n+1 = xn(1− xn) + µx′n(1− xn)− µxnx′n
= xn(1− xn) + µx′n(1− 2xn).

Since we always choose x0 = 1/2, independent of µ, we have as a starting value x′0 = 0. Therefore,
to compute both xN and x′N , we iterate 2n times the coupled map equations

xn+1 = µxn(1− xn),

x′n+1 = xn(1− xn) + µx′n(1− 2xn),

102 CHAPTER 13. PENDULUM DYNAMICS

13.7. STRANGE ATTRACTOR OF THE CHAOTIC PENDULUM

n mn δn
0 2 4.7089430135405
1 1 +

√
5 4.6807709980107

2 3.4985616993277 4.6629596111141
3 3.5546408627688 4.6684039259164
4 3.5666673798563 4.6689537409802
5 3.5692435316371 4.6691571813703
6 3.5697952937499 4.6691910014915
7 3.5699134654223 4.6691994819801
8 3.5699387742333 4.6692010884670
9 3.5699441946081 4.6692015881423
10 3.5699453554865 4.6692023902759
11 3.5699456041111 4.6691974782669
12 3.5699456573588 4.6693329633696
13 3.5699456687629
14 3.5699456712052

Table 13.2: The first fourteen values of mn, and estimates of the Feigenbaum delta.

with initial values x0 = 1/2 and x′0 = 0. Newton’s method then solves for mn by iterating

µ(i+1) = µ(i) − xN − 1/2
x′N

,

until convergence of µ(i) to mn. In double precision, we have been able to achieve a precision of
about 14 digits, which we find can be obtained in fewer than 5 iterations of Newton’s method.

For Newton’s method to converge to mn, we need a good guess for µ(0). We can use the
previous best estimate for the Feigenbaum delta to predict mn. From (13.15), we find

µ(0) = mn−1 +
mn−1 −mn−2

δn−2
.

Although we can not compute δn−2 without knowing mn, we can nevertheless use the estimate
δn−2 ≈ δn−3. The computation, then, starts with n = 2, and we can begin by taking δ−1 = 4.4, so
that, for example,

µ(0) = 3.2361 +
3.2361− 2

4.4
= 3.5170.

Using this algorithm, we have produced Table 13.2 for mn, with corresponding calculations
of δn. As the values of mn converge, the corresponding values of δn begin to lose precision. It
would appear that our best estimate from the table is δ ≈ 4.66920, compared to the known value
of δ = 4.669201609102990 . . . , computed by a different algorithm capable of achieving higher
precision.

13.7 Strange attractor of the chaotic pendulum

After the period-doubling cascade, the pendulum motion becomes chaotic. We choose parameter
values q = 4, f = 1.5, and ω = 2/3 in the chaotic regime, and after discarding an initial transient

CHAPTER 13. PENDULUM DYNAMICS 103

13.7. STRANGE ATTRACTOR OF THE CHAOTIC PENDULUM

of 256 forcing periods, compute a Poincaré section of the phase-space trajectory in the θ-θ̇ plane,
sampling points every forcing period. The values of the periodic variable θ are mapped onto the
interval −π < θ < π. The full Poincaré section consisting of 50,000 points is shown in the top
drawing of Fig. 13.11, and a blowup of the points within the drawn rectangle (from a sample of
200,000 points over the entire attractor) is shown in the bottom drawing.

-3 -2 -1 0 1 2 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Figure 13.11: A Poincaré section of the chaotic pendulum. The values of the parameters are
q = 4, f = 1.5, and ω = 2/3. The top figure shows the entire attractor and the bottom figure
is a blow-up of the region inside the drawn rectangle.

From Fig. 13.11, it appears that the Poincaré section has structure on all scales, which is
reminiscent of the classical fractals discussed in §12.7. The set of points shown in Fig. 13.11 is
called a strange attractor, and will be seen to have a fractional correlation dimension.

Using the algorithm for computing a correlation dimension discussed in §12.7, we draw a

104 CHAPTER 13. PENDULUM DYNAMICS

13.7. STRANGE ATTRACTOR OF THE CHAOTIC PENDULUM

10
−6

10
−4

10
−2

10
0

10
−8

10
−6

10
−4

10
−2

10
0

r

C

Figure 13.12: The correlation integral C(r) versus r for the strange attractor shown in Fig.
13.11, using a 13,000 point sample. The least-squares line on the log-log plot yields a correlation
dimension of the Poincaré section of approximately D = 1.25.

log-log plot of the correlation integral C(r) versus r, shown in Fig. 13.12. A least-squares fit of
a straight line to the middle region of the plot yields a correlation dimension for the Poincaré
section of approximately D = 1.25.

CHAPTER 13. PENDULUM DYNAMICS 105

13.7. STRANGE ATTRACTOR OF THE CHAOTIC PENDULUM

106 CHAPTER 13. PENDULUM DYNAMICS

Part III

Computational fluid dynamics

107

The third part of this course considers a problem in computational fluid dynamics (cfd).
Namely, we consider the steady two-dimensional flow past a rectangle or a circle.

109

110

Chapter 14

Derivation of the governing
equations

We derive here the governing equations for the velocity u = u(x, t) of a flowing fluid.

14.1 Multi-variable calculus

Fluid flows typically take place in three-dimensional space, and the governing equations will
contain derivatives in all three directions. The mathematics learned in a multi-variable calculus
course will therefore be useful. Here, I summarize some of this mathematics.

14.1.1 Vector algebra
Examples of vectors will be the position vector x and the velocity vector u. We will use the
Cartesian coordinate system to write vectors in terms of their components as

x = (x, y, z), u = (u, v, w),

or sometimes as
x = (x1, x2, x3), u = (u1, u2, u3).

Another notation makes use of the cartesian unit vectors, x̂, ŷ, and ẑ:

x = xx̂ + yŷ + zẑ, u = ux̂ + vŷ + wẑ.

The velocity u is called a vector field because it is a vector that is a function of the position vector
x.

The dot product between two vectors u and v is given by

u · v = u1v1 + u2v2 + u3v3

= uivi,

where in the last expression we use the Einstein summation convention: when an index occurs
twice in a single term, it is summed over. From hereon, the Einstein summation convention will
be assumed unless explicitly stated otherwise.

The cross product between two vectors is given by a determinant:

u× v =

∣∣∣∣∣∣
x̂ ŷ ẑ
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

The cross-product of two vectors is a vector, and the components of the cross product can be
written more succinctly using the Levi-Civita tensor, defined as

εijk =


1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),

0 if any index is repeated.

111

14.2. CONTINUITY EQUATION

Using the Levi-Civita tensor, the i-th component of the cross product can be written as

(u× v)i = εijkujvk.

Another useful tensor is the Kronecker delta, defined as

δij =

{
0 if i 6= j,
1 if i = j.

Note that viδij = vj and that δii = 3. A useful identity between the Levi-Civita tensor and the
Kronecker delta is given by

εijkεimn = δjmδkn − δjnδkm.
Gauss’s theorem (or the divergence theorem) and Stokes’ theorem are usually introduced in

a course on multi-variable calculus. We will state these theorems here.
First, Gauss’s theorem. Let V be a three-dimensional volume bounded by a smooth surface

S, and let F be a vector field in V. Then Gauss’s theorem states that∫
S

F · n̂dS =
∫

V
∇ · FdV, (14.1)

where n̂ is the outward facing unit normal vector to the bounding surface S.
Second, Stokes’ theorem. Let S be a smooth surface bounded by a simple closed curve C with

positive orientation. Then Stokes’ theorem states that∮
C

F · dr =
∫

S
(∇× F) · n̂dS. (14.2)

14.2 Continuity equation

We consider a control volume V of fluid bounded by a smooth surface S. The continuity equation
expresses the conservation of mass. The time-derivative of the total mass of the fluid contained
in the volume V is equal to the (negative) of the total mass of fluid that flows out of the boundary
of V; that is;

d
dt

∫
V

ρ(x, t)dV = −
∫

S
ρ(x, t)u(x, t) · n̂dS. (14.3)

The integral on the right-hand-side represents the flux of mass through the boundary S and
has units of mass per unit time. We now apply the divergence theorem to the integral on the
right-hand-side: ∫

S
ρ(x, t)u(x, t) · n̂dS =

∫
V
∇ · (ρu)dV. (14.4)

Combining the left- and right-hand-sides, we have∫
V

(
∂ρ

∂t
+∇ · (ρu)

)
dV = 0. (14.5)

Because the control volume is arbitrary, the integrand must vanish identically, and we thus obtain
the continuity equation

∂ρ

∂t
+∇ · (ρu) = 0. (14.6)

We will only be considering here incompressible fluids, where we may assume that ρ(x, t) is
a constant, independent of both space and time. The continuity equation (14.6) then becomes an
equation for conservation of fluid volume, and is given by

∇ · u = 0. (14.7)

This equation is called the incompressibility condition.

