MATH1013 Calculus I

Introduction to Functions¹

Edmund Y. M. Chiang

Department of Mathematics Hong Kong University of Science & Technology

May 1, 2013

Derivatives IV (Chapter 4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Mean Value Theorem

L'Hôpital's Rule

Grow rates of functions

Newton's method

Extreme Value theorem

Theorem A function f(x) continuous on a closed interval
 [a, b] attains its absolute maximum/minimum on [a, b]. That is, there exist c, d in [a, b] such that

 $f(x) \ge f(c),$ $f(x) \le f(d)$ for all x in [a, b].

- This result looks very trivial is in fact a deep result in elementary mathematical analysis. It is proved vigorously in chapter 5 (Theorem 5.3) of my supplementary notes on Mathematical Analysis course found in my web site of this course.
- What we will do in the following sides is to show the Extreme Value theorem does not hold when any one of the hypotheses fails to hold.

<注▶ < 注▶ 注 の へ (?)

Extreme value theorem example I

 $f(x) = x^2$. It requires boundedness and closedness of the interval [a, b] assumption.

Extreme value theorem example II

It requires continuity f(x) assumption.

Figure: (Publisher Figure 4.4 (a))

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

How extreme value theorem can fail I $f(x) = x^2$. Dropping boundedness of interval [a, b] assumption.

Figure: (Publisher Figure 4.2 (a))

How extreme value theorem can fail II $f(x) = x^2$. Dropping closed interval [a, b] assumption.

A = A = A = OQQ
 OQQ
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

How extreme value theorem can fail III $f(x) = x^2$. Dropping closed interval [a, b] assumption.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

How extreme value theorem can fail IV Dropping continuity f(x) assumption.

Figure: (Publisher Figure 4.4 (b))

Rolle's theorem

- Theorem Let f be continuous on a closed interval [a, b] and differentiable on (a, b) with f(a) = f(b). There is at least one point c in (a, b) such that f'(c) = 0.
- Proof Case I: If f(x) attains its maximum and minimum at the end points of [a, b], then f(a) = f(b). That is, f(x) is a constant on (a, b). So f'(c) = 0 for all c in (a, b).
- Case II: If at least one of the extreme points doesn't coincide with the end points a, b, then this extreme point, c say must lie in (a, b). But then we know f'(c) = 0.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

How Rolle's theorem can fail I

Figure: (Publisher Figure 4.66 (a))

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

How Rolle's theorem can fail II

Figure: (Publisher Figure 4.66 (b))

Rolle's theorem example

 $f(x) = x^3 - 7x^2 + 10x$ has critical points that satisfy the Rolle's theorem at

Mean Value theorem

Theorem If f is continuous on the closed interval [a, b] and differentiable on (a, b), then there is a c in [a, b] such that

Proof of Mean Value theorem

The idea is to transform the problem into the setting of the Rolle theorem.

The gradient of the straight line equation $\ell(x)$ that connects the pair of points (a, f(a)) and (b, f(b)) is given by:

$$y = \ell(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$$

where $\ell(a) = f(a)$ and $\ell(b) = f(b)$. So the function $F(x) = f(x) - \ell(x)$ satisfies F(a) = F(b) = 0. Since F(x) is continuous on [a, b] and differentiable on (a, b), so the Rolle theorem implies that there is a c in (a, b) so that $0 = F'(c) = f'(c) - \ell'(c)$. That is,

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Proof of Mean Value theorem II

Figure: (Publisher Figure 4.69)

Example of Mean Value theorem

Determine the points in [-2, 2] for $f(x) = 2x^3 - 3x + 1$ that are guaranteed to exist by the Mean Value theorem. There are point(s) *c* in [-2, 2] such that

$$f'(c) = \frac{f(2) - f(-2)}{2 - (-2)} = 5.$$

But $f'(x) = 6x^2 - 3 = 5$ so that $x^2 = 4/3$ or $x = \pm 2/\sqrt{3}$. Slope = 5x 1.15 1.15 2 Slope = 5▶ **∢ 글 ▶**

Consequences of Mean Value theorem

- Theorem If f'(x) = 0 at all points of an interval I, then f is a constant on I.
- **Theorem** If two functions have the property that f'(x) = g'(x) on I, then f(x) = g(x) + k holds for all x in I for some constant k.
- **Theorem** Suppose f(x) is continuous on an interval I and differentiable at all interior points of I, then
 - if f'(x) > 0 at all interior points of *I*, then *f* is increasing on *I*;
 - if f'(x) < 0 at all interior points of *I*, then *f* is decreasing on *I*.

