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Definition of functions
• Definition A function is a rule f that assigns to each x in a

set D a unique value denoted by f (x). C.
• Definitions The set D is called the domain of the function f ,

and the set of values of f (x) assumes, as x varies over the
domain, is called the range of the function f (x).

•
x 7−→ f (x), or y = f (x),

• One can think of this as a model of

one input → one output

• Important point: for each x in D, one can find (there exists)
one value f (x) (or y) that corresponds to it.

• However, depending on the f under consideration, one could
have two or more x that correspond to the same f (x).

• This strange looking idea was created to describe dynamical
changes between two quantities in the past.
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Different types of functions

• y = f (x) = x + 1. For each x there corresponds to one and
only one y .

• y = x3. For each x there corresponds to one and only one y

• Where f (x1) = f (x2) implies x1 = x2, or equivalently x1 6= x2

implies f (x1) 6= f (x2), we say the function f is injective or
one-one. So the above two examples are injective functions.

• (Eg revisited) f (x) = x2 − 2x is not injective, as two different
x can correspond to the same f (x1) = y = f (x2)

• (Non-function) y 2 = 1− x2. Since for each x input, there
always correspond to two outputs of f (x) = ±

√
1− x2 within

the domain of f .
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Composition

• Definition Given two functions f and g , their composition
f ◦ g is defined, by

(f ◦ g)(x) = f (u) = f (g(x))

for each x in the domain of f ◦ g . Let u = g(x) and
y = f (u), then f ◦ g is understood as

y = (f ◦ g)(x) = f (g(x)) = f (u), u = g(x),

• as shown in

x 7−→ u = g(x) 7−→ y = f (u)

• with g takes the domain of g (range) into (part of) domain of
f , and f maps that into (part of) the range of f . The two
together thus forms a new function f ◦ g .
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Different classes of functions

• Polynomials, Rational fns.

• Exponential fns f (x) = 2x , f (x) = ex

• Logarithmic fns f (x) = ln x , f (x) = logx
• trigonometric rations/fns sin x , cos x , tan x , etc

• Periodic properties

• Inverse trigonometric fns
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Exponential functions of different bases

Figure: (Publisher Figure 1.42)
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Exponential functions

Figure: (Publisher Figure 1.44)
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Ratios as circular functions: 0 ≤ θ ≤ 2π
• Due to the property of similar triangles, it is sufficient that we

consider unit circle in extending to 0 ≤ θ ≤ 2π with the ratios
augmented with appropriate signs from the xy−coordinate
axes.

Figure: (Source: Bocher, page 38)
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Ratios beyond 2π

• For sine and cosine functions, if θ is an angle beyond 2π, then
θ = φ+ k 2π for some 0 ≤ φ ≤ 2π. Thus one can write down
their meanings from the definitions

sin(θ) = sin(φ+k 2π) = sinφ, cos(θ) = cos(φ+k 2π) = cosφ

where 0 ≤ φ ≤ 2π, and k is any integer.

• The case for tangent ratio is slightly different, with the first
extension to −π

2 ≤ θ ≤
π
2 , and then to arbitrary θ. Thus one

can write down

tan(θ) = tan(φ+ k π) = tanφ

where θ = φ+ kπ for some k and −π
2 ≤ φ ≤

π
2 .
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Periodic sine and cosine functions

Figure: (Source:Upper: sine, page 45; Lower: cosine, page 46)
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Periodic tangent function

Figure: (Source: tangent, Bocher page 46)
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Inverse functions

• Definition Let f be a function defined on its domain D. Then
a function −1 is called an inverse of f if

(f −1 ◦ f )(x) = x , for all x in D.

That is, x = f −1(y) whenever y = f (x).

• Remark 1 It follows that the domain of f −1 is on the range
of f .

• Remark 2 There is no guarantee that every function has an
inverse.