112 CHAPTER 14. THE GOVERNING EQUATIONS

14.3. MOMENTUM EQUATION

14.3 Momentum equation

14.3.1 Material derivative
The Navier-Stokes equation is derived from applying Newton’s law F = ma to a fluid flow. We
first consider the acceleration of a fluid element. The velocity of the fluid at a fixed position x is
given by u(x, t), but the fluid element is not at a fixed position but follows the fluid in motion.
Now a general application of the chain rule yields

d
dt

u(x, t) =
∂u
∂t

+
∂u
∂xj

∂xj

∂t
.

If the position x is fixed, then ∂xj/∂t = 0. But if x = x(t) represents the position of the fluid
element, then ∂xj/∂t = uj. The latter assumption is called the material derivative and is written
as

Du
Dt

=
∂u
∂t

+ uj
∂u
∂xj

=
∂u
∂t

+ (u ·∇)u,

and represents the acceleration of a fluid element as it flows with the fluid. Instead of the mass
of the fluid element, we consider the mass per unit volume, and the right-hand-side of F = ma
becomes

ρ

(
∂u
∂t

+ (u ·∇)u
)

.

We now need find the forces per unit volume acting on the flowing fluid element. We consider
both pressure forces and viscous forces.

14.3.2 Pressure forces
We consider the normal pressure forces acting on two opposing faces of a control volume of fluid.
With A the area of the rectangular face at fixed y, and dy the depth, the volume of the box is
Ady, and the net pressure force per unit volume acting on the control volume in the y-direction
is given by

fp =
pA− (p + dp)A

Ady

= − dp
dy

.

Similar considerations for the x and z directions yield the pressure force vector per unit volume
to be

fp = −
(

∂p
∂x

,
∂p
∂y

,
∂p
∂z

)
= −∇p.

14.3.3 Viscous forces
The viscosity of a fluid measures its internal resistance to flow. Consider a fluid confined between
two very large plates of surface area A, separated by a small distance dy. Suppose the bottom

CHAPTER 14. THE GOVERNING EQUATIONS 113

14.3. MOMENTUM EQUATION

plate is stationary and the top plate move with velocity du in the x- direction. The applied force
per unit area required to keep the top surface in motion is empirically given by

F
A

= µ
du
dy

,

where µ is called the dynamic viscosity. Of course there is also an opposite force required to keep
the bottom surface stationary. The difference between these two forces is the net viscous force on
the fluid element. Taking the difference, the resulting net force per unit area will be proportional
to the second derivative of the velocity. Now the viscous forces act in all directions and on all the
faces of the control volume. Without going into further technical details, we present the general
form (for a so-called Newtonian fluid) of the viscous force vector per unit volume:

fv = µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 ,

∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2 ,

∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)
= µ∇2u.

14.3.4 Navier-Stokes equation
Putting together all the terms, the Navier-Stokes equation is written as

ρ

(
∂u
∂t

+ (u ·∇)u
)
= −∇p + µ∇2u.

Now, instead of the dynamic viscosity µ, one usually defines the kinematic viscosity ν = µ/ρ.
The governing equations of fluid mechanics for a so-called incompressible Newtonian fluid, then,
are given by both the continuity equation and the Navier-Stokes equation; that is,

∇ · u = 0, (14.8)

∂u
∂t

+ (u ·∇)u = − 1
ρ
∇p + ν∇2u. (14.9)

14.3.5 Boundary conditions
Boundary conditions must be prescribed when flows contact solid surfaces. We will assume rigid,
impermeable surfaces. If n̂ is the normal unit vector to the surface, and if there is no motion of
the surface in the direction of its normal vector, then the condition of impermeability yields

u · n̂ = 0.

We will also assume the no-slip condition: a viscous fluid should have zero velocity relative to a
solid surface. In other words, a stationary or moving solid surface drags along the fluid touching
it with the same velocity. The no-slip condition can be expressed mathematically as

u× n̂ = V× n̂,

where u is the velocity of the fluid, V is the velocity of the surface, and n̂ is the normal vector to
the surface.

Boundary conditions may also be prescribed far from any wall or obstacle. The free-stream
boundary condition states that u = U at infinity, where U is called the free-stream velocity.

114 CHAPTER 14. THE GOVERNING EQUATIONS

Chapter 15

Laminar flow
Smoothly flowing fluids, with the fluid flowing in undisrupted layers, are called laminar

flows. There are several iconic laminar flows, whose velocity fields are readily found by solving
the continuity and Navier-Stokes equations.

15.1 Plane Couette flow

Plane Couette flow consists of a fluid flowing between two infinite plates separated by a distance
d. The lower plate is stationary, and the upper plate is moving to the right with velocity U. The
pressure p is constant and the fluid is incompressible.

We look for a steady solution for the velocity field of the form

u(x, y, z) =
(
u(y), 0, 0

)
.

The incompressibility condition is automatically satisfied, and the first-component of the Navier-
Stokes equation reduces to

ν
∂2u
∂y2 = 0.

Applying the boundary conditions u(0) = 0 and u(d) = U on the lower and upper plates, the
laminar flow solution is given by

u(y) =
Uy
d

.

15.2 Channel flow

Channel flow, or Poiseuille flow, also consists of a fluid flowing between two infinite plates
separated by a distance d, but with both plates stationary. Here, there is a constant pressure
gradient along the x-direction in which the fluid flows. Again, we look for a steady solution for
the velocity field of the form

u(x, y, z) =
(
u(y), 0, 0

)
,

and with
p = p(x)

and
dp
dx

= −G, (15.1)

with G a positive constant. The first-component of the Navier-Stokes equation becomes

− 1
ρ

dp
dx

+ ν
d2u
dy2 = 0. (15.2)

Using (15.1) in (15.2) leads to
d2u
dy2 = − G

νρ
,

115

15.3. PIPE FLOW

which can be solved using the no-slip boundary conditions u(0) = u(d) = 0. We find

u(y) =
Gd2

2νρ

(y
d

) (
1− y

d

)
.

The maximum velocity of the fluid occurs at the midline, y = d/2, and is given by

umax =
Gd2

8νρ
.

15.3 Pipe flow

Pipe flow consists of flow through a pipe of circular cross-section radius R, with a constant
pressure gradient along the pipe length. With the pressure gradient along the x-direction, we
look for a steady solution of the velocity field of the the form

u =
(
u(y, z), 0, 0

)
.

With the constant pressure gradient defined as in (15.1), the Navier-Stokes equation reduces to

∂2u
∂y2 +

∂2u
∂z2 = − G

νρ
. (15.3)

The use of polar coordinates in the y-z plane can aid in solving (15.3). With

u = u(r),

we have
∂2

∂y2 +
∂2

∂z2 =
1
r

d
dr

(
r

d
dr

)
,

so that (15.3) becomes the differential equation

d
dr

(
r

du
dr

)
= −Gr

νρ
,

with no-slip boundary condition u(R) = 0. The first integration from 0 to r yields

r
du
dr

= −Gr2

2νρ
;

and after division by r, the second integration from r to R yields

u(r) =
GR2

4νρ

(
1−

(r
R

)2
)

.

The maximum velocity occurs at the pipe midline, r = 0, and is given by

umax =
GR2

4νρ
.

116 CHAPTER 15. LAMINAR FLOW

Chapter 16

Stream function, vorticity
equations
16.1 Stream function

A streamline at time t is defined as the curve whose tangent is everywhere parallel to the velocity
vector. With dx along the tangent, we have

u× dx = 0;

and with u = (u, v, w) and dx = (dx, dy, dz), the cross product yields the three equations

vdz = wdy, udz = wdx, udy = vdx, (16.1)

or equivalently,
dx
u

=
dy
v

=
dz
w

.