Application I (p. 286)

In meteorology, let T(z) be the temperature of the atmosphere at the altitude z. Then

$$|\text{apse rate}| = \gamma = -\frac{dT(z)}{dz}$$

that is, it is the rate of decrease in the temperature of the atmosphere at the altitude *z*. It is known from experience that if the lapse rate is more than 7 degrees/km, then the chance of thunderstorm/tornado is large.

Example Suppose T(2.9) = 7.6 and T(5.6) = -14.3. What will a meteorologist deduce from this data?

We assume that the temperature T function is differentiable. Then

$$T'(c) = rac{T(5.6) - T(2.9)}{5.6 - 2.9} = rac{-14.3 - 7.6}{5.6 - 2.9} = -8.1,$$

which is an average rate of change. The mean value theorem guarantees that there's at least one *c* lies between 2.9 and 5.6 such that T(c) = -8.1. The chance of thunderstorm/tornado is large.

э

Application II (p. 286)

Figure: (Publisher Figure 4.70)

0/0 form

• Theorem (p.290) Suppose f and g are differentiable on (a, b) and c lies in (a, b) such that $\lim_{x\to c} f(x) = 0 = \lim_{x\to c} g(x)$ and $g'(x) \neq 0$ ($x \neq c$). Then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

provided that the last limit exists, including $\pm \infty$.

• The above also holds for $x \to \pm \infty$ or $x \to c \pm$.

• Example

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = \frac{\lim_{x \to 0} \sin x}{\lim_{x \to 0} 1} = 1.$$

Proof of "0/0" form

We assume in addition that f' and g' are also continuous over (a, b) and $g'(c) \neq 0$

$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = \frac{f'(c)}{g'(c)} = \frac{\lim_{x \to c} \frac{f(x) - f(c)}{x - c}}{\lim_{x \to c} \frac{g(x) - g(c)}{x - c}}$$
$$= \lim_{x \to c} \frac{\frac{f(x) - f(c)}{x - c}}{\frac{g(x) - g(c)}{x - c}} = \lim_{x \to c} \frac{f(x) - f(c)}{g(x) - g(c)} = \lim_{x \to c} \frac{f(x)}{g(x)}$$

The basic rationale behind is the use of first order approximation formula: $f(x) \approx f(a) + f'(a)(x - a) = f'(a)(x - a)$. Examples (p. 291)

•
$$\lim_{x \to 1} \frac{x^3 + x^2 - 2x}{\frac{x - 1}{\sqrt{9 + 3x} - 3}}$$

•
$$\lim_{x \to 0} \frac{\sqrt{9 + 3x} - 3}{x}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

More examples (p. 292)

The following examples require repeated applications of L'Hôpital's rule:

•
$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$$

• $\lim_{x \to 2} \frac{x^3 - 3x^2 + 4}{x^4 - 4x^3 + 7x^2 - 12x + 12}$

Double check in the indeterminate forms

$$\lim_{x \to 0} \frac{3x - \sin x + 1}{x + 2} = \lim_{x \to 0} \frac{3 - \cos x}{1} = \frac{3 - \cos 0}{1} = 2.$$

But in fact, the above limit is NOT in the indeterminate form

$$\lim_{x \to 0} \frac{3x - \sin x + 1}{x + 2} = \frac{0 - 0 + 1}{0 + 2} = \frac{1}{2}.$$

Geometric reason I (p. 291)

Figure: (Publisher Figure 4.72), ABA ARA E PORC

Geometric reason II (p. 291)

" ∞/∞ " form

Theorem (p.293) Suppose f and g are differentiable on (a, b)and c lies in (a, b) such that $\lim_{x\to c} f(x) = \pm \infty = \lim_{x\to c} g(x)$ and $g'(x) \neq 0$ ($x \neq c$). Then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

provided that the last limit exists, including $\pm \infty$. **Remark** The above also holds for $x \to \pm \infty$ or $x \to a\pm$.

