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Horizontal tangents

We first investigate how we could extract useful information from
f and f ′(x). Consider

Figure: (Horizontal tangents)
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Maximum/Minimum
We see the drawing (p. 233) below that
• At some local maximum/minimum, f ′(x) = 0.
• f (x) may fail to have derivative at certain local

maximum/minimum, such as the point c where f ′(c) fails to
exist.

• In a finite interval [a, b], f may have global
maximum/minimum.

Figure: (Figure 4.5 (p. 233))
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At extrema

• Definition We call x = a a critical point of f if f ′(a) = 0.

• If f has a maximum or a minimum at a, then f ′(a) = 0 is a
critical point.

• The converse is not necessarily true.
• That is, at a critical point a (f ′(a) = 0) may not represent

f (a) has either a maximum or minimum there.
• Example f (x) = x3 + 2 has f ′(0) = 0 but f (0) is neither a

maximum nor a minimum.
• Example f (x) = x4 has f ′(0) = 0 and f (0) is a maximum

• That is, knowing f ′(a) = 0 is insufficient to decide if f (a) is
an extrema.
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Critical point examples
Example Find the critical point(s) of

• f (x) = ax2 + bx + c ,
Since f ′(x) = 2ax + b. So the critical point appears at

2ax + b = 0 or x = −b/2a.

• f (x) = 4x3 − 6,
Since f ′(x) = 12x2. So the critical point appears at x = 0.

• f (x) = 3x4 − 4x3 − 12x2 + 17.
We have

f ′(x) = 12x3−12x2−24x = 12x(x2−x−2) = 12x(x+1)(x−2).

Hence the critical points are at x = −1, 0, 2.
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Critical point exercises

Determine the critical points of the following functions:

• f (x) = 3x4 − 8x3 + 6x2 + 2,
(
(0, 2), (1, 3)

)
• f (t) = 2t3 + 6t2 + 6t + 5,

(
(−1, 3)

)
,

• f (x) = (x − 1)5,
(
(1, 0)

)
,

• f (x) = (x2 − 1)5,
(
(−1, 0), (0,−1), (1, 0)

)
• f (x) = (x3 − 1)4,

(
(0, 1), (1, 0)

)
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Absolute extrema example

• Example (p. 236) Find the maximum/minimum of
f (x) = x4 − 2x3 on [−2, 2].
We note that since this is a smooth function, so f ′ exists at
all points in [−2, 2].

f ′(x) = 4x3 − 6x2 = 2x2(2x − 3)

• so that the critical points are at {0, 3
2}.

• But f (0) = 0, f (3
2) = −27

16 , f (−2) = 32, f (2) = 0 so that

• f ( 3
2 ) = − 27

16 is both a local and global minimum,
• while f (0) = 0 is neither a max nor a min, and that
• f (−2) = 32 is a global maximum on [−2, 2].

• So f can attend an absolute maximum/minimum at end
points of a finite interval rather than at the critial points.
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Absolute extrema example (cont.)

Figure: (Figure 4.11 (p. 236))
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Behaviour at extrema

• Example Let y = f (x) = x2 − 4x + 4 = (x − 2)2. Sketch the
graphs of f and f ′ on the same axis and discuss any findings.
The curve of the quadratic f (x) = (x − 2)2 has a minimum at
x = 2. But

f ′(x) = 2(x − 2) = 2x − 4.

is a straight line with gradient 2. It equals to zero when
x = 2.

• Suppose we don’t know in advance that x = 2 is a minimum
of f , then how do we find out this from f ′ what happens to f
at x = 2?
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Comparing two graphs
To answer this question, let us plot f and f ′ against x on the same
coordinate axis in the following way:

Figure: (Horizontal tangents)
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Close up analysis of signs

• We note from the above figure that when f is decreasing in
the region x < 2, f ′(x) = 2x − 4 < 0 for x < 2. When f is
increasing for the region x > 2, since f ′(x) = 2x − 4 > 0 for
x > 2. And at the critical point, i.e., x = 2, f reaches its
minimum.

• We summarize the fundings below. Around the local
minimum2 of f (x) at x = 2, the behaviour of f ′(x) is

f ′(x) =


= 2x − 4 < 0, if x < 2

= 0, if x = 2

= 2x − 4 > 0, if x > 2.

for x close to x = 2.