Streamlines have the following two properties. They cannot intersect except at a point of
zero velocity, and as streamlines converge the fluid speed increases. The latter is a consequence
of the incompressibility of the fluid: as the same flow rate of fluid passes through a smaller
cross-sectional area, the fluid velocity must increase.

Related to streamlines is the stream function. We specialize here to a two dimensional flow,
with

u =
(
u(x, y), v(x, y), 0

)
.

The incompressibility condition becomes

∂u
∂x

+
∂v
∂y

= 0,

which can be satisfied by defining the scalar stream function ψ = ψ(x, y) by

u(x, y) =
∂ψ

∂y
, v(x, y) = − ∂ψ

∂x
.

Now, the differential of the stream function ψ(x, y) satisfies

dψ =
∂ψ

∂x
dx +

∂ψ

∂y
dy

= −vdx + udy,

which from (16.1) is equal to zero along streamlines. Thus the contour curves of constant ψ
represent the streamlines of the flow field, and can provide a good visualization of a fluid flow
in two dimensions.

117

16.2. VORTICITY

16.2 Vorticity

The vector vorticity field is defined from the vector velocity field by

ω = ∇× u. (16.2)

The vorticity is a measure of the local rotation of the fluid as can be seen from an application of
Stokes’ theorem: ∫

S
ω · n̂dS =

∫
S
(∇× u) · n̂dS

=
∮

C
u · dr.

Flows without vorticity are called irrotational, or potential flow, and vorticity is sometimes called
swirl.

The governing equation for vorticity may be found by taking the curl of the Navier-Stokes
equation; that is,

∇×
{

∂u
∂t

+ (u ·∇)u
}

= ∇×
{
− 1

ρ
∇p + ν∇2u

}
.

Computing term-by-term, we have

∇×
{

∂u
∂t

}
=

∂

∂t
(∇× u)

=
∂ω

∂t
.

And because the curl of a gradient is zero,

∇×
{
− 1

ρ
∇p

}
= 0.

Also,

∇×
{

ν∇2u
}
= ν∇2 (∇× u)

= ν∇2ω.

The remaining term to compute is the curl of the convection term in the Navier-Stokes equation.
We first consider the following equality (where the subscript i signifies the i-th component of the
vector):

{u× (∇× u)}i = εijkujεklm
∂um

∂xl

= εkijεklmuj
∂um

∂xl

= (δilδjm − δimδjl)uj
∂um

∂xl

= um
∂um

∂xi
− ul

∂ui
∂xl

=
1
2

∂

∂xi
umum − ul

∂ui
∂xl

.

118 CHAPTER 16. STREAM FUNCTION, VORTICITY EQUATIONS

16.3. TWO-DIMENSIONAL NAVIER-STOKES EQUATION

Therefore, in vector form,

u× (∇× u) =
1
2
∇(u2)− (u ·∇)u.

This identity allows us to write

(u ·∇)u =
1
2
∇(u2)− u× (∇× u).

Taking the curl of both sides and making use of the curl of a gradient equals zero and ∇×u = ω,
results in

∇× {(u ·∇)u} = −∇× (u×ω)

= ∇× (ω× u) .

Combining all the above terms, we have thus obtained the vorticity equation

∂ω

∂t
+∇× (ω× u) = ν∇2ω. (16.3)

An alternative form of the vorticity equation rewrites the convection term to explicitly include
the substantive derivative. We have

{∇× (ω× u)}i = εijk
∂

∂xj
εklmωlum

= εkijεklm
∂

∂xj
(ωlum)

= (δilδjm − δimδjl)
∂

∂xj
(ωlum)

=
∂

∂xm
(ωium)−

∂

∂xl
(ωlui)

= um
∂wi
∂xm
−ωl

∂ui
∂xl

,

where to obtain the last equality we have used both ∂um/∂xm = 0 and ∂ωl/∂xl = 0. Therefore,
in vector form,

∇× (ω× u) = (u ·∇)ω− (ω ·∇)u.

The vorticity equation can then be rewritten as

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u + ν∇2ω. (16.4)

Compared to the Navier-Stokes equation, there is an extra term, called the vortex stretching term,
on the right-hand-side of (16.4).

16.3 Two-dimensional Navier-Stokes equation

We have already seen that in two dimensions, the incompressibility condition is automatically
satisfied by defining the stream function ψ(x, t). Also in two dimensions, the vorticity can be

CHAPTER 16. STREAM FUNCTION, VORTICITY EQUATIONS 119

16.3. TWO-DIMENSIONAL NAVIER-STOKES EQUATION

reduced to a scalar field. With u =
(
u(x, y), v(x, y)

)
, we have

ω = ∇× u

=

∣∣∣∣∣∣
x̂ ŷ ẑ

∂/∂x ∂/∂y ∂/∂z
u(x, y) v(x, y) 0

∣∣∣∣∣∣
= ẑ

(
∂v
∂x
− ∂u

∂y

)
= ω(x, y)ẑ,

where we have now defined the scalar field ω to be the third component of the vector vorticity
field. Making use of the stream function, we then have

ω =
∂v
∂x
− ∂u

∂y

= − ∂2ψ

∂x2 −
∂2ψ

∂y2 .

Therefore, in vector form, we have
∇2ψ = −ω, (16.5)

where

∇2 =
∂2

∂x2 +
∂2

∂y2

is the two-dimensional Laplacian.
Now, with ω = ω(x, y)ẑ, the third component of the vorticity equation (16.4) becomes

∂ω

∂t
+ (u ·∇)ω = ν∇2ω,

where the vortex stretching term can be seen to vanish. We can also write

u ·∇ = u
∂

∂x
+ v

∂

∂y

=
∂ψ

∂y
∂

∂x
− ∂ψ

∂x
∂

∂y
.

The vorticity equation in two dimensions then becomes

∂ω

∂t
+

(
∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)
= ν∇2ω.

For a stationary flow, this equation becomes the Poisson equation,

∇2ω =
1
ν

(
∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y

)
. (16.6)

We have thus obtained for a stationary flow two coupled Poisson equations for ψ(x, y) and ω(x, y)
given by (16.5) and (16.6).

The pressure field p(x, y) decouples from these two Poisson equations, but can be determined
if desired. We take the divergence of the Navier-Stokes equation, (14.9), and application of the
incompressibility condition, (14.8), yields

∇ · ∂u
∂t

= 0, ∇ · ∇2u = 0,

120 CHAPTER 16. STREAM FUNCTION, VORTICITY EQUATIONS

16.3. TWO-DIMENSIONAL NAVIER-STOKES EQUATION

resulting in
∇2 p = −ρ∇ ·

(
(u ·∇)u

)
. (16.7)

We would like to eliminate the velocity vector field in (16.7) in favor of the stream function. We
compute

∇ · (u ·∇)u =
∂

∂xi

(
uj

∂ui
∂xj

)

=
∂uj

∂xi

∂ui
∂xj

+ uj
∂2ui

∂xi∂xj
.

The second term on the right-hand-side vanishes because of the incompressibility condition. We
therefore have

∇ · (u ·∇)u =
∂uj

∂xi

∂ui
∂xj

=

(
∂u
∂x

)2
+

(
∂v
∂x

∂u
∂y

)
+

(
∂u
∂y

∂v
∂x

)
+

(
∂v
∂y

)2

=

(
∂2ψ

∂x∂y

)2

− 2
∂2ψ

∂x2
∂2ψ

∂y2 +

(
∂2ψ

∂x∂y

)2

= −2

[
∂2ψ

∂x2
∂2ψ

∂y2 −
(

∂2ψ

∂x∂y

)2]
.

Using (16.7), the pressure field therefore satisfies the Poisson equation

∇2 p = 2ρ

[
∂2ψ

∂x2
∂2ψ

∂y2 −
(

∂2ψ

∂x∂y

)2]
.

CHAPTER 16. STREAM FUNCTION, VORTICITY EQUATIONS 121

16.3. TWO-DIMENSIONAL NAVIER-STOKES EQUATION

122 CHAPTER 16. STREAM FUNCTION, VORTICITY EQUATIONS

Chapter 17

Steady, two-dimensional flow
past an obstacle

We now consider a classic problem in computational fluid dynamics: the steady, two-dimensional
flow past an obstacle. Here, we consider flows past a rectangle and a circle.

