Mid-term Examination Solutions MATH 005 Algebra and Calculus I

25 October 2000

Question 1

(a) Simplify the following expressions:

(i)
$$\sqrt[3]{\frac{27x^3y^6}{125a^9b^3}},$$

$$= \left[\left(\frac{3xy^2}{5a^3b} \right)^3 \right]^{1/3}$$

$$= \frac{3xy^2}{5a^3b}.$$

(ii)
$$\frac{x+2y}{2x+y}\sqrt{\frac{2y^2+8xy+8x^2}{2y+x}} = \frac{x+2y}{2x+y}\sqrt{\frac{2(y+2x)^2}{2y+x}} = \sqrt{2\left(\frac{x+2y}{2x+y}\right)^2\frac{(y+2x)^2}{2y+x}} = \sqrt{2(x+2y)}.$$
 [5]

(b) Remove the denominators of the following expressions:

(i)
$$\frac{3\sqrt{5} + 4\sqrt{2}}{3\sqrt{5} - 4\sqrt{2}},$$

$$= \frac{(3\sqrt{5} + 4\sqrt{2})^2}{(3\sqrt{5} - 4\sqrt{2})(3\sqrt{5} + 4\sqrt{2})}$$

$$= \frac{9 \cdot 5 + 24\sqrt{10} + 16 \cdot 2}{9 \cdot 5 - 16 \cdot 2}$$

$$= \frac{77 + 24\sqrt{10}}{13}.$$

(ii)
$$\frac{a+8b}{a^{1/3}+2b^{1/3}} = \frac{(a^{1/3}+2b^{1/3})(a^{2/3}-2a^{1/3}b^{1/3}+4b^{2/3})}{a^{1/3}+2b^{1/3}} = a^{2/3}-2a^{1/3}b^{1/3}+4b^{2/3}.$$
[5]

Question 1 (Cont'd)

(c) Solve the followings equations:

(i)
$$x^2 - 2x + 1 - k(x^2 - 1) = 0, (k \neq 1)$$
 [4] (Hint: factorization)

Solution Notice that

$$0 = x^{2} - 2x + 1 - k(x^{2} - 1)$$

$$= (x - 1)^{2} - k(x - 1)(x + 1)$$

$$= (x - 1) [x - 1 - k(x + 1)]$$

$$= (x - 1) [(1 - k)x - (1 + k)].$$

Hence either x = 1 or $x = \frac{1+k}{1-k}$ provide $k \neq 1$.

(ii) Squaring both sides of

in the form
$$\left(\sqrt{x}+\sqrt{1-x}\right)^2=(1-\sqrt{x})^2.$$
 Hence
$$x+\sqrt{1-x}=1+x-2\sqrt{x}.$$
 Squaring both sides again yields
$$\left(\sqrt{1-x}\right)^2=\left(1-2\sqrt{x}\right)^2,$$
 i.e.,
$$1-x=1-4\sqrt{x}+4x,$$
 and thus,
$$(4\sqrt{x})^2=(5x)^2,$$
 i.e.,
$$16x=25x^2.$$

Thus, x = 0, or 16/25. It is easy to check that x = 0 is the only solution.

Question 2

(a) Let p = g(q) be a quadratic function given by

$$p = g(q) = -q^2 - 4q + 46$$

(i) Determine the maximum/minimum value of p = g(q); [1]

Solution Since the leading coefficient is -1, so the quadratic has a maximum at q = -2.

(ii) Apply the method of "completing the square" to find the value of q at which the maximum/ minimum value of g(q) occurs. Find also the value of g(q) at this q. [5]

Solution

$$p = -g(q) = -q^{2} - 4q + 46$$

$$= -[q^{2} + 4q] + 46$$

$$= -[(q+2)^{2} - 4] + 46$$

$$= -(q+2)^{2} + 50.$$

Thus $p = -(q+2)^2 + 50 \le 50$ for all choices of q. Moreover, equality holds if and only if q = -2 and p = 50.

(iii) Sketch the graph of p = g(q) [3]

Question 2

(b) Suppose that for a certain commodity the supply and demand curves are given by

$$p = f(q) = q^2 + 2q + 10, (1)$$

and

$$p = g(q) = -q^2 - 4q + 46. (2)$$

However, it is not known which equation represents the supply equation and which equation represents the demand curve.

(i) Determine the breakeven point;

Solution At the breakeven point, we have

$$q^2 + 2q + 10 = -q^2 - 4q + 46,$$

i.e., $q^2 + 3q - 18 = 0,$

i.e., (q+6)(q-3) = 0,

and either q=3 or -6. Since q cannot be negative at the breakeven point, so a=3 and $p=-3^2-4(3)+46=25$.

(ii) Determine which equation is the supply curve and which equation is the demand curve by sketching the graphs of (1) on the same axes. [7]

Solution Since

$$p = q^{2} + 2q + 10$$
$$= (q+1)^{2} + 10 - 1^{2}$$
$$= (q+1)^{2} + 9.$$

Thus $p(q+1)^2 + 9 \ge 9$ where equality holds if and only if g = -1 and p = 9. Since the leading coefficient is 1, the function has a minimum at q = -1.

