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Exponential revisited
In 1748, Euler computed

e ≈ 2.718281828459045235

He also shows that

e = lim
k→∞

(
1 +

1

k

)k
= lim

k→∞

k︷ ︸︸ ︷(
1 +

1

k

)
· · ·
(

1 +
1

k

)
We now know that even more is true:

ex = lim
k→∞

(
1 +

x

k

)k

The first ten thousand digits:
2.718281828459045235360287471352662497757247093699959574966967
627724076630353547594571382178525166427427466391932003059921817
413596629043572900334295260595630738132328627943490763233829880
7531952510190115738341879307021540891499348841675092447614...
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Logarithmic functions
• Recall that the natural logarithmic function log x is defined to

be the inverse function of the exponential function y = ex .
That is x = ln(ex) and x = e ln x .

• Theorem. We have, for any x > 0,

d

dx
ln x =

1

x
.

ln(x + h)− ln x

h
=

1

h
ln
(
1 +

h

x

)
= ln

(
1 +

h

x

)1/h

= ln
(
1 +

1/x

k

)k
→ ln(e1/x)

=
1

x
as k → +∞ (equivalent to h→ 0).

• Theorem Let u be a function of x . Then
d

dx
ln u =

1

u

du

dx
.
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Examples

Example Find the derivative of

• y = x ln x ,
dy

dx
= 1 + ln x

• y = (x − 1)(x − 2)(x − 3)(x − 4)3

dy

dx
= y

( 1

x − 2
+

1

x − 2
+

1

x − 3
+

3

x − 4

)

• y = ln(x2 + 1)
dy

dx
=

2x

x2 + 1



Logarithm Implicit Differentiation Exponential functions Inverse trigonometric functions Higher derivatives Applications

Examples
Example Find the derivative of

• y = ln
(x1/2 + 1)(x − 1)

4x − 1

dy

dx
= y

[ x−1/2

2(x1/2 + 1)
+

1

x − 1
− 4

4x − 1

]

• y =

√
6x3 − 1

2x − 1

dy

dx
= y

[1

2

( 18x2

6x3 − 1
− 2

2x − 1

)]
• y = log10 x

dy

dx
=

1

x ln 10
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Exercises

Differentiate the following functions
(i) f (x) = ln x3 (3/x)
(ii) f (x) = ln(2x) (1/x)
(iii) f (x) = x2 ln x

(
x(1 + 2 ln x)

)
(iv) f (x) = ln

√
x

(
1
2 (1 + ln x)

)
(v) f (x) =

ln x

x

(
1
x2 (1− ln x)

)
(vi) f (x) = ln

(x + 1

x − 1

) (
2
/

(1− x2)
)

(vii) f (x) =
(x + 2)5

6
√

3x − 5

(
(x+2)5

6√3x−5

(
5

x+2 −
1

2(3x−5)

))
(viii) f (x) =

√
2x + 1

1− 3x
,

(
1
2

(3−4x)

(2x+1)1/2(1−3x)3/2

)
(ix)

f (x) = (x + 1)3(6− x)2 3
√

2x + 1
((

3
x+1 −

2
6−x + 2

3(2x+1)

)
f (x)

)
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Different bases

• Theorem Let a be any positive real number. Then

d

dx
loga x =

1

ln a

1

x
.

Similarly, if u is a function of x , then

d

dx
loga u =

1

u ln a

du

dx
.

• Example Find the derivative of y = log3(x2 + 1)

dy

dx
=

2x

(x2 + 1) ln 3
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Implicit Differentiation

We have learned to find derivatives of functions in the form
y = f (x), i.e., y can be expressed as a function of x only.
However, this is not always the case:

xey + yex = y .

if there is a change of x by ∆x then there must be a
corresponding change in y by a certain amount ∆y say, in order

the keep the equality. So how can we find
dy

dx
? We illustrate the

method called implicit differentiation by the following example.



Logarithm Implicit Differentiation Exponential functions Inverse trigonometric functions Higher derivatives Applications

Example

Example Find the rate of change of y with respect to x if
x2 + y 2 = 5. Find also the gradient of the circle at x = 1.
Applying chain rule to the both sides of x2 + y 2 = 5 yields

0 =
d

dx
5 =

d

dx
(x2 + y 2) =

d

dx
x2 +

d

dx
y 2 = 2x + 2y

dy

dx
.

Thus
dy

dx
= −x

y
.

Since y(0)2 = 5− 1 = 4, so y(0) = ±2. Hence

dy

dx
= ±1

2
.
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More examples I

Example Find the equations of tangents to x3 = (y − x2)2 when
x = 1.