• Remark 3 If f has two inverse functions, then the two inverse
functions must be identically the same.
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Inverse function figure

Figure: (Publisher Figure 1.49)
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Inverse trigonometric functions
• The sine and cosine functions map the [k 2π, (k + 1) 2π] onto

the range [−1, 1] for each integer k . So it is

many −→ one

so an inverse would be possible only if we suitably restrict the
domain of either sine and cosine functions. We note that even
the image of [0, 2π] “covers” the [−1, 1] more than once.

• In fact, for the sine function, only the subset [π2 ,
3π
2 ] of [0, 2π]

would be mapped onto [−1, 1] exactly once. That is, the sine
function is one-one on [π2 ,

3π
2 ].

• However, it’s more convenient to define the inverse sin−1 x on
[−π

2 ,
π
2 ].

sin−1 x :
[
− π

2
,
π

2

]
−→ [−1, 1].

•
cos−1 x :

[
0, π

]
−→ [−1, 1].
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Logarithm as inverse function

• If we view y = f (x) = bx as a given function, then its inverse
is given by y = f −1(x) = logb x since we can check

(f −1 ◦ f )(x) = logb(bx) = x

by the definition of logarithm.

• In fact, even
(f ◦ f −1)(x) = blogb x = x

holds trivially.

• The graph of logb x is obtained from rotating y = bx along
the line x = y by 180 degrees.
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Newton’s trouble
• Suppose an object moves according to the rule

S(t) = 20 + 4t2 where S measures the distance of the object
from the initial position t seconds later.

• We now compute instantaneous velocity of the object at time
t: let dt and dS be the virtual time and virtual distance
respectively. Then the change of virtual distance is given by
dS = S(t + dt)− S(t). So the virtual velocity is

dS

dt
=

S(t + dt)− S(t)

dt
=

4(t + dt)2 − 4t2

dt
= 8 t + 4 dt.

• Newton then delete the last dt:
dS

dt
= 8 t + 4 dt/// = 8 t.

• So do we have dt = 0? If so, then one would have dS
dt = 0

0 .
That was the question that Newton could not answer
satisfactorily during his life time.
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Re-assessing the problem
• Let us begin with the above example about the movement of

the object P. Since we are interested to know the magnitude
of the average velocity of P near 2, so let us rewrite the
expression in the following form:

g(x) =
S(2 + x)− S(2)

x
.

• This is a function g depends on the variable x , which can be
made as close to 16 as we wish by chooesing t close to 2.

• That is, g(x) approaches the value 16 as x approaches 0. On
the other hand, we cannot put x = 0 in the function g(x),
since both the numerator S(2 + x)− S(x) and the
denominator x would be zero.

• We say that the function g has limit equal to 16 as x
approaches 0 abbreviated as

lim
x→0

g(x) = 16.
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Limit definition

• Note that the above statement is merely an abbreviation for
the statement: The function g can get as close to 16 as
possible if we let x approach 0 as close as we wish.

• It is important to note that we are not allowed to put x = 0
above

• Definition Let a and l be two real numbers. If the value of
the funciton f (x) approaches l as close as we wish as x
approaches a, then we say the limit of f is equal to l as x
tends to a. The statement is denoted by

lim
x→a

f (x) = l .

Alternatively, we may also write

f (x)→ l as x → a.
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Examples

• Find lim
x→2

x3 − 8

x − 2
.

• Note that we can not substitute x = 2 in the expression. For
then both the numerator and denominator will be zero.
Consider

lim
x→2

x3 − 8

x − 2
= lim

x→2

(x − 2)(x2 + 2x + 4)

x − 2

= lim
x→2

(x2 + 2x + 4) = 12.

• The above is an abbreviation of the expression:

x3 − 8

x − 2
=

(x − 2)(x2 + 2x + 4)

x − 2
= x2 + 2x + 4

tends to the value 12 as x tends to 2.
• or more briefly

x3 − 8

x − 2
= x2 + 2x + 4 7→ 12, as x 7→ 2.
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Newton’s thought

• So he simply considers that is a virtual distance dS traveled
by the object in a virtual time dt. He considers both to be
infinitesimal small quantities.

