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Primitives

Definition Let F (x) and f (x) be two given functions defined on
an interval I . If

F ′(x) = f (x), holds for all x in I

then we say F (x) is called a primitive or an anti-derivative of
f (x). We use the notation

F (x) =

∫
f (x) dx

to denoted that F is a primitive of f , and we call the process of
finding a primitive F for f indefinite integration (or simply
integration).
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Examples

Remark We note that if F (x) is a primitive of f (x), then
F (x) + C , where C is an arbitrary constant, is also a primitive of
f (x) since

(F (x) + C )′ = F ′(x) + 0 = f (x).

We call C a constant of integration. Examples

•
∫

x dx =
1

2
x2 + C ,

•
∫

2x dx = x2 + C ,

•
∫

x2dx =
1

3
x3 + C ,

•
∫

x8dx =
1

9
x9 + C .
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Non-uniqueness
Recall from that Theorem 4.11 that if the derivatives of two
functions F1, F2 agree on I : i.e., F ′1(x) = F ′2(x), then F1, F2 differ
by a constant. That is,

F1(x) = F2(x) + k , holds for all x in I

for some constant k .

Figure: (Publisher Figure 4.78)
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Primitives of monomials xp

Theorem 4.17 Let p 6= −1 be a real number. Then∫
xp dx =

1

p + 1
xp+1 + C ,

for some arbitrary constant C .
Examples

•
∫

2
√

x
3

dx =

∫
x3/2dx =

x3/2+1

3
2 + 1

+ C =
2

5
x5/2 + C

•
∫

1
2
√

x
3

dx =

∫
x−3/2 dx =

x−3/2+1

−3/2 + 1
+ C =

−2√
x

+ C

•
∫ 1

x2
dx =

∫
x−2 dx =

x−2+1

−2 + 1
+ C =

−1

x
+ C .

•
∫ 1

x4
dx =

x−4+1

−4 + 1
+ C =

∫
x−4 dx =

−1

3x3
+ C .
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Exercises

1.

∫
x15 dx ,

2.

∫
x−12 dx ,

3.

∫
x−12 dx ,

4.

∫
3x4 dx ,

5.

∫ √
x dx ,

6.

∫
4
√

x5 dx ,

7.

∫
1

7
√

x8
dx

8.

∫
4

4
√

x
dx .

Remark Differentiate your answers to verify whether they are
correct.
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Linear combinations
Since

d(f + g)

dx
=

df

dx
+

dg

dx
and

d(kf )

dx
= k

df

dx
,

where k is a constant. So we deduce∫
f (x) + g(x) dx =

∫
f (x) dx +

∫
g(x) dx ,

and ∫
k f (x) dx = k

∫
f (x) dx ,

where k is a constant. We can easily generalize the above
consideration to linear combination of {f1, · · · , fn}∫

k1 f1(x) + k2 f2(x) + · · ·+ kn fn(x) dx

= k1

∫
f1(x) dx + k2

∫
f2(x) dx + · · ·+ kn

∫
fn(x) dx

where {k1, · · · , kn}.



Anti-derivatives Initial value problems Motion problems Definite integrals Riemann Sums Integrable functions

Finding primitive examples
1.∫

x3/2 +
1

x3/2
+

2

x3
dx =

∫
x3/2dx +

∫
x−3/2dx + 2

∫
x−3dx

=
(2

5
x5/2 + c1

)
− 2x−

1
2 + c2 + (−x−2 + c3)

=
2

5
x5/2 − 2x−

1
2 − x−2 + C .

2.∫
y 1/2(1 + y)2 dy =

∫
y 1/2(1 + 2y + y 2) dy

=

∫
y 1/2dy +

∫
2y 3/2dy +

∫
y 5/2dy =

2

3
y 3/2 +

4

5
y 5/2 +

2

7
y 7/2 + C .