2It’s a local minimum since the above analysis holds good only around the
critical point in general even though it works globally for this particular
example under discussion.
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Close up analysis of signs: general quadratic

For y = f (x) = ax2 + bx + c (a < 0), we have the critical point at
f ′(x) = 2ax + b = 0, i.e., x = −b/(2a).
The behaviour of f ′(x) is

y = f ′(x) =


2ax + b > 0, if x < −b/(2a)

0, if x = −b/(2a)

2ax + b < 0, if x > −b/(2a).

for x close to x = −b/(2a).
Observation When f (x) is quadratic, then around a critical point:

• f ′ increases from negative to positive around the critical point
being minimum,

• f ′ decreases from positive to negative around the critical point
being maximum.
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Comparing two graphs: general quadratic

Figure: (Horizontal tangents)
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Derivatives and behaviour

• We have seen that when a function y = f (x) reaches a local
maximum or local minimum, then f ′(x) = 0.

• We have seen that if we only know that f has a critical point
at a, then the natural of f (a) being a max/min is inconclusive.

• What we want to show next is that a more detailed
investigation on the behaviour of f ′(x) around the critical
point would allow us to decide the nature of the point.

• In fact, we’ll ask ourselves a more fundamental question about
how does the f ′(x) affect the behaviour of f (x).

• This is doen via the so-called first order derivative test.
However, a completely vigorous argument will only be given
later.
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First order approximation
The first order approximation formula can be used to analyse the
local behaviour of f . So suppose

f ′(a) = lim
h→0

f (a + h)− f (a)

h
.

Then we have

f ′(a) ≈ f (a + h)− f (a)

h

when h is small. That is

f (a + h)− f (a) ≈ h f ′(a) =

{
> 0, if f ′(a) > 0;

< 0, if f ′(a) < 0

when h > 0 is small. Since h is a positive quantity so the sign of
f (a + h)− f (a) depends on the sign of f ′(a). Therefore f is
increasing around a if f ′(a) > 0 and f is decreasing around a if
f ′(a) < 0.
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First order approximation (cont.)
More precisely,

f (a + h)− f (a) = h f ′(a) + ε(h)

where ε(h) denote an error term that is much smaller than h and
ε(h)→ 0 as h→ 0. So we may ignore this error in our
consideration.

• If f ′(a) > 0, and since h > 0 then

f (a + h)− f (a) = h f ′(a) + ε(h) > 0

holds as long as ε(h) remains small.
• If f ′(a) > 0, and since −h < 0 then

f (a− h)− f (a) = (−h) f ′(a) + ε(h) < 0

holds as long as ε(h) remains small. This corresponds to the
left limit. So we see that f is increasing around the a.

• the analysis for f ′(a) < 0 is opposite, that f is decreasing
around the a.



Curve sketching Critical points 1st order test Concavity Graphing Optimization

Example

• Example Determine the regions on the x-axis where the

function y = f (x) =
1

x2
is increasing and decreasing.
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Example (p. 242)
Find the intervals of increase or decrease of f (x) = 2x3 + 3x2 + 1.
Since

f ′(x) = 6x2 + 6x = 6x(x + 1) =


> 0, if x < −1;

< 0, if − 1 < x < 0;

> 0. if x > 0

so that f (x) is increasing on (−∞, −1) and (0, +∞), and
decreasing on (−1, 0).
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Example (p. 242)
Find the intervals of increase or decrease of f (x) = xe−x

f ′(x) = e−x − xe−x = (1− x)e−x =

{
> 0, if x < 1;

< 0, if x > 1

so that f (x) is increasing on (−∞, 1) and decreasing on (1, +∞).
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Exercises

Find the intervals of increase and decrease for the following
functions

• f (x) = x2 − 4x + 5, (f is increasing for x > 2;
f is decreasing for x < 2)

• f (x) = x3 − 3x − 4. (f is increasing for x < −1, x > 1;
f is decreasing for −1 < x < 1)

• f (x) = x5 − 5x4 + 100 (f is increasing for x < 0, x > 4;
f (x) is decreasing for 0 < x < 4)

• f (x) =
1

x3
. (f is increasing for x > 0;

f is decreasing for x < 0)
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First order derivative test

We have seen that around a critical point a being a
maximum/minimum, the derivative f ′(x) changes signs. That is,

• when f (a) is a local maximum,

f ′(x)


> 0, if x < a;

= 0, if x = a;

< 0, if x > a.

f ′ ↓ that is ↗−→↘
• when f (a) is a local minimum,

f ′(x)


< 0, if x < a;

= 0, if x = a;

> 0, if x > a.

f ′ ↑ that is ↘−→↗
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First order derivative test: Converse statements
It is not difficult to see that the converses also hold if x = a is a
critical point: f ′(a) = 0. That is,
• if f ′(x) decreases from being positive to being negative, then

f (a) is a local maximum;
• if f ′(x) increases from being negative to being positive, then

f (a) is a local minimum
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Example

Question Find the intervals of increase/decrease and investigate
the nature of the critical points f (x) = 1

3x3 − x + 1.
The critical points of f occurs when
0 = f ′(x) = x2 − 1 = (x + 1)(x − 1). That is, when x = ±1. We
have

f ′(x) = (x + 1)(x − 1) =



> 0, if x < −1;

= 0, if x = −1;

< 0, if − 1 < x < 1;

= 0, if x = 1;

> 0, if x > 1.