First, we consider flow past a rectangle. The simple Cartisian coordinate system is most
suitable for this problem, and the boundaries of the internal rectangle can be aligned with the
computational grid. Second, we consider flow past a circle. Here, the polar coordinate system
is most suitable, and this introduces some additional analytical complications to the problem
formulation. Nevertheless, we will see that the computation of flow past a circle may in fact be
simpler than flow past a rectangle. Although flow past a rectangle contains two dimensionless
parameters, flow past a circle contains only one. Furthermore, flow past a circle may be solved
within a rectangular domain having no internal boundaries.

17.1 Flow past a rectangle

The free stream velocity is given by u = Ux̂ and the rectangular obstacle is assumed to have
width W and height H. Now, the stream function has units of velocity times length, and the
vorticity has units of velocity divided by length. The steady, two-dimensional Poisson equations
for the stream function and the vorticity, given by (16.5) and (16.6), may be nondimensionalized
using the velocity U and the length W. The resulting dimensionless equations can be written as

−∇2ψ = ω, (17.1)

−∇2ω = Re
(

∂ψ

∂x
∂ω

∂y
− ∂ψ

∂y
∂ω

∂x

)
, (17.2)

where the dimensionless parameter Re is called the Reynolds number. An additional dimension-
less parameter arises from the aspect ratio of the rectangular obstacle, and is denoted by a. These
two dimensionless parameters are defined by

Re =
UW

ν
, a =

W
H

. (17.3)

A solution for the scalar stream function and scalar vorticity field will be sought for different
values of the Reynolds number Re at a fixed aspect ratio a.

17.1.1 Finite difference approximation
We construct a rectangular grid for a numerical solution. We will make use of square grid cells,
and write

xi = ih, i = 0, 1, . . . , Nx; (17.4a)

yj = jh, j = 0, 1, . . . , Ny, (17.4b)

123

17.1. FLOW PAST A RECTANGLE

where Nx and Ny are the number of grid cells spanning the x- and y-directions, and h is the side
length of a grid cell.

To obtain an accurate solution, we require the boundaries of the obstacle to lie exactly on the
boundaries of the grid cell. The width of the obstacle in our dimensionless formulation is unity,
and we place the front of the obstacle at x = mh and the back of the obstacle at x = (m + I)h,
where we must have

hI = 1.

With I specified, the grid spacing is determined by h = 1/I.
We will only look for steady solutions for the flow field that are symmetric about the midline

of the obstacle. Assuming symmetry, we need only solve for the flow field in the upper half of
the domain. We place the center line of the obstacle at y = 0 and the top of the rectangle at hJ.
The dimensionless half-height of the obstacle is given by 1/2a, so that

hJ =
1
2a

.

Forcing the rectangle to lie on the grid lines constrains the choice of aspect ratio and the values
of I and J such that

a =
I

2J
.

Reasonable values of a to consider are a = . . . , 1/4, 1/2, 1, 2, 4, . . . , etc, and I and J can be adjusted
accordingly.

The physics of the problem is specified through the two dimensionless parameters Re and a.
The numerics of the problem is specified by the parameters Nx, Ny, h, and the placement of the
rectangle in the computational domain. We look for convergence of the numerical solution as
h → 0, Nx, Ny → ∞ and the rectangle is placed far from the boundaries of the computationally
domain.

Discretizing the governing equations, we now write

ψi,j = ψ(xi, yj), ωi,j = ω(xi, yj).

To solve the coupled Poisson equations given by (17.1) and (17.2), we make use of the SOR
method, previously described in §7.1. The notation we use here is for the Jacobi method, but
faster convergence is likely to be achieved using red-back Gauss-Seidel. The Poisson equation for
the stream function, given by (17.1), becomes

ψn+1
i,j = (1− rψ)ψ

n
i,j +

rψ

4

(
ψn

i+1,j + ψn
i−1,j + ψn

i,j+1 + ψn
i,j−1 + h2ωn

i,j

)
. (17.5)

The Poisson equation for the vorticity, given by (17.2), requires use of the centered finite difference
approximation for the derivatives that appear on the right-hand-side. For x = xi, y = yi, these
approximations are given by

∂ψ

∂x
≈ 1

2h

(
ψi+1,j − ψi−1,j

)
,

∂ψ

∂y
≈ 1

2h

(
ψi,j+1 − ψi,j−1

)
,

∂ω

∂x
≈ 1

2h

(
ωi+1,j −ωi−1,j

)
,

∂ω

∂y
≈ 1

2h

(
ωi,j+1 −ωi,j−1

)
.

We then write for (17.2),

ωn+1
i,j = (1− rω)ω

n
i,j +

rω

4

(
ωn

i+1,j + ωn
i−1,j + ωn

i,j+1 + ωn
i,j−1 +

Re
4

f n
i,j

)
, (17.6)

where

f n
ij =

(
ψn

i+1,j − ψn
i−1,j

) (
ωn

i,j+1 −ωn
i,j−1

)
−
(

ψn
i,j+1 − ψn

i,j−1

) (
ωn

i+1,j −ωn
i−1,j

)
. (17.7)

124 CHAPTER 17. FLOW PAST AN OBSTACLE

17.1. FLOW PAST A RECTANGLE

Now, the right-hand-side of (17.6) contains a nonlinear term given by (17.7). This nonlinearity
can result in the iterations becoming unstable.

The iterations can be stabilized as follows. First, the relaxation parameters, rψ and rω , should
be less than or equal to unity, and unstable iterations can often be made stable by decreasing
rω . One needs to numerically experiment to obtain the best trade-off between computationally
stability and speed. Second, to determine the solution with Reynolds number Re, the iteration
should be initialized using the steady solution for a slightly smaller Reynolds number. Initial
conditions for the first solution with Re slightly larger than zero should be chosen so that this
first iteration is stable.

The path of convergence can be tracked during the iterations. We define

εn+1
ψ = max

i,j

∣∣∣ψn+1
i,j − ψn

i,j

∣∣∣ ,

εn+1
ω = max

i,j

∣∣∣ωn+1
i,j −ωn

i,j

∣∣∣ .

The iterations are to be stopped when the values of εn+1
ψ and εn+1

ω are less than some pre-defined

error tolerance, say 10−8.

17.1.2 Boundary conditions
Boundary conditions on ψi,j and ωi,j must be prescribed at i = 0 (inflow), i = Nx (outflow),
j = 0 (midline), and j = Ny (top of computational domain). Also, boundary conditions must be
prescribed on the surface of the obstacle; that is, on the front surface: i = m, 0 ≤ j ≤ J; the back
surface: i = m + I, 0 ≤ j ≤ J; and the top surface: m ≤ i ≤ m + I, j = J. Inside of the obstacle,
m < i < m + I, 0 < j < J, no solution is sought.

For the inflow and top-of-domain boundary conditions, we may assume that the flow field
satisfies dimensionless free-stream conditions; that is,

u = 1, v = 0.

The vorticity may be taken to be zero, and the stream function satisfies

∂ψ

∂y
= 1,

∂ψ

∂x
= 0.

Integrating the first of these equations, we obtain

ψ = y + f (x);

and from the second equation we obtain f (x) = c, where c is a constant. Without loss of general-
ity, we may choose c = 0. Therefore, for the inflow and top-of-domain boundary conditions, we
have

ψ = y, ω = 0. (17.8)

At the top of the domain, notice that y = Nyh is a constant.
For the outflow boundary conditions, we have two possible choices. We could assume free-

stream conditions if we place the outflow boundary sufficiently far away from the obstacle. How-
ever, one would expect that the disturbance to the flow field downstream of the obstacle might
be substantially greater than that upstream of the obstacle. Perhaps better outflow boundary
conditions may be zero normal derivatives of the flow field; that is

∂ψ

∂x
= 0,

∂ω

∂x
= 0.

CHAPTER 17. FLOW PAST AN OBSTACLE 125

17.1. FLOW PAST A RECTANGLE

For the midline boundary conditions, we will assume a symmetric flow field so that the flow
pattern will look the same when rotated about the x-axis. The symmetry conditions are therefore
given by

u(x,−y) = u(x, y), v(x,−y) = −v(x, y).
The vorticity exhibits the symmetry given by

ω(x,−y) =
∂v(x,−y)

∂x
− ∂u(x,−y)

∂(−y)

= − ∂v(x, y)
∂x

+
∂u(x, y)

∂(y)

= −ω(x, y).