3.∫
1

t1/2
(1 + t)2 dt =

∫
t−1/2(1 + 2t + t2) dt

=

∫
t−1/2dt + 2

∫
t1/2dt +

∫
t3/2 dt = 2t1/2 +

4

3
t3/2 +

2

5
t5/2 + C .
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Primitives of trigonometric functions

Figure: (Publisher Table 4.9)
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Primitives of various special functions

Figure: (Publisher Table 4.10)
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Examples

• (p. 320)

∫
(sin 2y + cos 3y) dy

• (p. 315)

∫
(sec2 3x + cos

x

2
) dx

• (p. 316)

∫
(e−10x + ex/10) dx

• (p. 316)

∫
4√

9− x2
dx ,

• (p. 316)

∫
1

16t2 + 1
dt.
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Initial value problems

The simplest differential equation of first order is of the form

f ′(x) = G (x), where G (x) is a given function;

f (a) = b, where a, b are given initial condition.

The f ′(x) = G (x) which is called a first order differential
equation, together with the initial value condition is called an
initial value problem (IVP).



Anti-derivatives Initial value problems Motion problems Definite integrals Riemann Sums Integrable functions

An example of IVP

Example (p. 317) Solve the IVP

f ′(x) = x2 − 2x ,

f (1) =
1

3
.

So a simple integration yields

f (x) =

∫
(x2 − 2x) dx =

1

3
x3 − x2 + C .

But
1

3
= f (1) =

1

3
· 13 − 12 + C implies that C = 1. So

f (x) =
1

3
x3 − x2 + 1.
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Sketch of the last IVP

Figure: (Publisher Figure 4.87)
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Example 6 (p. 318)

Race runner A begins at the point s(0) = 0 and runs with velocity
v(t) = 2t. Runner B starts at the point S(0) = 8 and runs with
velocity V (t) = 2. Find the positions of the runner for t ≥ 0 and
determine who is ahead at t = 6.
We have two IVP here. Namely,

ds

dt
= v(t) = 2t, s(0) = 0.

with solution s(t) = t2 and

dS

dt
= V (t) = 2, S(0) = 8

with solution S(t) = 2t + 8. Therefore, the two runners meet
when s(t) = S(t), meaning that t2 − 2t − 8 = 0. That is, t = 4.
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Example 6 (p. 318) figure

Figure: (Publisher Figure 4.88)
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Example 7 (p. 319)

Neglecting air resistance, the motion of an object moving vertically
near Earth’s surface is determined by the acceleration due to
gravity, which is approx. 9.8 m/s2. Suppose a stone is thrown
vertically upward at t = 0 with a velocity of 40 m/s from the edge
of a cliff that is 100 m above a river.

1. Find the velocity v(t) of the object, for t ≥ 0, and in
particular, when the object starts to fall back down.

2. Find the position s(t) of the object, for t ≥ 0.

3. Find the maximum height of the object above the river.

4. With what speed does the object strike the river?
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Example 7 (p. 319)

We measure the height function s(t) from the sea level and adopt
the upward direction to be our positive direction. Thus the initial
height is s(0) = 100.

(1) The acceleration
dv

dt
due to gravity pointing to the centre of

Earth, which is therefore negative. In fact we have the IVP:

dv(t)

dt
= v ′(t) = −9.8, v(0) = 40

Solving the DE gives v(t) = −9.8t + C . Thus

40 = v(0) = −9.8(0) + C ,

giving C = 40. Hence v(t) = −9.8t + 40.
The object starts to fall back down after it reached the maximum
height, where v(t) = 0, that is, when v(t) = −9.8t + 40 = 0,
giving t ≈ 4.1 s.
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Example 7 (p. 319)

(2) The height s(t) satisfies the IVP

ds(t)

dt
= v(t) = −9.8t + 40, s(0) = 100.

Solving the DE yields

s(t) = −4.9t2 + 40t + C .

The initial condition s(0) = 100 implies that 100 = s(0) = C . So

s(t) = −4.9t2 + 40t + 100.
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Example 7 (p. 319)

(3) As a result the maximum height is reached when the parabolic
s(t) is at its critical point:

0 =
ds

dt
= v(t) = −9.8t + 40,

That is, when t ≈ 4.1 s. Thus the maximum height is

s(4.1) ≈ 182 m.