Hence intervals of increase are (−∞, −1) and (1, ∞), and
interval of decrease is (−1, 1).
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Example (cont.)

We can also apply the first order test to conclude that the critical
point x = −1 is a local maximum and the other critical point
x = 1 is a local minimum.
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Example (p. 244 publisher)
Let f (x) = 3x4 − 4x3 − 6x2 + 12x + 1. Find the intervals of
increase/decrease and any local extrema of f .

f ′(x) = 12(x + 1)(x − 1)2 =


< 0, if x < −1;

> 0, if − 1 < x < 1;

> 0, if x > 1.
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Example (p. 245, publisher)
Let f (x) = x2/3(2− x). Find the intervals of in increase/decrease
and any local extrema of f .

f ′(x) =
4

3
x−1/3 − 5

3
x2/3 =

4− 5x

3x1/3
=


< 0, if x < 0;

> 0, if 0 < x < 4/5;

< 0, if x > 4/5.
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Example

Find the maximum(s) and minimum(s) of
f (x) = x3 − 2x2 − 4x + 6.

• critical points: 0 = f ′(x) = 3x2 − 4x − 4 = (3x + 2)(x − 2),
which gives the possible x = {−3

2 , 2} for local
maximums/minimums or neither.

• Determine critical points’nature:

f ′(x) = (3x + 2)(x − 2) =


> 0, if x < −2/3, x > 2;

= 0, if x = −2/3 or 2;

< 0, if x = −2/3 < x < 2.

So f is increasing on (−∞, −2/3) and (2, ∞), and f is
decreasing on (−2/3, 2).

• We conclude that f (−2/3) ≈ 7.48 is a local maximum and
f (2) = −2 is a local minimum. Note also that f (0) = 6.
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Nature of critical point exercises

Determine the nature of the critical points of the following
functions:

• f (x) = 3x4 − 8x3 + 6x2 + 2, (0, 2) relative minimum; (1, 3)
neither

• f (t) = 2t3 + 6t2 + 6t + 5, (−1, 3) neither

• f (x) = (x − 1)5, (1, 0) neither,

• f (x) = (x2 − 1)5, (−1, 0) neither; (0, −1) relative minimum;
(1 , 0) neither

• f (x) = (x3 − 1)4, (0, 1) neither, (1, 0) relative minimum.
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Concavity I (publisher)
• Definition A differentiable function f is concave up over an

interval I if f ′ is increasing over I .
• Definition A differentiable function f is concave down over

an interval I if f ′ is decreasing over I .
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Concavity II

• Theorem 4.6 Suppose that f ′′(x) exists over an interval I .

1. If f ′′(x) > 0, then f is concave up over I ;
2. If f ′′(x) < 0, then f is concave down over I .

• Although the signs of second derivative being
positive/negative can determine the nature of concavity, i.e., ,
it is a sufficient condition for concavity, it is , however, not
necessary.

• Example f (x) =
1

x
is concave down over (−∞, 0) and

concave up over (0, ∞, ).

• Example f (x) = x4 is concave up over (−∞, ∞) and yet it
has f ′′(0) = 0.
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Inflection point I

• Definition A point c is called a point of inflection for a
function f (x) if there is a change of concavity or f ′′(z) is
undefined.

• Suppose f ′′(x) < 0 for x < c so concave down and f ′′(x) > 0
and so concave up for x > c , then there is a change of
concavity at the inflection point x = c . We must have
f ′′(c) = 0.

• Similarly, if f ′′(x) > 0 for x < c so concave up and f ′′(x) < 0
and so concave down for x > c , then there is also a change of
concavity at the inflection point x = c . Hence f ′′(c) = 0.

• Example f (x) = x3 has an inflection point at x = 0 since
there is a change of concavity and f ′′(0) = 0.

• Example f (x) = x4 is concave up over (−∞, ∞) and yet it
has f ′′(0) = 0.