• So do we have dt = 0? If so, then one would have dS
dt = 0

0 .
That was the question that Newton could not answer
satisfactorily during his life time.

• To put the question differently, is an infinitesimal quantity
equal to zero? If dt is infinitely small then it would have to be
less than any positive quantity, and we conclude it must be
equal to zero. For suppose dt 6= 0 then dt > 0. Hence
dt = r > 0 is an actual positive quantity. But then we could
find r/2 < dt, contradicting the fact that dt is smaller then
any positive quantity. Hence dt = 0.

• Newton was actually attacked by many people, and among
them was the Bishop Berkeley. But he method of calculation
of instantaneous velocity has been used by other since then.
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A function that has no limit at 0

Figure: (Publisher Figure 2.14)
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Limit laws

• Suppose limx→a f (x) = `, limx→a g(x) = m both exist. Let c
be a constant, then the following hold:

•
lim
x→a

(
f (x) + g(x)

)
= lim

x→a
f (x) + lim

x→a
g(x) = `+ m

•
lim
x→a

(
c f (x)

)
= c lim

x→a
f (x) = c`

•
lim
x→a

(
f (x)g(x)

)
= lim

x→a
f (x) · lim

x→a
g(x) = `m

•

lim
x→a

f (x)

g(x)
=

limx→a f (x)

limx→a g(x)
=

`

m
provided m 6= 0.



Functions Limits Derivatives Curve Sketching Riemann sums Fundamental Theorem of Calculus

The real difficulty

• We recall that in terms of ε− δ language limx→a f (x) = `
really means
Given an arbitrary ε > 0, one can find a δ > 0 such that

|f (x)− `| < ε, whenever 0 < |x − a| < δ.

• So for limx→a[f (x) + g(x)] = limx→a f (x) + limx→a g(x), one
needs to show, assuming that limx→a g(x) = s
Given an arbitrary ε > 0, one can find a δ > 0 such that∣∣[f (x) + g(x)]− (`+ s)

∣∣ < ε, whenever 0 < |x − a| < δ.

with the given assumption.

• This is slightly not easy. Some other laws are more difficult to
verify using this language. So this explains why one needs to
state these seemingly simple laws as separate entities.
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Limits at infinity

• Definitions Let ` and a be real numbers. If f tends to ` as x
becomes arbitrary large and positive, we say f has the limit `
at positive infinity, written as

lim
x→+∞

f (x) = ` (f → `, as x → +∞).

• Similarly, if f tends to ` as x becomes arbitrary large and
negative, we say f has the limit ` at negative infinity, written
as

lim
x→−∞

f (x) = ` (f → `, as x → −∞).
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Rate of change
• We may consider rate of change of a given function f (x) not

necessarily refereed to time, distance and velocity.
• Definition Let f (x) be a function of x , then f is differentiable

at x if the limit

lim
∆x→0

∆f

∆x
= lim

∆x→0

f (x + ∆x)− f (x)

∆x

exists.
• The limit is called the derivative of f at x or the rate of

change of f with respect to x , and it is denoted by f ′(x).
• Other notations are

df (x)

dx
or

df

dx

∣∣∣∣
x

or
df

dx

• If y = f (x), we also write
dy

dx
. We treat this notation as an

operator instead of quotient of infinitesimal quantities.
• However, we shall see later that they are interchangeable.
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Differentiation rules

• Theorem Let c be a constant and that a function f is
differentiable at x . Then

d(c f )

dx
= c

df

dx
or (c f )′(x) = c f ′(x).

Proof Consider the following limit

lim
∆x→0

cf (x + ∆x)− cf (x)

∆x
= lim

∆x→0
c
( f (x + ∆x)− f (x)

∆x

)
= c lim

∆x→0

f (x + ∆x)− f (x)

∆x
.
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Differentiation rules

• Theorem Let f (x) and g(x) be differentiable at x . Then

d

dx

(
f (x) + g(x)

)
=

df

dx
+

dg

dx
.