On the midline (y = 0), then, ω(x, 0) = 0. Also, v(x, 0) = 0. With v = −∂ψ/∂x, we must
have ψ(x, 0) independent of x, or ψ(x, 0) equal to a constant. Matching the midline boundary
condition to our chosen inflow condition determines ψ(x, 0) = 0.

Our boundary conditions are discretized using (17.4). The outflow condition of zero normal
derivative could be approximated either to first- or second-order. Since it is an approximate
boundary condition, first-order is probably sufficient and we use ψNx ,j = ψNx−1,j and ωNx ,j =
ωNx−1,j.

Putting all these results together, the boundary conditions on the borders of the computa-
tional domain are given by

ψi,0 = 0, ωi,0 = 0, midline;

ψ0,j = jh, ω0,j = 0, inflow;

ψNx ,j = ψNx−1,j, ωNx ,j = ωNx−1,j, outflow;

ψi,Ny = Nyh, ωi,Ny = 0, top-of-domain.

Boundary conditions on the obstacle can be derived from the no-penetration and no-slip con-
ditions. From the no-penetration condition, u = 0 on the sides and v = 0 on the top. Therefore,
on the sides, ∂ψ/∂y = 0, and since the side boundaries are parallel to the y-axis, ψ must be
constant. On the top, ∂ψ/∂x = 0, and since the top is parallel to the x-axis, ψ must be constant.
Matching the constant to the value of ψ on the midline, we obtain ψ = 0 along the boundary of
the obstacle.

From the no-slip condition, v = 0 on the sides and u = 0 on the top. Therefore, ∂ψ/∂x = 0
on the sides and ∂ψ/∂y = 0 on the top. To interpret the no-slip boundary conditions in terms of
boundary conditions on the vorticity, we make use of (17.1); that is,

ω = −
(

∂2ψ

∂x2 +
∂2ψ

∂y2

)
. (17.9)

First consider the sides of the obstacle. Since ψ is independent of y we have ∂2ψ/∂y2 = 0,
and (17.9) becomes

ω = − ∂2ψ

∂x2 . (17.10)

We now Taylor series expand ψ(xm − h, yj) and ψ(xm − 2h, yj) about (xm, yj), corresponding to
the front face of the rectangular obstacle. We have to order h3:

ψm−1,j = ψm,j − h
∂ψ

∂x

∣∣∣∣
m,j

+
1
2

h2 ∂2ψ

∂x2

∣∣∣∣
m,j
− 1

6
h3 ∂3ψ

∂x3

∣∣∣∣
m,j

+ O(h4),

ψm−2,j = ψm,j − 2h
∂ψ

∂x

∣∣∣∣
m,j

+ 2h2 ∂2ψ

∂x2

∣∣∣∣
m,j
− 4

3
h3 ∂3ψ

∂x3

∣∣∣∣
m,j

+ O(h4).

126 CHAPTER 17. FLOW PAST AN OBSTACLE

17.1. FLOW PAST A RECTANGLE

The first terms in the two Taylor series expansions are zero because of the no-penetration con-
dition, and the second terms are zero because of the no-slip condition. The third terms acan be
rewritten using (17.10), and we obtain

ψm−1,j = −
1
2

h2ωm,j −
1
6

h3 ∂3ψ

∂x3

∣∣∣∣
m,j

+ O(h4),

ψm−2,j = −2h2ωm,j −
4
3

h3 ∂3ψ

∂x3

∣∣∣∣
m,j

+ O(h4).

We multiply the first equation by −8 and add it to the second equation to eliminate the h3 term.
We obtain

−8ψm−1,j + ψm−2,j = 2h2ωm,j + O(h4).

Solving for the vorticity, we have a second-order accurate boundary condition given by

ωm,j =
ψm−2,j − 8ψm−1,j

2h2 .

Similar considerations applied to the back face of the rectangular obstacle yields

ωm+I,j =
ψm+I+2,j − 8ψm+I+1,j

2h2 .

On the top of the obstacle, y = Jh is fixed, and since ψ is independent of x, we have ∂2ψ/∂x2 =
0. Therefore,

ω = − ∂2ψ

∂y2 . (17.11)

We now Taylor series expand ψ(xi, yJ+1) and ψ(xi, yJ+2) about (xi, yJ). To order h3,

ψi,J+1 = ψi,J + h
∂ψ

∂y

∣∣∣∣
i,J
+

1
2

h2 ∂2ψ

∂y2

∣∣∣∣
i,J
+

1
6

h3 ∂3ψ

∂y3

∣∣∣∣
i,J
+ O(h4),

ψi,J+2 = ψi,J + 2h
∂ψ

∂y

∣∣∣∣
i,J
+ 2h2 ∂2ψ

∂y2

∣∣∣∣
i,J
+

4
3

h3 ∂3ψ

∂y3

∣∣∣∣
i,J
+ O(h4).

Again, the first and second terms in the Taylor series expansion are zero, and making use of
(17.11), we obtain

ψi,J+1 = −1
2

h2ωi,J +
1
6

h3 ∂3ψ

∂y3

∣∣∣∣
i,J
+ O(h4),

ψi,J+2 = −2h2ωi,J +
4
3

h3 ∂3ψ

∂y3

∣∣∣∣
i,J
+ O(h4).

Again, we multiply the first equation by −8 and add it to the second equation to obtain

−8ψi,J+1 + ψi,J+2 = 2h2ωi,J + O(h4).

Solving for the vorticity on the top surface, we have to second-order accuracy

ωi,J =
ψi,J+2 − 8ψi,J+1

2h2 .

CHAPTER 17. FLOW PAST AN OBSTACLE 127

17.2. FLOW PAST A CIRCLE

We summarize the boundary conditions on the obstacle:

front face: ψm,j = 0, ωm,j =
ψm−2,j − 8ψm−1,j

2h2 , 0 ≤ j ≤ J;

back face: ψm+I,j = 0, ωm+I,j =
ψm+I+2,j − 8ψm+I+1,j

2h2 , 0 ≤ j ≤ J;

top face: ψi,J = 0, ωi,J =
ψi,J+2 − 8ψi,J+1

2h2 , m ≤ i ≤ m + I.

17.2 Flow past a circle

We now consider flow past a circular obstacle of radius R, with free-stream velocity u = Ux̂.
Here, we nondimensionalize the governing equations using U and R. We will define the Reynolds
number—the only dimensionless parameter of this problem—by

Re =
2UR

ν
. (17.12)

The extra factor of 2 bases the definition of the Reynolds number on the diameter of the circle
rather than the radius, which allows a better comparison to computations of flow past a square
(a = 1), where the Reynolds number was based on the side length.

The dimensionless governing equations in vector form, can be written as

∇2ψ = −ω (17.13a)

∇2ω =
Re
2

u ·∇ω, (17.13b)

where the extra factor of one-half arises from nondimensionalizing the equation using the radius
of the obstacle R, but defining the Reynolds number in terms of the diameter 2R.

17.2.1 Log-polar coordinates
Although the free-stream velocity is best expressed in Cartesian coordinates, the boundaries of
the circular obstacle are more simply expressed in polar coordinates, with origin at the center of
the circle. Polar coordinates are defined in the usual way by

x = r cos θ, y = r sin θ,

with the cartesian unit vectors given in terms of the polar unit vectors by

x̂ = cos θr̂− sin θθ̂, ŷ = sin θr̂ + cos θθ̂.

The polar unit vectors are functions of position, and their derivatives are given by

∂r̂
∂r

= 0,
∂r̂
∂θ

= θ̂,
∂θ̂

∂r
= 0,

∂θ̂

∂θ
= −r̂.

The del differential operator in polar coordinates is given by

∇ = r̂
∂

∂r
+ θ̂

1
r

∂

∂θ
,

and the two-dimensional Laplacian is given by

∇2 =
1
r2

((
r

∂

∂r

)(
r

∂

∂r

)
+

∂2

∂θ2

)
. (17.14)

128 CHAPTER 17. FLOW PAST AN OBSTACLE

17.2. FLOW PAST A CIRCLE

The velocity field is written in polar coordinates as

u = ur r̂ + uθ θ̂.