• The next slide shows that f ′′ is undefined at a point of
inflection.
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Inflection point II (publisher)
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Example (p. 248) I

Identify the intervals of concave up/down of
f (x) = 3x4 − 4x3 − 6x2 + 12x + 1.
We have already computed

f ′(x) = 12(x + 1)(x − 1)2 =


< 0, if x < −1;

> 0, if − 1 < x < 1;

> 0, if x > 1.

f ′′(x) = 12(x − 1)(3x + 1)


> 0, if x < −1/3 or x > 1;

= 0, if x = −1/3 or x = 1;

< 0, if − 1/3 < x < 1;

We deduce that the critical points are {−1, 1} and the inflection
points are {−1/3, 1}.
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Example (p. 248) II

Figure: (Figure 4.31 (publisher))
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Example (p. 248) III
Identify the intervals of concave up/down of f (x) = arcsin(x).

f ′(x) =
1√

1− x2
, f ′′(x) =

x√
(1− x2)3

.

Figure: (Figure 4.31 (publisher))
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Example I
Sketch the graph of f (x) = 3x4 − 4x3 − 12x2 + 17.

f ′(x) = 12x3 − 12x2 − 24x = 12x(x + 1)(x − 2)

=


< 0, if x < −1, 0 < x < 2;

= 0, if x = −1, 0, 2

> 0, if − 1 < x < 0, x > 2.

f ′′(x) = 12(3x2 − 2x − 2)

= 36
(
x − 1 +

√
7

3

)(
x − 1−

√
7

3

)
=


> 0, if x < (1−

√
7)/3, or x > (1 +

√
7)/3

= 0, if x = (1−
√

7)/3 or (1 +
√

7)/3

< 0, if (1−
√

7)/3 < x < (1 +
√

7)/3

Inflection points (1−
√

7)/3 ≈ −0.55 and (1 +
√

7)/3 ≈ 1.27.
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Example II
Sketch the graph of y = f (x) = x +

4

x + 1
.

• The easiest is to find the where f intersects with with the
axes. Suppose f (x) = 0, i.e., 0 = x + 4

x+1 or x2 + x + 4 = 0

x =
−1±

√
14 − 4· 1· 4
2

,

which has no solution since 12 − 16 < 0. So f will never be
zero, and so f will never intersect the x−axis. Besides,
f (0) = 4.

• The next step is to consider x → +∞ and x → −∞.
When x is large and positive f (x)− x is approaching zero.
i.e.,

lim
x→+∞

(
f (x)− x

)
= lim

x→+∞

( 4

x + 1

)
= 0.

Similarly,

lim
x→−∞

(
f (x)− x

)
= lim

x→−∞

( 4

x + 1

)
= 0.
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Example II (cont.)

• That is f is “essentially” like x when x → ±∞.
• In fact, since 4

x+1 > 0 as x → +∞, f approaches y = x from
above,

• 4
x+1 < 0 when x → −∞, so f tends to y = x from below.

• The third step is to note that
4

x + 1
is meaningless when

x = −1. We have

lim
x→(−1)+

f (x) = lim
x→(−1)+

(
x +

4

x + 1

)
= +∞,

and

lim
x→(−1)−

f (x) = lim
x→(−1)−

(
x +

4

x + 1

)
= −∞,
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Example II (cont.)

• The fourth step is to identify the critical points.

f ′(x) = 1− 4

(x + 1)2
=

(x − 1)(x + 3)

(x + 1)2

=


> 0, if x < −3;

< 0, if − 3 < x < −1;

< 0, if − 1 < x < 1

> 0, if x > 1.

We deduce f has a maximum at x = −3 and a minimum at
x = 1. In fact, f is increasing on the intervals x < −3 and
x > 1, and decreasing on the intervals −3 < x < −1 and
−1 < x < 1.
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Example II (cont.)

• Now the concavity f ′′(x) =
8

(x + 1)3
=

{
> 0, if x > −1;

< 0 if x < −1.
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Example III (p. 258)

Sketch the curve of f (x) =
10x3

x2 − 1
• Clearly f (0) = 0 and f is undefined on x = ±1.

• Asymptotes: f (x) = 10x +
10x

x2 − 1
• Derivatives:

f ′(x) =
10x2(x2 − 3)

(x2 − 1)2
=


> 0, if x >

√
3 or x < −

√
3;

= 0, if x = ±
√

3;

< 0, if −
√

3 < x <
√

3.

and

f ′′(x) =
20x(x2 + 3)

(x2 − 1)3
=


< 0, if x < −1, or 0 < x < 1;

= 0, if x = 0;

> 0, if − 1 < x < 0, or x > 1.