(
Ans. dy

dx = 3x2

2(y−x2) + x2; y = 1
2 x − 1

2 , y = 7
2 x − 3

2 .
)
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More examples II
Example Find dy

dx if x3 + 4xy 2 − 27 = y 4. (Ans. y ′ = 3x2+4y2

4y3−8xy )
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Exponential functions

• Theorem Let x be any real number. Then

d

dx
ex = ex .

• Writing y = f (x) = ex . Recall that

log y = log ex = x

Differentiating both sides implicitly yields

d log y

dx
=

1

y

dy

dx
=

dx

dx
= 1.

That is,
dy

dx
= y = ex .

•
dex

dx

∣∣∣
x=0

= 1.
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Different bases

• Theorem If u is a function of x then

d

dx
eu = eu du

dx
.

Furthermore, if a is a positive real number and let u be a
function of x , then

d

dx
ax = ax ln a,

d

dx
au = au ln a

du

dx
.

• Let y = ax . Then x = loga y . Differentiating both sides
implicitly yields

1 =
dx

dx
=

d loga y

dx
=

y ′

(log a) y
.

So y ′ = (log a) ax .
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Examples

• y = e
√

x+x3

dy

dx
=

1

2
√

x
3x2e

√
x+x3

• y = xe ln x+x

dy

dx
= (1 +

2

x
)xex+ln x

• y = e
x

x+1

dy

dx
=

1

(x + 1)2
e

x
x+1

• y = ax2+x

dy

dx
= (ln a) ax2+x (2x + 1)
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Further examples

• y = xx

dy

dx
= (ln x + 1) xx

• y = (1 + ex)ln x

dy

dx
= y [

ln(1 + ex)

x
+

xex

1 + ex
]

• Example xey + yex = y
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Exercises
Differentiate the following functions.
(i) f (x) = ex2+2x−1,

(
2(x + 1)ex2+2x−1

)
(ii) f (x) = e1/x ,

(
− 1/x2 e1/x

)
(iii) f (x) = 30 + 10e−0.05x ,

(
− 0.5e−0.05x

)
(iv) f (x) = x2ex ,

(
(2x + 1)ex

)
(v) f (x) = (x2 + 3x + 5)e6x ,

(
(6x2 + 20x + 33)e6x

)
(vi) f (x) = xe−x2

,
(

e−x2
(1− 2x2)

)
(vi) f (x) = e

√
3x ,

(√
3√
x

e
√

3x
)

(vii) f (x) = e−1/2x ,
(

1
2x2 e−1/2x

)
(viii) f (x) = ex ln x ,

(
ex(ln x + 1/x)

)
(ix) f (x) = e−3x

√
2x − 5/(6− 5x)4

(
(−3 + 1

2x−5 + 20
6−5x )f (x)

)
(x) f (x) = 2x2

,
(

2x
ln 2 2x2

)
(xi) f (x) = x1−x ,

((
1
x − 1− ln x

)
x1−x

)



Logarithm Implicit Differentiation Exponential functions Inverse trigonometric functions Higher derivatives Applications

General principle (not required)
Consider the equation

F (x , y(x)) = 0

where F (X , Y ) is polynomial in X and Y . If this F = 0 for all X
and Y , then the X and Y are related to each other. i.e., , when X
changes, there must be a corresponding change in Y (or vice
verse). So Y = G (X ) for some function G whose explicit form is
(generally) unknown. However, it is possible that one finds its
derivative dY

dX . This follows from multi-variable calculus when
treating Z = F (X , Y ) as a function of two (independent) variables
X , Y . Then the

dZ =
∂F

∂X
dX +

∂F

∂Y
dY .

But dZ = 0 and Y = Y (X ) so that we can apply the Chain rule
to obtain

dY

dX
= −

∂F
∂X
∂F
∂Y.
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Inverse Sine function

(pp. 209-210) Here is another application of implicit
differentiation.
Consider y = arcsin x on the domain [−1, 1] has range
−π

2 ≤ y ≤ π
2 . On the other hand sin y = x . Differentiating this

equation on both sides yields

1 =
dx

dx
=

d

dx
sin y = cos y

dy

dx
.

Notice that we have 1− x2 = cos2 y . So

dy

dx
=

1

cos y
=

1√
1− x2

on (−1, 1). Note that we have chosen the positive branch of
±
√

1− x2 since cos y ≥ 0 on −π
2 ≤ y ≤ π

2 .
Note that y ′ → +∞ as x → ±1.
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Figure 3.57 (Publisher)
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Figure 3.58 (Publisher)
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Inverse function examples

• (p. 210)

d

dx
arcsin(x2 − 1) =

d

du
arcsin u · du

dx

=
1√

1− u2
· d

dx
(x2 − 1)

=
1√

1− (x2 − 1)2
· 2x =

2x√
2x2 − x4

=
2x

|x |
√

2− x2

• (p. 210)

d

dx
cos(arcsin x) = − sin(arcsin x)

d

dx
(arcsin x)

= − x√
1− x2



Logarithm Implicit Differentiation Exponential functions Inverse trigonometric functions Higher derivatives Applications

Inverse tangent

• (p. 211) Inverse tangent y = arctan x has domain (−∞, ∞)
and range (−π

2 ,
π
2 ).