[3]

Question 3

(a) A worker wants to deposite \$12,000 into a bank for two years. Bank A offers a saving plan that the deposite is compounded quarterly under an annual interest rate 6%, and Bank B offers a saving plan that the deposite is compounded monthly under an annual interest rate 5%. Which plan will yield an higher return?

Solution

The principal and the interest from Bank A after two years is

$$$12,000 \left(1 + \frac{6/4}{100}\right)^8 \approx 12,000(1.1265) \approx $13,517.91$$

and that from Bank B after two years is

$$$12,000 \left(1 + \frac{5/12}{100}\right)^{24} \approx 12,000(1.10494) \approx $13,259.3.$$

Thus, Bank A's offer has a higher return.

(b) Solve the following equations

$$x + 2y + 3z = 9,$$

 $-4x + y + 6z = -9,$
 $2x + 7y + 5z = 13$ [9]

[7]

simultaneously.

Solution

Thus we obtain z = 2 from (L_3) , and so (L_2) gives 9y = 27 - 18z = 27 - 18(2) = -9, and thus y = -1. Substituting z = 2 and y = -1 into (L_1) yields x = 9 - 2y - 3z = 9 - 2(-1) - 3(2) = 5. So the solution is x = 5, y = -1 and z = 2.

Solution by matrix. Waiting the coefficient matrix by

$$\begin{pmatrix} -1 & 2 & 3 & \vdots & 9 \\ -4 & 1 & 6 & \vdots & -9 \\ 2 & 7 & 5 & \vdots & 13 \end{pmatrix} \xrightarrow{R_2 \to 4R_1 + R_2 \to R_3 \to -2R_1 + R_3} \begin{pmatrix} 1 & 2 & 3 & \vdots & 9 \\ 0 & 9 & 18 & \vdots & 27 \\ 0 & 3 & -1 & \vdots & -5 \end{pmatrix}$$

That is,

$$x + 2y + 3z = 9$$
$$9x + 18z = 27$$
$$-7z = -14,$$

and we proceed as in the previous method to obtain x = 5, y = -1 and z = 2.

Question 4

(a) Let g(x) be a function defined by

$$g(x) = \begin{cases} |x| - 1, & x \le 0, \\ x - 1, & 0 \le x \le 2, \\ x/2, & 2 \le x. \end{cases}$$

(i) Calculate g(-3), g(0) and g(3);

[3]

Solution

$$g(-3) = |-3| - 1 = 2$$
, $g(0) = 0 - 1 = -1$, $g(3) = \frac{1}{2}(3) = 3/2$.

(ii) sketch the graph of the function g;

[4]

(iii) find the domain of g (give justification);

[2]

Solution Since g is defined on each of $x \le 0, 0 \le x \le 2$ and $x \ge 2$. Hence the domain of g is the whole x-axis.

(iv) find the range of g (give justification).

[2]

Solution We see clearly from (ii) that $g(x) \ge -1$ and with equality only if x = 0. Also g(x) can increase without bound. So the range of g(x) is $y \ge -1$.

Question 4 (Cont'd)

(b) Let $h(x) = 1/\sqrt{x}$, f(x) = x - 2, f(x) = x - 2 and $g(x) = \log x$. Find the expressions of the following functions and their domains:

(i)
$$h(h(x))$$
,

Solution
$$h(h(x)) = \frac{1}{\sqrt{h(x)}} = x^{+1/4};$$

the domain is the whole positive real axis,

(ii)
$$\left(h(f(x))\right)^2$$
,

$$Solution \quad \left(h(f(x))\right)^3 = \left(\frac{1}{\sqrt{f(x)}}\right)^3 = \left(\frac{1}{\sqrt{x-2}}\right)^3 = (x-2)^{-3/2};$$

Since $(x-2)^{-3/2}$ is meaningful only when x > 2. Thus, the domain is all those number larger than 2.

(iii)
$$f\left(e^{\frac{1}{2}g(x)}\right)$$
. [9]

Solution

$$\begin{split} f\Big(h(x) + e^{\frac{1}{2}g(x)}\Big) &= h(x) + e^{\frac{1}{2}g(x)} - 2 \\ &= \frac{1}{\sqrt{x}} + e^{\log(1/2)} - 2 \\ &= \frac{1}{\sqrt{x}} + x^{1/2} - 2 \\ &= \frac{1}{\sqrt{x}} + \sqrt{x} - 2. \end{split}$$

Thus, the domain is the whole positive x-axis.

(c) Find the inverse of $y = f(x) = x^2 + 4x - 12$.

Solution Since

$$y = x^{2} + 4x - 12$$
$$= (x + 2)^{2} - 12 - 4$$
$$= (x + 2)^{2} - 16.$$

[4]

Thus $(x+2)^2 = y+16$,

and so $x + 2 = \pm \sqrt{y + 16},$

i.e., $x = -2 \pm \sqrt{y + 16}$.

We define $q(x) = -2 + \sqrt{x+16}$.

which is the inverse of y defined on $x \ge -16$.