The free-stream velocity in polar coordinates is found to be

u = Ux̂

= U
(
cos θr̂− sin θθ̂

)
, (17.15)

from which can be read off the components in polar coordinates. The continuity equation ∇ ·u =
0 in polar coordinates is given by

1
r

∂

∂r
(rur) +

1
r

∂uθ

∂θ
= 0,

so that the stream function can be defined by

rur =
∂ψ

∂θ
, uθ = − ∂ψ

∂r
. (17.16)

The vorticity, here in cylindrical coordinates, is given by

ω = ∇× u

= ẑ
(

1
r

∂

∂r
(ruθ)−

1
r

∂ur

∂θ

)
,

so that the z-component of the vorticity for a two-dimensional flow is given by

ω =
1
r

∂

∂r
(ruθ)−

1
r

∂ur

∂θ
. (17.17)

Furthermore,

u ·∇ =
(
ur r̂ + uθ θ̂

)
·
(

r̂
∂

∂r
+ θ̂

1
r

∂

∂θ

)
= ur

∂

∂r
+

uθ

r
∂

∂θ

=
1
r

∂ψ

∂θ

∂

∂r
− 1

r
∂ψ

∂r
∂

∂θ
. (17.18)

The governing equations given by (17.13), then, with the Laplacian given by (17.14), and the
convection term given by (17.18), are

∇2ψ = −ω, (17.19)

∇2ω =
Re
2

(
1
r

∂ψ

∂θ

∂ω

∂r
− 1

r
∂ψ

∂r
∂ω

∂θ

)
. (17.20)

The recurring factor r∂/∂r in the polar coordinate Laplacian, (17.14), is awkward to discretize
and we look for a change of variables r = r(ξ), where

r
∂

∂r
=

∂

∂ξ
.

Now,
∂

∂ξ
=

dr
dξ

∂

∂r
,

CHAPTER 17. FLOW PAST AN OBSTACLE 129

17.2. FLOW PAST A CIRCLE

so that we require
dr
dξ

= r. (17.21)

This simple differential equation can be solved if we take as our boundary condition ξ = 0 when
r = 1, corresponding to points lying on the boundary of the circular obstacle. The solution of
(17.21) is therefore given by

r = eξ .

The Laplacian in the so-called log polar coordinates then becomes

∇2 =
1
r2

((
r

∂

∂r

)(
r

∂

∂r

)
+

∂2

∂θ2

)
= e−2ξ

(
∂2

∂ξ2 +
∂2

∂θ2

)
.

Also, transforming the right-hand-side of (17.20), we have

1
r

∂ψ

∂θ

∂ω

∂r
− 1

r
∂ψ

∂r
∂ω

∂θ
=

1
r2

(
r

∂ω

∂r
∂ψ

∂θ
− r

∂ψ

∂r
∂ω

∂θ

)
= e−2ξ

(
∂ψ

∂θ

∂ω

∂ξ
− ∂ψ

∂ξ

∂ω

∂θ

)
.

The governing equations for ψ = ψ(ξ, θ) and ω = ω(ξ, θ) in log-polar coordinates can therefore
be written as

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
ψ = e2ξ ω, (17.22a)

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
ω =

Re
2

(
∂ψ

∂ξ

∂ω

∂θ
− ∂ψ

∂θ

∂ω

∂ξ

)
. (17.22b)

17.2.2 Finite difference approximation

A finite difference approximation to the governing equations proceeds on a grid in (ξ, θ) space.
The grid is defined for 0 ≤ ξ ≤ ξm and 0 ≤ θ ≤ π, so that the computational domain forms a
rectangle without holes. The sides of the rectangle correspond to the boundary of the circular
obstacle (ξ = 0), the free stream (ξ = ξm), the midline behind the obstacle (θ = 0), and the
midline in front of the obstacle (θ = π) .

We discretize the equations using square grid cells, and write

ξi = ih, i = 0, 1, . . . , n; (17.23a)

θj = jh, j = 0, 1, . . . , m, (17.23b)

where n and m are the number of grid cells spanning the ξ- and θ-directions, and h is the side
length of a grid cell. Because 0 ≤ θ ≤ π, the grid spacing must satisfy

h =
π

m
,

and the maximum value of ξ is given by

ξmax =
nπ

m
.

The radius of the computational domain is therefore given by eξmax , which is to be compared to
the obstacle radius of unity. The choice n = m would yield eξmax ≈ 23, and the choice n = 2m

130 CHAPTER 17. FLOW PAST AN OBSTACLE

17.2. FLOW PAST A CIRCLE

would yield eξmax ≈ 535. To perform an accurate computation, it is likely that both the value of
m (and n) and the value of ξmax will need to increase with Reynolds number.

Again we make use of the SOR method, using the notation for the Jacobi method, although
faster convergence is likely to be achieved using red-black Gauss-Seidel. The finite difference
approximation to (17.22) thus becomes

ψn+1
i,j = (1− rψ)ψ

n
i,j +

rψ

4

(
ψn

i+1,j + ψn
i−1,j + ψn

i,j+1 + ψn
i,j−1 + h2e2ξi ωn

i,j

)
, (17.24)

and

ωn+1
i,j = (1− rω)ω

n
i,j +

rω

4

(
ωn

i+1,j + ωn
i−1,j + ωn

i,j+1 + ωn
i,j−1 +

Re
8

f n
i,j

)
, (17.25)

where

f n
ij =

(
ψn

i+1,j − ψn
i−1,j

) (
ωn

i,j+1 −ωn
i,j−1

)
−
(

ψn
i,j+1 − ψn

i,j−1

) (
ωn

i+1,j −ωn
i−1,j

)
. (17.26)

17.2.3 Boundary conditions
Boundary conditions must be prescribed on the sides of the rectangular computational domain.
The boundary conditions on the two sides corresponding to the midline of the physical domain,
θ = 0 and θ = π, satisfy ψ = 0 and ω = 0. The boundary condition on the side corresponding to
the circular obstacle, ξ = 0, is again determined from the no-penentration and no-slip conditions,
and are given by ψ = 0 and ∂ψ/∂ξ = 0. And the free-stream boundary condition may be applied
at ξ = ξmax.

We first consider the free-stream boundary condition. The dimensionless free-stream velocity
field in polar coordinates can be found from (17.15),

u = cos θr̂− sin θθ̂.

The stream function, therefore, satisfies the free-stream conditions

∂ψ

∂θ
= r cos θ,

∂ψ

∂r
= sin θ,

and by inspection, the solution that also satisfies ψ = 0 when θ = 0, π is given by

ψ(r, θ) = r sin θ.

In log-polar coordinates, we therefore have the free-stream boundary condition

ψ(ξmax, θ) = eξmax sin θ.

One has two options for the vorticity in the free stream. One could take the vorticity in the free
stream to be zero, so that

ω(ξmax, θ) = 0.

A second, more gentle option is to take the derivative of the vorticity to be zero, so that

∂ω

∂ξ
(ξmax, θ) = 0.

This second option seems to have somewhat better stability properties for the flow field far
downstream of the obstacle. Ideally, the computed values of interest should be independent of
which of these boundary conditions is chosen, and finding flow-field solutions using both of
these boundary conditions provides a good measure of accuracy.

CHAPTER 17. FLOW PAST AN OBSTACLE 131

17.2. FLOW PAST A CIRCLE

The remaining missing boundary condition is for the vorticity on the obstacle. Again, we
need to convert the two boundary conditions on the stream function, ψ = 0 and ∂ψ/∂ξ = 0 to a
boundary condition on ψ and ω. From (17.22), we have

ω = −e−2ξ

(
∂2ψ

∂ξ2 +
∂2ψ

∂θ2

)
,

and since on the circle ψ = 0, independent of θ, and ξ = 0, we have

ω = − ∂2ψ

∂ξ2 . (17.27)

A Taylor series expansion one and two grid points away from the circular obstacle yields

ψ1,j = ψ0,j + h
∂ψ

∂ξ

∣∣∣∣
(0,j)

+
1
2

h2 ∂2ψ

∂ξ2

∣∣∣∣
(0,j)

+
1
6

h3 ∂3ψ

∂ξ3

∣∣∣∣
(0,j)

+ O(h4),

ψ2,j = ψ0,j + 2h
∂ψ

∂ξ

∣∣∣∣
(0,j)

+ 2h2 ∂2ψ

∂ξ2

∣∣∣∣
(0,j)

+
4
3

h3 ∂3ψ

∂ξ3

∣∣∣∣
(0,j)

+ O(h4).