Proof We have

d

dx

(
f (x) + g(x)

)
= lim

∆x→0

f (x + ∆x) + g(x + ∆x)−
(
f (x) + g(x)

)
∆x

= lim
∆x→0

f (x + ∆x)− f (x) +
(
g(x + ∆x)− g(x)

)
∆x

= lim
∆x→0

f (x + ∆x)− f (x)

∆x
+ lim

∆x→0

g(x + ∆x)− g(x)

∆x

=
df

dx
+

dg

dx
.
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Graphical Interpretation
• Draw a straight line called secant passing through the pair of

points (x , f (x)) and
(
x + ∆x , f (x + ∆x)

)
. Then the

∆y

∆x
=

∆f

∆x
=

f (x + ∆x)− f (x)

∆x

gives the gradient (slope) of the above secant. See the
diagram.

Figure: (Secants and tangent)
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Graphical Interpretation (cont.)
• We choose ∆x1, ∆x2, ∆x3, . . . with magnitudes decreasing to

zero. Then we have a sequence of secants passing through the
points

(
(x , f (x)

)
,
(
f (x + ∆xi )

)
.

• The corresponding gradients of the secants are given by

mi =
f (x + ∆xi )− f (x)

∆xi
.

• Suppose we already know that f has a derivative at x , we
conclude that the sequence of gradients {mi} must tend to
f ′(x) as ∆xi tends to zero.

• The point
(
x + ∆x , f (x + ∆x)

)
is getting closer and closer to(

x , f (x)
)
, as ∆x → 0, they eventually coincide to become a

single point.
• It follows that the corresponding secants are tending to a

straight line with only one point of contact with f at x . See
the diagram from last slide. This line is called the tangent to
f at x .
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An example has no tangent

• Example The |x | is not differentiable at 0.

• Consider

lim
∆x→0+

|0 + ∆x | − |0|
∆x

= lim
∆x→0+

|∆x |
∆x

= lim
∆x→0+

∆x

∆x
= 1.

• On the other hand, we have, according to the definition of |x |
that

lim
∆x→0−

|0 + ∆x | − |0|
∆x

= lim
∆x→0−

|∆x |
∆x

= lim
∆x→0−

−∆x

∆x
= −1.

• So the left and right limits are not the same, and we conclude
that |x | does not have a derivative at 0 (however, it has
derivatives at all other points). It is important to understand
the corresponding situation on its graph drawn on last slide
(right figure).
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Last example’s sketch

It is instructive to plot the curve of P and P ′ on the same
coordinate axis. See the diagram on the left below.

Figure: (Left: Profit function; Right: |x | has no tangent at 0)
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How does composition change?

• Suppose that y = g(u) and u = f (x). i.e., is y is a function
of u and u is a function of x .

• When we compose to get y = g(f (x)), which is now a
function of x , written as y = h(x).

• If x is changed to x + ∆x , there’s a corresponding change in
u,

u + ∆u = f (x + ∆x).

• As a result, it will induce a further change in y . Hence

y + ∆y = g(u + ∆u).
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Example
• Example Let y = u3 + 1 and u = 2x − 4. Find the increases

of y and u due to an increase of x from x to x + ∆x where
∆x is a small increment of x . When x is increased to x + ∆x
the change in u is

u(x + ∆x)− u(x) = [2(x + ∆x)− 4]− (2x − 4)

= 2∆x .