(4) The object hits the sea when s(t) = 0. Solving the quadratic
Eqn s(t) = 0 gives us two roots, namely t ≈ −2 (which is to be
discarded) and t ≈ 10.2. So the velocity of the object when it
strike the sea is given by

v(10.2) ≈ −9.8(10.2) + 400 = −59.96 ≈ −60.
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Example 7 (p. 319)

Figure: (Publisher Figure 4.89)
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Example 7 (p. 319)

Figure: (Publisher Figure 4.90)
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Example 7 (p. 319)

Figure: (Publisher Figure 4.91)
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Area under curve

We shall consider continuous functions defined on a closed interval
only. The aim is to develop a theory that can be used to find area
of the region under the given function.
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Example

We consider the problem of finding the area under the straight line
f (x) = x for the interval 0 ≤ x ≤ 1.

We divide the interval [0, 1] into five subintervals of equal width.
By a partition of [0, 1] with five points: {x0, x1, x2, x3, x4, x5} of
[0, 1]. So we have the subintervals:

[x0, x1] = [0, 1/5]

[x1, x2] = [1/5, 2/5]

[x2, x3] = [2/5, 3/5]

[x3, x4] = [3/5, 4/5]

[x4, x5] = [4/5, 5/5]
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Upper sum
We consider the maximum values attained by f in each of the
above intervals:

f (x1) = f (1/5) = 1/5,

f (x2) = f (2/5) = 2/5,

f (x3) = f (3/5) = 3/5,

f (x4) = f (4/5) = 4/5,

f (x5) = f (5/5) = 5/5 = 1.

Let us sum the areas of the five rectangles each of which has the
maximum height in [xi−1, xi ] and with base 1/n. Thus we have

S5 = f

(
1

5

)
1

5
+ f

(
2

5

)
1

5
+ f

(
3

5

)
1

5
+ f

(
4

5

)
1

5
+ f

(
5

5

)
1

5

=
1

25

(
1 + 2 + 3 + 4 + 5

)
=

15

25
=

3

25
,

is called an upper sum of f over [0, 1] with respect to the above
partition. The approximation 3/25 is larger than the actual area.
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Lower sum
We consider the minimum values attained by f in each of the
above intervals:

f (x0) = f (0/5) = 0/5,

f (x1) = f (1/5) = 1/5,

f (x2) = f (2/5) = 2/5,

f (x3) = f (3/5) = 3/5,

f (x4) = f (4/5) = 4/5.

Let us sum the areas of the five rectangles each of which has the
minimum height in [xi−1, xi ] and with base 1/n. Thus we have

S5 = f

(
0

5

)
1

5
+ f

(
1

5

)
1

5
+ f

(
2

5

)
1

5
+ f

(
3

5

)
1

5
+ f

(
4

5

)
1

5

=
1

25

(
0 + 1 + 2 + 3 + 4

)
=

10

25
=

2

5
,

is called an lower sum of f over [0, 1] with respect to the above
partition. The approximation 2/25 is smaller than the actual area.
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Upper and Lower sums figues
Suppose the value of the area that we are to find is A. Then we
clearly see from the figure below that the following inequalities
must hold:

2

5
= S5 ≤ A ≤ S5 =

3

5
.
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Upper and lower sums: genearal case

It is also clear that the above argument that we divide [0, 1] into
five equal intervals is nothing special. Hence the same argument
applies for any number of intervals. Hence we must have

Sn ≤ A ≤ Sn, (2)

where n is any positive integer. We partition [0, 1] into n equal
subintervals:

{x0, x1, x2, . . . , xn−1, xn} = {0, 1

n
,

2

n
, . . . ,

n − 1

n
,

n

n
}.

and the width of each of the subintervals of 1/n.
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Upper sum: genearal case

Hence the upper sum is

Sn = f
(1

n

) 1

n
+ f
(2

n

) 1

n
+ · · ·+ f

(n − 1

n

) 1

n
+ f
(n

n

)1

n

=
1

n

1

n
+

2

n

1

n
+ · · ·+ n − 1

n

1

n
+

n

n

1

n

=
1

n2

(
1 + 2 + 3 + · · ·+ (n − 1) + n

)
=

1

n2

n(n + 1)

2

=
1

2

(
1 +

1

n

)
.

Note that we have used the fundamental formula that

1 + 2 + 3 + · · ·+ (n − 1) + n =
n(n + 1)

2
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Lower sum: genearal case
Hence the lower sum is

Sn = f
(0

n

) 1

n
+ f
(1

n

) 1

n
+ · · ·+ f

(n − 2

n

) 1

n
+ f
(n − 1

n

) 1

n

=
1

n

0

n
+

1

n

1

n
+ · · ·+ n − 2

n

1

n
+

n − 1

n

1

n

=
1

n2

(
0 + 1 + 2 + · · ·+ (n − 2) + n − 1

)
=

1

n2

(n − 1)n

2
=

1

2

(
1− 1

n

)
.