Now, both ψ = 0 and ∂ψ/∂ξ = 0 at the grid point (0, j). Using the equation for the vorticity on
the circle, (17.27), results in

ψ1,j = −
1
2

h2ω0,j +
1
6

h3 ∂3ψ

∂ξ3

∣∣∣∣
(0,j)

+ O(h4),

ψ2,j = −2h2ω0,j +
4
3

h3 ∂3ψ

∂ξ3

∣∣∣∣
(0,j)

+ O(h4).

We multiply the first equation by −8 and add it to the second equation to eliminate the h3 term.
We obtain

−8ψ1,j + ψ2,j = 2h2ω0,j + O(h4).

Solving for the vorticity, we obtain our boundary condition accurate to second order:

ω0,j =
ψ2,j − 8ψ1,j

2h2 .

The boundary conditions are summarized below:

ξ = 0, 0 ≤ θ ≤ π : ψ0,j = 0, ω0,j =
ψ2,j − 8ψ1,j

2h2 ;

ξ = ξmax, 0 ≤ θ ≤ π : ψn,j = eξmax sin jh, ωn,j = 0 or ωn,j = ωn−1,j;

0 ≤ ξ ≤ ξmax, θ = 0 : ψi,0 = 0, ωi,0 = 0;

0 ≤ ξ ≤ ξmax, θ = π : ψi,m = 0, ωi,m = 0.

(17.28)

17.2.4 Solution using Newton’s method
We consider here a much more efficient method to find the steady fluid flow solution. Unfortu-
nately, this method is also more difficult to program. Recall from §7.2 that Newton’s method can
be used to solve a system of nonlinear equations. Newton’s method as a root-finding routine has
the strong advantage of being very fast when it converges, but the disadvantage of not always
converging. Here, the problem of convergence can be overcome by solving for larger Re using as
an initial guess the solution for slightly smaller Re, with slightly to be defined by trial and error.

132 CHAPTER 17. FLOW PAST AN OBSTACLE

17.2. FLOW PAST A CIRCLE

Recall that Newton’s method can solve a system of nonlinear equations of the form

F(ψ, ω) = 0, G(ψ, ω) = 0. (17.29)

Newton’s method is implemented by writing

ψ(k+1) = ψ(k) + ∆ψ, ω(k+1) = ω(k) + ∆ω, (17.30)

and the iteration scheme is derived by linearizing (17.29) in ∆ψ and ∆ω to obtain

J
(

∆ψ
∆ω

)
= −

(
F
G

)
, (17.31)

where J is the Jacobian matrix of the functions F and G. All functions are evaluated at ψ(k) and
ω(k).

Here, we should view ψ and ω as a large number of unknowns and F and G a correspond-
ingly large number of equations, where the total number of equations must necessarily equal the
total number of unknowns.

If we rewrite our governing equations into the form given by (17.29), we have

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
ψ− e2ξ ω = 0, (17.32a)

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
ω− Re

2

(
∂ψ

∂ξ

∂ω

∂θ
− ∂ψ

∂θ

∂ω

∂ξ

)
= 0. (17.32b)

With n and m grid cells in the ξ- and θ-directions, the partial differential equations of (17.32)
represent 2(n− 1)(m− 1) coupled nonlinear equations for ψi,j and ωi,j on the internal grid points.
We will also include the boundary values in the solution vector that will add an additional two
unknowns and two equations for each boundary point, bringing the total number of equations
(and unknowns) to 2(n + 1)(m + 1).

The form of the Jacobian matrix may be determined by linearizing (17.32) in ∆ψ and ∆ω.
Using (17.30), we have

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
(ψ(k) + ∆ψ)− e2ξ(ω(k) + ∆ω) = 0,

and

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
(ω(k) + ∆ω)

− Re
2

(
∂(ψ(k) + ∆ψ)

∂ξ

∂(ω(k) + ∆ω)

∂θ
− ∂(ψ(k) + ∆ψ)

∂θ

∂(ω(k) + ∆ω)

∂ξ

)
= 0.

Liinearization in ∆ψ and ∆ω then results in

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
∆ψ− e2ξ ∆ω = −

[
−
(

∂2

∂ξ2 +
∂2

∂θ2

)
ψ(k) − e2ξ ω(k)

]
, (17.33)

and

−
(

∂2

∂ξ2 +
∂2

∂θ2

)
∆ω− Re

2

(
∂ω(k)

∂θ

∂∆ψ

∂ξ
− ∂ω(k)

∂ξ

∂∆ψ

∂θ
+

∂ψ(k)

∂ξ

∂∆ω

∂θ
− ∂ψ(k)

∂θ

∂∆ω

∂ξ

)

= −
[
−
(

∂2

∂ξ2 +
∂2

∂θ2

)
ω(k) − Re

2

(
∂ψ(k)

∂ξ

∂ω(k)

∂θ
− ∂ψ(k)

∂θ

∂ω(k)

∂ξ

)]
, (17.34)

CHAPTER 17. FLOW PAST AN OBSTACLE 133

17.2. FLOW PAST A CIRCLE

where the first equation was already linear in the ∆ variables, but the second equation was
originally quadratic, and the quadratic terms have now been dropped. The equations given by
(17.33) and (17.34) can be observed to be in the form of the Newton’s iteration equations given
by (17.31).

Numerically, both ∆ψ and ∆ω will be vectors formed by a natural ordering of the grid points,
as detailed in §6.2. These two vectors will then be stacked into a single vector as shown in (17.31).
To write the Jacobian matrix, we employ the shorthand notation ∂2

ξ = ∂2/∂ξ2, ψξ = ∂ψ/∂ξ, and
so on. The Jacobian matrix can then be written symbolically as

J =

− (∂2
ξ + ∂2

θ

)
−e2ξ I

0 −
(

∂2
ξ + ∂2

θ

) − Re
2

(
0 0

ωθ∂ξ −ωξ ∂θ ψξ ∂θ − ψθ∂ξ

)
, (17.35)

where I is the identity matrix and the derivatives of ψ and ω in the second matrix are all evaluated
at the kth iteration.

The Jacobian matrix as written is valid for the grid points interior to the boundary, where
each row of J corresponds to an equation for either ψ or ω at a specific interior grid point. The
Laplacian-like operator is represented by a Laplacian matrix, and the derivative operators are
represented by derivative matrices. The terms e2ξ , ∂ω/∂θ, and the other derivative terms are to
be evaluated at the grid point corresponding to the row in which they are found.

To incorporate boundary conditions, we extend the vectors ∆ψ and ∆ω to also include the
points on the boundary as they occur in the natural ordering of the grid points. To the Jaco-
bian matrix and the right-hand-side of (17.31) are then added the appropriate equations for the
boundary conditions in the rows corresponding to the boundary points. By explicitly includ-
ing the boundary points in the solution vector, the second-order accurate Laplacian matrix and
derivative matrices present in J can handle the grid points lying directly next to the boundaries
without special treatment.

The relevant boundary conditions to be implemented are the boundary conditions on ∆ψ
and ∆ω. The boundary conditions on the fields ψ and ω themselves have already been given
by (17.28). The grid points with fixed boundary conditions on ψ and ω that do not change with
iterations will have a one on the diagonal in the Jacobian matrix corresponding to that grid point,
and a zero on the right-hand-side. In other words, ψ and ω will not change on iteration of
Newton’s method, and their initial values need to be chosen to satisfy the appropriate boundary
conditions.

The two boundary conditions which change on iteration, namely

ω0,j =
ψ2,j − 8ψ1,j

2h2 , ωn,j = ωn−1,j,

must be implemented in the Newton’s method iteration as

∆ω0,j =
∆ψ2,j − 8∆ψ1,j

2h2 , ∆ωn,j = ∆ωn−1,j,

and these equations occur in the rows corresponding to the grid points (0, j) and (n, j), with j = 0
to m. Again, the initial conditions for the iteration must satisfy the correct boundary conditions.