∆u = u(x + ∆x)− u(x)

= 2∆x .

y(x + ∆x)− y(x) = y(u + ∆u)− y(u)

= [(u + ∆u)3 + 1]− [u3 + 1]

= (u3 + 3u2(∆u) + 3u(∆u)2 + 1)− (u3 + 1)

= 3u2(∆u) + 3u(∆u)2

= 3(2x − 4)2(2∆x) + 3(2x − 4)(2∆x)2
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Chain Rule

• Theorem Let y = g(u), u = f (x) and b = f (a), c = g(b).
Suppose that g is differentiable at u = b, and that f is
differentiable at x = a. Then the function y = h(x) = g(f (x))
is also differentiable at x = a, and the relationship is given by

dh

dx

∣∣∣∣
x=a

=
dg

du

∣∣∣∣
u=b

× df

dx

∣∣∣∣
x=a

,

or
dy

dx

∣∣∣∣
x=a

=
dy

du

∣∣∣∣
u=b

× du

dx

∣∣∣∣
x=a

,

or simply
dy

dx
=

dy

du
× du

dx
.
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First Order Approximation

• When f is differentiable at x , the quotient

∆f

∆x
=

f (x + ∆x)− f (x)

∆x

is very close to y ′(x), provided that ∆x is taken to be small.
See the diagram. Hence we have

∆f

∆x
≈ dy

dx
= f ′(x).

In other words, we have

∆f = f (x + ∆x)− f (x) ≈ dy

dx
∆x = f ′(x)∆x ,

i.e., the change in f due to a small change ∆x at x can be
approximated by f ′(x)∆x .
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∆f ≈ f ′(x)∆x ,

•
• In particular, when ∆x = 1, we have

∆f ≈ f ′(x),

• That is, the f ′(x) approximates the change of f (x) when x is
increased by one unit.
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First Order Approximation

• Example Suppose y = f (x) = x2. Find an approximate
change of f (x) when x is increased from 2 to 2.5.

• We have f ′(x) = 2x . And f ′(2) = 2(2) = 4. Hence

∆y = y(2 + 0.5)− y(2) ≈ y ′(2) (0.5) = 4 (0.5) = 2.

Note that the real change of y can be computed directly by
y(2.5)− y(2) = 2.25. The approximation will become more
accurate if we involve changes much smaller than 0.5.

• Exercise Repeat the above example when x is increased
from 2 to 2.005. How accurate is it?

• Exercise Without using the calculus find an approximate
value of 3.981/2.



Functions Limits Derivatives Curve Sketching Riemann sums Fundamental Theorem of Calculus

More Rules for Differentiation

• Theorem Suppose f is differentiable at a then f must also be
continuous at a.

• When a function is differentiable at x , i.e., f ′(x) exists, it
means that the curve of f has a tangent at x . For it is not
difficult to see that f must be nice there. That is, f is
continuous at x .

• Proof We need to show limx→a f (x) = f (a). Consider

lim
x→a

(
f (x)− f (a)

)
= lim

x→a

f (x)− f (a)

x − a
· (x − a)

= lim
x→a

f (x)− f (a)

x − a
· lim
x→a

(x − a)

= f ′(a) · 0 = 0.

• So limx→a f (x) = f (a).
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Logarithmic functions
• Recall that the natural logarithmic function log x is defined to

be the inverse function of the exponential function y = ex .
That is x = ln(ex) and x = e ln x .

• Theorem. We have, for any x > 0,

d

dx
ln x =

1

x
.

ln(x + h)− ln x

h
=

1

h
ln
(
1 +

h

x

)
= ln

(
1 +

h

x

)1/h

= ln
(
1 +

1/x

k

)k
→ ln(e1/x)

=
1

x
as k → +∞ (equivalent to h→ 0).

• Theorem Let u be a function of x . Then
d

dx
ln u =

1

u

du

dx
.
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Different bases

• Theorem Let a be any positive real number. Then

d

dx
loga x =

1

ln a

1

x
.

Similarly, if u is a function of x , then

d

dx
loga u =

1

u ln a

du

dx
.

• Example Find the derivative of y = log3(x2 + 1)

dy

dx
=

2x

(x2 + 1) ln 3
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Implicit Differentiation

We have learned to find derivatives of functions in the form
y = f (x), i.e., y can be expressed as a function of x only.
However, this is not always the case:

xey + yex = y .

if there is a change of x by ∆x then there must be a
corresponding change in y by a certain amount ∆y say, in order

the keep the equality. So how can we find
dy

dx
? We illustrate the

method called implicit differentiation by the following example.
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Inverse Sine function

(pp. 209-210) Here is another application of implicit
differentiation.
Consider y = arcsin x on the domain [−1, 1] has range
−π

2 ≤ y ≤ π
2 . On the other hand sin y = x . Differentiating this

equation on both sides yields

1 =
dx

dx
=

d

dx
sin y = cos y

dy

dx
.