We deduce that

1

2

(
1− 1

n

)
≤ A ≤ 1

2

(
1 +

1

n

)
, for all n.

Letting n→ +∞ gives that 1
2 ≤ A ≤ 1

2 . That is A = 1/2 and

lim
n→+∞

Sn = 1/2 = lim
n→+∞

Sn.
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Riemann sums

We consider a closed interval [a, b] and let

P = {x0, x1, x2, . . . , xn−1, xn}, ∆xi = xi−xi−1 =
b − a

n
, i = 1, · · · , n

to be any points lying inside [a, b]. Let f (x) be a continuous
function defined on [a, b]. Then we define a Riemann sum of f (x)
over [a, b] with respect to partition P to be the sum

f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn

where x∗i is an arbitrary point lying in [xi−1, xi ], i = 1, 2, · · · , n.
Depending on the choices of x∗i , we have

1. Left Riemann sum if x∗i = xi−1;

2. Right Riemann sum if x∗i = xi ;

3. Mid-point Riemann sum if x∗i = (xi−1 + xi )/2.
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Riemann sum figure

Figure: (Publisher Figure 5.8)
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Left Riemann sum figure

Figure: (Publisher Figure 5.9)
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Right Riemann sum figure

Figure: (Publisher Figure 5.10)



Anti-derivatives Initial value problems Motion problems Definite integrals Riemann Sums Integrable functions

Mid-point Riemann sum figure

Figure: (Publisher Figure 5.11)
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Riemann sum of Sine
We compute various Riemann sums under the sine curve from
x = 0 to x = π/2 with six intervals. So we have

∆x =
b − a

n
=
π/2− 0

6
=

π

12
.

• Left Riemann sum gives

f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn ≈ 0.863

• Right Riemann sum gives

f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn ≈ 1.125

• Mid-point Riemann sum gives

f (x∗1 ) ∆x1 + f (x∗2 ) ∆x2 + · · ·+ f (x∗n ) ∆xn ≈ 1.003

So we have 0.863 ≤ 1.003 ≤ 1.125.
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Partition of Riemann sum of Sine

Figure: (Publisher Figure 5.2)
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Partition of Riemann sum of Sine

Figure: (Publisher Theorem 5.1)
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Example 5 (p. 334)

Figure: (Publisher Figure 5.15)
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Example 5 (p. 334)

After choosing a partition that divides [0, 2] into 50 subintervals:

∆xk = xk − xk−1 =
2− 0

50
=

1

25
= 0.04.

The Right Riemann Sum is given by

50∑
k=1

f (x∗k ) ∆xk =
50∑

k=1

f (xk) (xk − xk−1)

=
50∑

k=1

f (
k

25
) (0.04) =

50∑
k=1

[( k

25

)3
+ 1
]

(0.04)

=
[ 1

253

(50 · 51

2

)2
+ 50

]
(0.04) = 6.1616.
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Example 5 (p. 334) II

The Left Riemann Sum is given by

49∑
k=0

f (x∗k ) ∆xk+1 =
49∑

k=0

f (xk) (xk+1 − xk)

=
49∑

k=0

f (
k

25
) (0.04) =

49∑
k=0

[( k

25

)3
+ 1
]

(0.04)

=
[ 1

253

(49 · 50

2

)2
+ 50

]
(0.04) = 5.8416.
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Example 5 (p. 334) III

After choosing a partition that divides [0, 2] into n subintervals:

∆xk = xk − xk−1 =
2− 0

n
=

2

n
.