Differentiating x = tan y on both sides w.r.t. x yields,

1 =
dx

dx
=

d

dx
tan y =

d

dy
tan y

dy

dx
= sec2 y · dy

dx
.

Thus dy
dx = 1

sec2 y
. Note that 1 + x2 = sec2 y . So

dy

dx
=

1

1 + x2
.

Thus we see that y ′ → 0 as x → ±∞.
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Figure 3.59 (Publisher)
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Figure 3.60 (Publisher)



Logarithm Implicit Differentiation Exponential functions Inverse trigonometric functions Higher derivatives Applications

Inverse secant
Since secant maps [0, π/2] to [1, +∞) and [π/2, π] to (−∞, −1],
so its inverse y = sec−1 x and hence sec y = x is well defined on
[1, +∞) and (−∞, −1] or on |x | ≥ 1.
Note that x2 = 1 + tan2 y . Differentiating sec y = x implicitly on
both sides yields

1 =
dx

dx
=

d

dx
sec y =

d sec y

dy
· dy

dx

= sec y tan y · dy

dx

That is,

(sec−1 x)′ =
dy

dx
=

1

sec y tan y
=

1

±x
√

x2 − 1

=


1

x
√

x2 − 1
, if x > +1;

− 1

x
√

x2 − 1
, if x < −1
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Figure 3.61 (Publisher)
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Other Inverses

Differentiating

cos−1 x + sin−1 x =
π

2

on both sides yields

d

dx
cos−1 x = − d

dx
sin−1 x = − 1√

1− x2
.

Similarly, differentiating

cot−1 x + tan−1 x =
π

2
, and csc−1 x + sec−1 x =

π

2

yields

d

dx
cot−1 x =

−1

1 + x2
, and

d

dx
csc−1 x = − 1

|x |
√

x2 − 1

respectively.
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Example

(p. 213) Compute the derivative of f (x) = x tan−1 x/2 at
x = 2

√
3. Differentiating f (x) with product and chain rules yield

f ′(x) = tan−1 x

2
+

x · 1
2

1 + x2/4
.

Since tanπ/3 =
√

3, so

f ′(2
√

3) = tan−1
√

3 +

√
3

1 + (
√

3)2
=
π

3
+

√
3

4
.
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Derivative of inverse
Theorem (p. 215) Let f be differentiable and have an inverse on
an interval I . If x0 is in I such that f ′(x0) 6= 0, then f −1 is
differentiable at y0 = f (x0) and

(f −1)′(y0) =
1

f ′(x0)
.

Proof Since x0 = f −1(y0) and x = f −1(y) so

(f −1)′(y0) = lim
y→y0

f −1(y)− f −1(y0)

y − y0

= lim
y→y0

x − x0

f (x)− f (x0)

= lim
x→x0

1
f (x)−f (x0)

x−x0

=
1

f ′(x0)

since (f −1) is continuous. In particular, we note that
f ′(x0)(f −1)′(y0) = 1.
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Figure 3.65 (Publisher)
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Example

(p. 216) Let f (x) =
√

x + x2 + 1 is one-one for x ≥ 0. Find the
gradient of y = f −1(x) at the point (3, 1).

We first check that 3 = f (1) =
√

1 + 12 + 1. Then

f ′(x) =
1

2
√

x
+ 2x .

So

(f −1)′(3) =
1

f ′(1)
=

2

5
.
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Figure 3.66 (Publisher)
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Higher order derivatives

Consider f (x) = x3 + 2x . Its derivative is given by f ′(x) = 3x2 + 2
which is again a function of x . Therefore we may ask what is its
rate of change with respect to x? In fact

lim
∆x→0

f ′(x + ∆x)− f ′(x)

∆x
= 6x .

We call the above limit the second derivative of f at x . It is

denoted by f ′′(x), or
d2f

dx2
. This definition can easily be extended

to any function. If x is replaced by time t and ystands for the
distance travelled by an object. Then y ′′ is interpreted as the
acceleration of the object. That is the rate of change of the
velocity of the object.
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Higher order derivatives

We can define the third order derivative of f by

lim
∆x→0

f ′′(x + ∆x)− f ′′(x)

∆x
= 6.

In general we defin the kth-order derivative of f by

lim
∆x→0

f (k−1)(x + ∆x)− f (k−1)(x)

∆x
.