Notice that we have 1− x2 = cos2 y . So

dy

dx
=

1

cos y
=

1√
1− x2

on (−1, 1). Note that we have chosen the positive branch of
±
√

1− x2 since cos y ≥ 0 on −π
2 ≤ y ≤ π

2 .
Note that y ′ → +∞ as x → ±1.
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Maximum/Minimum
We see the drawing (p. 233) below that
• At some local maximum/minimum, f ′(x) = 0.
• f (x) may fail to have derivative at certain local

maximum/minimum, such as the point c where f ′(c) fails to
exist.

• In a finite interval [a, b], f may have global
maximum/minimum.

Figure: (Figure 4.5 (p. 233))
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At extrema

• Definition We call x = a a critical point of f if f ′(a) = 0.

• If f has a maximum or a minimum at a, then f ′(a) = 0 is a
critical point.

• The converse is not necessarily true.
• That is, at a critical point a (f ′(a) = 0) may not represent

f (a) has either a maximum or minimum there.
• Example f (x) = x3 + 2 has f ′(0) = 0 but f (0) is neither a

maximum nor a minimum.
• Example f (x) = x4 has f ′(0) = 0 and f (0) is a maximum

• That is, knowing f ′(a) = 0 is insufficient to decide if f (a) is
an extrema.
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First order approximation
The first order approximation formula can be used to analyse the
local behaviour of f . So suppose

f ′(a) = lim
h→0

f (a + h)− f (a)

h
.

Then we have

f ′(a) ≈ f (a + h)− f (a)

h

when h is small. That is

f (a + h)− f (a) ≈ h f ′(a) =

{
> 0, if f ′(a) > 0;

< 0, if f ′(a) < 0

when h > 0 is small. Since h is a positive quantity so the sign of
f (a + h)− f (a) depends on the sign of f ′(a). Therefore f is
increasing around a if f ′(a) > 0 and f is decreasing around a if
f ′(a) < 0.
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First order approximation (cont.)
More precisely,

f (a + h)− f (a) = h f ′(a) + ε(h)

where ε(h) denote an error term that is much smaller than h and
ε(h)→ 0 as h→ 0. So we may ignore this error in our
consideration.

• If f ′(a) > 0, and since h > 0 then

f (a + h)− f (a) = h f ′(a) + ε(h) > 0

holds as long as ε(h) remains small.
• If f ′(a) > 0, and since −h < 0 then

f (a− h)− f (a) = (−h) f ′(a) + ε(h) < 0

holds as long as ε(h) remains small. This corresponds to the
left limit. So we see that f is increasing around the a.

• the analysis for f ′(a) < 0 is opposite, that f is decreasing
around the a.
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First order derivative test

We have seen that around a critical point a being a
maximum/minimum, the derivative f ′(x) changes signs. That is,

• when f (a) is a local maximum,

f ′(x)


> 0, if x < a;

= 0, if x = a;

< 0, if x > a.

f ′ ↓ that is ↗−→↘
• when f (a) is a local minimum,

f ′(x)


< 0, if x < a;

= 0, if x = a;

> 0, if x > a.

f ′ ↑ that is ↘−→↗
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First order derivative test: Converse statements
It is not difficult to see that the converses also hold if x = a is a
critical point: f ′(a) = 0. That is,
• if f ′(x) decreases from being positive to being negative, then

f (a) is a local maximum;
• if f ′(x) increases from being negative to being positive, then

f (a) is a local minimum
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Example (p. 244 publisher)
Let f (x) = 3x4 − 4x3 − 6x2 + 12x + 1. Find the intervals of
increase/decrease and any local extrema of f .

f ′(x) = 12(x + 1)(x − 1)2 =


< 0, if x < −1;

> 0, if − 1 < x < 1;

> 0, if x > 1.
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Concavity I (publisher)
• Definition A differentiable function f is concave up over an

interval I if f ′ is increasing over I .
• Definition A differentiable function f is concave down over

an interval I if f ′ is decreasing over I .
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Concavity II

• Theorem 4.6 Suppose that f ′′(x) exists over an interval I .