So we see that x = −
√

3 is a local maximum and x =
√

3 is
a local minimum. Moreover, there is a change of concavity, so
x = 0 is a point of inflection.
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Example (p. 258) (cont.)

Figure: (Figure 4.45 (publisher))
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Normal distribution (p. 260)
Sketch the curve of f (x) = e−x2

.

• f (0) = 1, and f (x) > 0 for all x .

• limx→±∞ f (x) = 0 from above the x−axis.

•

f ′(x) = −2xe−x2
=


< 0, if x > 0;

= 0, if x = 0

> 0, if x < 0,

and that x = 0 is a local maximum by the first order
derivative test.

•

f ′′(x) = 2(2x2−1)e−x2
=


< 0, if x < −1/

√
2 or x > 1/

√
2;

= 0, if x = ±1/
√

2

> 0, if − 1/
√

2 < x < 1/
√

2,

so that x = ±1/
√

2 are points of inflection.
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Normal distribution (p. 261) II

Figure: (Figure 4.47 (publisher))
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Optimization I (p. 267 a)
Suppose an airline policy states that all baggage must be
box-shapted with a sum of length, width and height not exceeding
64 in. What are the dimenstions and volume of a square-based box
with the greatest volume under these condition?

Figure: (Figure 4.53 (publisher))
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Optimization I (p. 267 b)
We want to maximize the volume of a rectangular box under a
constraint. Let

V = w2 h, 2w + h = 64, (0 ≤ w ≤ 32)

where w is the width and h is the height of the box. That is,

V = w2 h = w2 (64− 2w) = 64w2 − 2w3.

Assuming V has a maximum, then we have

0 = V ′(w) = 128 w − 6 w2 = 2w(64− 3w),

which holds only when w = 0, 64/3 ≈ 21.3. These are the critical
points. V ′′(w) = 128− 12w so that

V ′′
(64

3

)
= 128− 12

(64

3

)
< 0.

This implies that V
(

64
3

)
≈ 9, 709 is a local maximum. Since V is

a smooth function,so we need check the end points:

V (0) = 0, V (32) = 0. So V
(

64
3

)
≈ 9, 709 is the absolute

maximum.
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Optimization I (p. 267 c)

Figure: (Figure 4.54 (publisher))
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Optimization II (p. 268 a)
Suppose one is standing on the shore of a circular pond with a
radius of 1 mile and to get to a point on the shore directly
opposite, first by swimming to a point P with speed 2 mile/hr and
then walk along the shore with speed 3 mile/hr. Choose the point
P to minimize the travel time.

Figure: (Figure 4.55 (publisher))
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Optimization II (p. 268 b)

Figure: (Figure 4.56 (publisher))
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Optimization II (p. 268 c)

We see that the chord length is 2r sin(θ/2) and the arc length is
r(π − θ). Note that the radius is r = 1 mile. Thus the travel time
is given by

T (θ) =
2 sin(θ/2)

2
+
π − θ

3

= sin
(θ

2

)
+
π − θ

3
, (0 ≤ θ ≤ π).

The critical point(s) is given by

0 =
dT

dθ
=

1

2
cos

θ

2
− 1

3
.

That is, when cos θ/2 = 2/3, or
θ = arccos(2/3) ≈ 1.68 rad = 96◦. The end points give
T (0) = π/3 ≈ 1.05 hr, and T (π) ≈ 1 hr. But
T (1.68 rad) ≈ 1.23 hr.
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Optimization II (p. 268 d)

Figure: (Figure 4.57 (publisher))
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Optimization III (p. 268 a)
An 8 ft height fence runs parallel to the side of a house 3 ft away.
What is the lenght of the shortest ladder that clears the fence and
reaches the house? Assume that the vertical wall of the house and
the horizontal ground have infinite extent.

Figure: (Figure 4.58a (publisher))
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Optimization III (p. 268 b)

Figure: (Figure 4.58b (publisher))
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Optimization III (p. 268 b)
Let L be the length of the ladder, x be the distance of the from
the foot of the ladder to the foot of the fence, and let b be the
height of the house. It follows from the last slide that we apply
Pythagoras theorem to obtain

L2 = (x + 3)2 + b2.

But similar triangles consideration yield 8/x = b/(3 + x) so that L
is a function of x only and its domain is x > 0:

L2 = (x + 3)2 +
(8(x + 3)

x

)2
= (x + 3)2

(
1 +

64

x2

)
It is easy to check

d

dx
L2 =

2(x + 3)(x3 − 192)

x3

which equals zero if x3 = 192 or x ≈ 5.77. First order test implies
that L(5.77) ≈ 15 ft is the minimum length.
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