The Right Riemann Sum is given by

n∑
k=1

f (x∗k ) ∆xk =
n∑

k=1

f (xk)
2

n

=
2

n

n∑
k=1

[(2k

n

)3
+ 1
]

=
2

n

(23

n3

n∑
k=1

k3 +
n∑

k=1

1
)

=
2

n

(23

n3
· n2(n + 1)2

4
+ n
)

= 2
[
2
(

1 +
1

n

)2
+ 1
]
→ 6,

as n→∞.
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Example 5 (p. 334) III

The Left Riemann Sum is given by

n−1∑
k=0

f (x∗k ) ∆xk+1 =
n−1∑
k=0

f (xk) · 2

n

=
2

n

n−1∑
k=0

[(2k

n

)3
+ 1
]

=
2

n

(23

n3

n−1∑
k=0

k3 +
n−1∑
k=0

1
)

=
2

n

(23

n3
· n2(n − 1)2

4
+ n
)

= 2
[
2
(

1− 1

n

)2
+ 1
]
→ 6,

In fact, we have

4
(

1− 1

n

)2
+ 2 ≤ A ≤ 4

(
1 +

1

n

)2
+ 2

to hold for every integer n. So A = 6.
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Exercises

• (p. 338) Write the following sum in summation notation:

4 + 9 + 14 + · · ·+ 44.

• (p. 339) Given that
4∑

k=1

f (1 + k) · 1 is a Riemann sum of a

certain function f over an interval [a, b] with a partition of n
subdivisions. Identify the f , [a, b] and n.

• Let f (x) = x2 and let A be the area under f over the interval
[0, 1]. Show that the following inequalities

1

3

(
1− 1

n

)(
1− 1

2n

)
≤ A ≤ 1

3

(
1 +

1

n

)(
1 +

1

2n

)
.

Then show that the area A = 1
3 .
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Definite Integrals

Figure: (Publisher Figure p. 344)
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Definite Integral notation

Figure: (Publisher Figure 5.21)
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Integrable functions

Theorem 5.2 Let f be a continuous function except on a finite
number of discontinuities over the interval [a, b]. Then f is
integrable on [a, b]. That is,

lim
δx→0

n∑
k=1

f (x∗k ) ∆xk =

∫ b

a
f (x) dx ,

exists irrespective to the x∗k and the partition [xk−1, xk ] chosen.
So

• Since f (x) = x2 is continuous over [0, 1] so it is integrable

and

∫ 1

0
x2 dx =

1

2
according to a previous calculation.

• Since f (x) = x3 is continuous over [0, 1] so it is integrable

and

∫ 1

0
x3 dx =

1

3
according to a previous calculation.
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Piecewise continuous functions
The following function has a finite number of discontinuities and so
is integrable. However, we note that part 2 of the area is negative:

Figure: (Publisher Figure 5.23)
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Negative area

Figure: (Publisher Figure 5.18)
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Negative area

Figure: (Publisher Figure 5.17)
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Net area

Figure: (Publisher Figure 5.20)
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Recognizing integral

Figure: (Publisher Figure 5.24)
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Computing net area

Figure: (Publisher Figure 5.31)
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Exercises

1. Write down the right Riemann sum for

∫ 2

0

√
4− x2 dx ;

2. Interpret the sum lim
∆→0

n∑
k=1

3k

n(1 + 3k
n )

as a certain Riemann

integral.

3. Let

f (x) =

{
2x − 2, if x ≤ 2;

−x + 4, if x > 2.

Compute both the net area and actual area of

∫ 5

0
f (t) dt.
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Hints to Exercises

The net area of the last example is given by∫ 2

0
(2x − 2) dx +

∫ 5

2
(−x + 4) dx = (x2 − 2x)

∣∣2
0

+ (−x2/2 + 4x)
∣∣5
2

= (22 − 2 · 2) +
1

2
(22 − 52) + (20− 8) = 0 +−1

2
· 21 + 12 =

3

2
.

The actual area is given by∫ 1

0
(2x − 2) dx +

∣∣∣∣∫ 2

1
(2x − 2) dx

∣∣∣∣+

∫ 4

2
(−x + 4) dx +

∣∣∣∣∫ 5

4
(−x + 4) dx

∣∣∣∣
=
∣∣∣(x2 − 2x)

∣∣1
0

∣∣∣+ (x2 − 2x)
∣∣2
1

+ (−x2/2 + 4x)
∣∣4
2

+
∣∣∣(−x2/2 + 4x)

∣∣5
4

∣∣∣
= | − 1|+ 1 + 2 + | − 1

2
| =

9

2
.
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Properties of Definite Integral

Figure: (Publisher Table 5.4)
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Sum of integrals

Figure: (Publisher Figure 5.29)
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