1. If f ′′(x) > 0, then f is concave up over I ;
2. If f ′′(x) < 0, then f is concave down over I .

• Although the signs of second derivative being
positive/negative can determine the nature of concavity, i.e., ,
it is a necessary condition for concavity, it is , however, not
sufficient.

• Example f (x) =
1

x
is concave down over (−∞, 0) and

concave up over (0, ∞, ).

• Example f (x) = x4 is concave up over (−∞, ∞) and yet it
has f ′′(0) = 0.
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Inflection point I

• Definition A point c is called a point of inflection for a
function f (x) if there is a change of concavity.

• Suppose f ′′(x) < 0 for x < c so concave down and f ′′(x) > 0
and so concave up for x > c , then there is a change of
concavity at the inflection point x = c . We must have
f ′′(c) = 0.

• Similarly, if f ′′(x) > 0 for x < c so concave up and f ′′(x) < 0
and so concave down for x > c , then there is also a change of
concavity at the inflection point x = c . Hence f ′′(c) = 0.

• Example f (x) = x3 has an inflection point at x = 0 since
there is a change of concavity and f ′′(0) = 0.

• Example f (x) = x4 is concave up over (−∞, ∞) and yet it
has f ′′(0) = 0.

• The next slide shows that f ′′ is undefined at a point of
inflection.
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Inflection point II (publisher)
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Example (p. 248) I

Identify the intervals of concave up/down of
f (x) = 3x4 − 4x3 − 6x2 + 12x + 1.
We have already computed

f ′(x) = 12(x + 1)(x − 1)2 =


< 0, if x < −1;

> 0, if − 1 < x < 1;

> 0, if x > 1.

f ′′(x) = 12(x − 1)(3x + 1)


> 0, if x < −1/3 or x > 1;

= 0, if x = −1/3 or x = 1;

< 0, if − 1/3 < x < 1;

We deduce that the critical points are {−1, 1} and the inflection
points are {−1/3, 1}.
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Example (p. 248) II

Figure: (Figure 4.31 (publisher))
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Example II
Sketch the graph of y = f (x) = x +

4

x + 1
.

• The easiest is to find the where f intersects with with the
axes. Suppose f (x) = 0, i.e., 0 = x + 4

x+1 or x2 + x + 4 = 0

x =
−1±

√
14 − 4· 1· 4
2

,

which has no solution since 12 − 16 < 0. So f will never be
zero, and so f will never intersect the x−axis. Besides,
f (0) = 4.

• The next step is to consider x → +∞ and x → −∞.
When x is large and positive f (x)− x is approaching zero.
i.e.,

lim
x→+∞

(
f (x)− x

)
= lim

x→+∞

( 4

x + 1

)
= 0.

Similarly,

lim
x→−∞

(
f (x)− x

)
= lim

x→−∞

( 4

x + 1

)
= 0.
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Example II (cont.)

• That is f is “essentially” like x when x → ±∞.
• In fact, since 4

x+1 > 0 as x → +∞, f approaches y = x from
above,

• 4
x+1 < 0 when x → −∞, so f tends to y = x from below.

• The third step is to note that
4

x + 1
is meaningless when

x = −1. We have

lim
x→(−1)+

f (x) = lim
x→(−1)+

(
x +

4

x + 1

)
= +∞,

and

lim
x→(−1)−

f (x) = lim
x→(−1)−

(
x +

4

x + 1

)
= −∞,
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Example II (cont.)