We denote this by f (3)(x),
d3y

dx
and f (n)(x),

dny

dx
. Higher order

derivatives have very important geometrical meaning.Thus we have
f ′′′(x) = 0 for the above example since 6 is a constant function



Logarithm Implicit Differentiation Exponential functions Inverse trigonometric functions Higher derivatives Applications

Examples

• d2

dx2 ex2
= ex2

(2 + 4x2)

• d2

dx2
ex

x+1 = ex (x2+1)
x+1)

• Find d2y
dx2 in x2 + ky 2 = 4:

d2y

dx2
= − 1

k2

(ky 2 + x2

y 3

)
• Find the rate of change of y ′ if y 2 = ex+y .

d2y

dx2
=

2y

(2− y)3
.
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Applications I
• (p. 219) Spreading oil An oil rig springs a leak in calm seas

and the oil spreads in a circular patch around the rig. If the
radius of the oil patch increases at a rate of 30 meters/hour.
How fast is the area of the patch increasing when the patch
has a radius reaches 100 meters.

• Recall
area formula of a circle = A = π r 2.

• But the radius r(t) is a function of time.
• So A(t) = π r(t)2 and so

d

dt
A(t) =

d

dr
A · d

dt
r(t) = 2π r(t) · r ′(t).

• Since r ′(t) = 30 is a constant rate, so when r(t) = 100, we
have

A′(t)
∣∣∣
r=100

= 2π (100m)·30m/hr = 6, 000πm2/hr ≈ 18, 850 m2/hr.
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Figure 3.67 (Publisher)
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Application II

• (p. 220) Coverging airplanes Two small planes approach an
airport, one flying due west at 120 mile/hr and the other
flying due north at 150 mile/hr. Assuming they fly at the
constant elevation, how fast is the distance between the
planes changing when the westbound plane is 180 miles from
the airport and the northbound plane is 225 miles from the
airport?

• Let x(t) and y(t) be the distances from the airport of the
westbound plane and northbound plane respectively

• Then the Pythagora’s theorem that z2 = x2 + y 2, where the
z(t) denotes the distance between the planes. So

2z(t)
dz

dt
=

d

dt
z(t)2 =

d

dt
(x(t)2+y(t)2) = 2x(t)

dx

dt
+2y(t)

dy

dt
.
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Figure 3.68 (Publisher)
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Application II (cont.)

• (p. 220) Coverging airplanes

• So

dz

dt
=

d

dt
(x(t)2 + y(t)2) = x(t)

dx

dt
+ y(t)

dy

dt
z(t)

.

• when the westbound plane is 180 miles and the northbound
plane is 225 miles from the airport, the distance between the
planes is approximately z(t) =

√
1802 + 2252 ≈ 288 miles to

each other.

• But both x ′(t) and y ′(t) are decreasing and hence negative,
so we deduce

dz

dt
=

x(t) dx
dt + y(t) dy

dt

z(t)
≈ (180)(−120) + (225)(−150)

288

≈ −192mile/hr.
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Application III

• (p. 221) Sandile

• Sand falls from an overhead bin, accumulating in a conical
pile with a radius that is always three times it height. If the
sand falls from the bin at a rate of 120ft3/min, how fast is the
height of the sandpile changing when the pile is 10ft high?

• Recall the volume of the conical pile is given by V = 1
3 π r 2h.

Here r = 3h so that V = 3πh3 .

• So when h = 10,

dV

dt

∣∣∣
h=10

=
dV

dh

∣∣∣
h=10

· dh

dt

• That is,

dh

dt
=

dV
dt

dV
dh

∣∣∣
h=10

=
120

9πh2
∣∣∣
h=10

=
120

2π102
≈ 0.042ft/min
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Figure 3.69 (Publisher)
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Application IV

• (p. 221) Observing launch An observer stands 200 m from
launch site of a hot-air ballon. The ballon raises vertically at a
constant rate of 4 m/s. How fast is the angle of elevation of
the ballon increasing 30 s after the launch?

• The elevation angle is tan θ = y/200 where y(t) is the vertical
height. We want dθ

dt .

• After 30 s, y = 30× 4 = 120 m. So

dy

dt
= 200 sec2 θ

dθ

dt
.

• That is, after 30 s

dθ

dt
=

cos2 θ

200

dy

dt
=

cos2 θ

200
(4) =

cos2 θ

50
.
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Figure 3.70 (Publisher)
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Application IV (cont.)

• (p. 221) Observing launch

• It remains to compute cos2 θ.
cos θ = 200/

√
1202 + 2002 ≈ 200/233.23 ≈ 0.86. So

dθ

dt
≈ 1

50
× (0.86)2 = 0.015 rad/s

which is slightly less than 1◦/s.
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