The MATLAB implementation of (17.31) using (17.35), requires both the construction of the
(n + 1)(m + 1)× (n + 1)(m + 1) matrix that includes both the Jacobian matrix and the boundary
conditions, and the construction of the corresponding right-hand-side of the equation. For the
Laplacian matrix, one can make use of the function sp_laplace_new.m; and one also needs to
construct the derivative matrices ∂ξ and ∂θ . Both of these matrices are banded, with a band of
positive ones above the main diagonal and a band of negative ones below the main diagonal. For
∂ξ , the bands are directly above and below the diagonal. For ∂θ , the bands are a distance n + 1

134 CHAPTER 17. FLOW PAST AN OBSTACLE

17.3. VISUALIZATION OF THE FLOW FIELDS

away from the diagonal, corresponding to n + 1 grid points in each row. Both the Laplacian and
derivative matrices are to be constructed for (n + 1)× (m + 1) grid points and placed into a 2× 2
matrix using the MATLAB function kron.m, which generates a block matrix by implementing
the so-called Kronecker product. Rows corresponding to the boundary points are then to be
replaced by the equations for the boundary conditions.

The MATLAB code needs to be written efficiently, using sparse matrices. A profiling of this
code should show that most of the computational time is spent solving (17.31) (with boundary
conditions added) for ∆ψ and ∆ω using the MATLAB backslash operator. With 4GB RAM and a
notebook computer bought circa 2013, and with the resolution 512× 256 and using the Re = 150
result as the initial field, I can solve for Re = 200 in seven iterations to an accuracy of 10−12. The
total run time was about 48 sec with about 42 sec spent on the single line containing J\b.

17.3 Visualization of the flow fields

Obtaining correct contour plots of the stream function and vorticity can be a challenge and in this
section I will provide some guidance. The basic MATLAB functions required are meshgrid.m,
pol2cart.m, contour.m, and clabel.m. More fancy functions such as contourf.m and
imagesc may also be used, though I will not discuss these here.

Suppose the values of the stream function are known on a grid in two dimensional Cartesian
coordinates. A contour plot draws curves following specified (or default) constant values of the
stream function in the x-y plane. Viewing the curves on which the stream function is constant
gives a clear visualization of the fluid flow.

To make the best use of the function contour.m, one specifies the x-y grid on which the
values of the stream function are known. The stream function variable psi, say, is given as an
n-by-m matrix. We will examine a simple example to understand how to organize the data.

Let us assume that the stream function is known at all the values of x and y on the two-
dimensional grid specified by x=[0,1,2] and y=[0,1]. To properly label the axis of the contour
plot, we use the function meshgrid, and write [X,Y]=meshgrid(x,y). The values assigned
to X and Y are the following 2-by-3 matrices:

X =

[
0 1 2
0 1 2

]
, Y =

[
0 0 0
1 1 1

]
.

The variable psi must have the same dimensions as the variables X and Y. Suppose psi is given
by

psi =
[

a b c
d e f

]
.

Then the data must be organized so that psi = a at (x, y) = (0, 0), psi = b at (x, y) = (1, 0),
psi = d at (x, y) = (0, 1), etc. Notice that the values of psi across a row (psi(i,j), j=1:3)
correspond to different x locations, and the values of psi down a column ((psi(i,j), i=1:2))
correspond to different y locations. Although this is visually intuitive since x corresponds to
horizontal variation and y to vertical variation, it is algebraically counterintuitive: the first index
of psi corresponds to the y variation and the second index corresponds to the x variation. If one
uses the notation psi(x, y) during computation, then to plot one needs to take the transpose of
the matrix psi.

Now the computation of the flow field around a circle is done using log-polar coordinates
(ξ, θ). To construct a contour plot, the solution fields need to be transformed to cartesian co-
ordinates. The MATLAB function pol2cart.m provides a simple solution. One defines the
variables theta and xi that defines the mesh in log-polar coordinates, and then first trans-
forms to standard polar coordinates with r=exp(xi). The polar coordinate grid is then con-
structed from [THETA, R]=meshgrid(theta,r), and the cartesian grid is constructed from

CHAPTER 17. FLOW PAST AN OBSTACLE 135

17.3. VISUALIZATION OF THE FLOW FIELDS

x

y

−3 −2 −1 0 1 2 3 4 5 6 7 8
−3

−2

−1

0

1

2

3

Figure 17.1: Contour plots of the stream function (y > 0) and vorticity (y < 0) for Re = 50.
Negative contours are in red, the zero contour in black, and positive contours in blue. The
contour levels for the stream function are -0.05, -0.04, -0.02, 0, 0.05, 0.2, 0.4, 0.6, 0.8, 1.1 and
those for the vorticity are -0.2, -0.05, 0, 0.25, 0.5, 0.75, 1, 1.5, 2.

[X, Y]=pol2cart(THETA,R). The fields can then be plotted directly using the cartesian grid,
even though this grid is not uniform. That is, a simple contour plot can be made with the com-
mand contour(X,Y,psi). More sophisticated calls to contour.m specify the precise contour
lines to be plotted, and their labelling using clabel.m.

A nice way to plot both the stream function and the vorticity fields on a single graph is to
plot the stream function contours for y > 0 and the vorticity contours for y < 0, making use of
the symmetry of the fields around the x-axis. In way of illustration, a plot of the stream function
and vorticity contours for Re = 50 is shown in Fig. 17.1.

136 CHAPTER 17. FLOW PAST AN OBSTACLE

	I Numerical methods
	IEEE arithmetic
	Definitions
	IEEE double precision format
	Machine numbers
	Special numbers
	Roundoff error

	Root finding
	Bisection Method
	Estimate 2=1.41421… using x0=1 and x1=2.

	Newton's Method
	Estimate 2 using x0=1.

	Secant Method
	Estimate 2 using x0=1 and x1=2.

	A fractal from Newton's Method
	Order of convergence
	Newton's Method
	Secant Method

	Integration
	Elementary formulas
	Midpoint rule
	Trapezoidal rule
	Simpson's rule

	Composite rules
	Trapezoidal rule
	Simpson's rule

	Adaptive integration

	Differential equations
	Initial value problem
	Euler method
	Modified Euler method
	Second-order Runge-Kutta methods
	Higher-order Runge-Kutta methods
	Adaptive Runge-Kutta Methods
	System of differential equations

	Boundary value problems
	Shooting method

	Linear algebra
	Gaussian Elimination
	LU decomposition
	Partial pivoting
	MATLAB programming

	Finite difference approximation
	Finite difference formulas
	Example: the Laplace equation

	Iterative methods
	Jacobi, Gauss-Seidel and SOR methods
	Newton's method for a system of equations

	Interpolation
	Piecewise linear interpolation
	Cubic spline interpolation
	Multidimensional interpolation

	Least-squares approximation

	II Dynamical systems and chaos
	The simple pendulum
	Governing equations
	Period of motion
	Analytical solution
	Numerical solution

	The damped, driven pendulum
	The linear pendulum
	Damped pendulum
	Driven pendulum
	Damped, driven pendulum

	The nonlinear pendulum

	Concepts and tools
	Fixed points and linear stability analysis
	Bifurcations
	Saddle-node bifurcation
	Transcritical bifurcation
	Pitchfork bifurcations
	Hopf bifurcations

	Phase portraits
	Limit cycles
	Attractors and basins of attraction
	Poincaré sections
	Fractal dimensions
	Classical fractals
	Correlation Dimension

	Pendulum dynamics
	Phase portrait of the undriven pendulum
	Basin of attraction of the undriven pendulum
	Spontaneous symmetry-breaking bifurcation
	Period-doubling bifurcations
	Period doubling in the logistic map
	Computation of the Feigenbaum constant
	Strange attractor of the chaotic pendulum

	III Computational fluid dynamics
	The governing equations
	Multi-variable calculus
	Vector algebra

	Continuity equation
	Momentum equation
	Material derivative
	Pressure forces
	Viscous forces
	Navier-Stokes equation
	Boundary conditions

	Laminar flow
	Plane Couette flow
	Channel flow
	Pipe flow

	Stream function, vorticity equations
	Stream function
	Vorticity
	Two-dimensional Navier-Stokes equation

	Flow past an obstacle
	Flow past a rectangle
	Finite difference approximation
	Boundary conditions

	Flow past a circle
	Log-polar coordinates
	Finite difference approximation
	Boundary conditions
	Solution using Newton's method

	Visualization of the flow fields