• The fourth step is to identify the critical points.

f ′(x) = 1− 4

(x + 1)2
=

(x − 1)(x + 3)

(x + 1)2

=


> 0, if x < −3;

< 0, if − 3 < x < −1;

< 0, if − 1 < x < 1

> 0, if x > 1.

We deduce f has a maximum at x = −3 and a minimum at
x = 1. In fact, f is increasing on the intervals x < −3 and
x > 1, and decreasing on the intervals −3 < x < −1 and
−1 < x < 1.
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Example II (cont.)

• Now the concavity f ′′(x) =
8

(x + 1)3
=

{
> 0, if x > −1;

< 0 if x < −1.
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Extreme Value theorem

• Theorem A function f (x) continuous on a closed interval
[a, b] attains its absolute maximum/minimum on [a, b]. That
is, there exist c , d in [a, b] such that

f (x) ≥ f (c), f (x) ≤ f (d) for all x in [a, b].

• This result looks very trivial is in fact a deep result in
elementary mathematical analysis. It is proved vigorously in
chapter 5 (Theorem 5.3) of my supplementary notes on
Mathematical Analysis course found in my web site of this
course.

• What we will do in the following sides is to show the Extreme
Value theorem does not hold when any one of the hypotheses
fails to hold.
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Mean Value theorem
Theorem If f is continuous on the closed interval [a, b] and
differentiable on (a, b), then there is a c in [a, b] such that

f ′(c) =
f (b)− f (a)

b − a
.

Figure: (Publisher Figure 4.68)
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L’Hôpital’s Rule 0/0 form

• Theorem (p.290) Suppose f and g are differentiable on
(a, b) and c lies in (a, b) such that
limx→c f (x) = 0 = limx→c g(x) and g ′(x) 6= 0 (x 6= c) . Then

lim
x→c

f (x)

g(x)
= lim

x→c

f ′(x)

g ′(x)

provided that the last limit exists, including ±∞.

• The above also holds for x → ±∞ or x → a±.

• Example

lim
x→0

sin x

x
= lim

x→0

cos x

1
=

limx→0 sin x

limx→0 1
= 1.
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Geometric reason (p. 291)

Figure: (Publisher Figure 4.73)
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“∞/∞” form

Theorem (p.293) Suppose f and g are differentiable on (a, b)
and c lies in (a, b) such that limx→c f (x) = ±∞ = limx→c g(x)
and g ′(x) 6= 0 (x 6= c) . Then

lim
x→c

f (x)

g(x)
= lim

x→c

f ′(x)

g ′(x)

provided that the last limit exists, including ±∞.
Remark The above also holds for x → ±∞ or x → a±.

• Example lim
x→∞

4x3 − 6x2 + 1

2x3 − 10x + 3

• Example lim
x→π/2−

1 + tan x

sec x
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Fundamental theorem of calculus (Issac Newton)

Theorem 5.3 Suppose that f is continuous over [a, b] and that f
has a primitive (antiderivative) F (x) over [a, b], that is,
F ′(x) = f (x) on [a, b]. Then∫ b

a
f (x) dx = F (x)

∣∣∣∣b
a

= F (b)− F (a).

Example Find
∫ 3

2 x2 dx by Newton’s Fundamental theorem of
calculus.
Since F (x) = 1

3 x3 is a primitive of f (x) = x2, so∫ 3

2
x2 dx = F (3)− F (2) =

1

3
33 − 1

3
23 =

19

3
.
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Examples of Fundamental theorem of calculus

• ∫ 1

0
x dx =

x2

2

∣∣∣∣1
0

=
1

2

(
12 − 02

)
=

1

2
. (F (x) = x2/2)

• ∫ 3

−1
3x2 − x + 6 dx = x3 − 1

2
x2 + 6x

∣∣∣∣3
−1

= 48.

• ∫ b

a
2x − 5x2 dx = x2 − 5

3
x3

∣∣∣∣b
a

= (b2 − a2) +
5

3
(a3 − b3).
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