• Example
$$\lim_{x \to \infty} \frac{4x^3 - 6x^2 + 1}{2x^3 - 10x + 3}$$

• Example
$$\lim_{x \to \pi/2-} \frac{1 + \tan x}{\sec x}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Double check " ∞/∞ " form

Example

$$\lim_{x \to \infty} \frac{\sqrt{x+2}}{\sqrt{x-5}} = \lim_{x \to \infty} \frac{\frac{1}{2\sqrt{x+2}}}{\frac{1}{2\sqrt{x-5}}} = \lim_{x \to \infty} \frac{\sqrt{x-5}}{\sqrt{x+2}}$$
$$= \lim_{x \to \infty} \frac{\frac{1}{2\sqrt{x-5}}}{\frac{1}{2\sqrt{x+2}}} = \lim_{x \to \infty} \frac{\sqrt{x+2}}{\sqrt{x-5}}.$$

But in fact,

$$\lim_{x \to \infty} \frac{\sqrt{x+2}}{\sqrt{x-5}} = \lim_{x \to \infty} \frac{\sqrt{1+2/x}}{\sqrt{1-5/x}} = \frac{\sqrt{1+0}}{\sqrt{1-0}} = 1.$$

"
$$0\cdot\infty$$
", " $\infty-\infty$ ", " 1^∞ ", " 0^∞ ", " ∞^0 "

They can be changed to 0/0 or ∞/∞ .

• "
$$0 \cdot \infty$$
": $\lim_{x \to \infty} x \sin \frac{1}{x} = 1$

• "
$$\infty - \infty$$
": $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$

• "
$$0^0$$
": $\lim_{x\to 0+} x^x = 1$

•
$$1^{\infty}$$
: $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x = e$

- Cannot apply L'Hôpital's rule to 1^{∞} , 0^{∞} , ∞^0 .
- Rewrite $\lim_{x\to a} f(x)^{g(x)}$ as

$$\lim_{x \to a} f(x)^{g(x)} = \lim_{x \to a} e^{g(x) \ln f(x)} = e^{\lim_{x \to a} g(x) \ln f(x)}.$$

Thus it remains to compute

$$\lim_{x\to a} g(x) \ln f(x)$$

perhaps again using L'Hôpital's rule.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Ranking growth rates to ∞ I

Definition Suppose f and g are such that $\lim_{x\to\infty} f(x) = \lim_{x\to\infty} g(x) = \infty$. Then f grows faster than g as $x\to\infty$ if

$$\lim_{x \to \infty} \frac{g(x)}{f(x)} = 0, \quad \text{ or } \quad \lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

Then f and g have comparable growth rate if

$$\lim_{x\to\infty}\frac{g(x)}{f(x)}=M,\qquad 0< M<\infty.$$

Ranking growth rates to ∞ II

SAC

Ranking growth rates to ∞ : III

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ranking growth rates theorem

Theorem 4.15 (p.299) Let $f \ll g$ to mean that g grows faster than f as $x \to \infty$. Suppose p, q, r, s and b > 1 are positive real numbers. Then

 $\ln^q x \ll x^p \ll x^p \ln^r x \ll x^{p+s} \ll b^x \ll x^x,$

as $x \to \infty$.

Proof Most of these relationships are quite clear to hold. It only remains to check $\ln^q x \ll x^p$. We first check for p > 0 that

$$\lim_{x\to\infty}\frac{\ln x}{x^p} = \lim_{x\to\infty}\frac{1/x}{px^{p-1}} = \lim_{x\to\infty}\frac{1}{px^p} = 0.$$

Hence

$$\lim_{x \to \infty} \frac{\ln^q x}{x^p} = \lim_{x \to \infty} \left(\frac{\ln x}{x^{p/q}}\right)^q = \left(\lim_{x \to \infty} \frac{\ln x}{x^{p/q}}\right)^q = 0$$

by the above consideration.

Principle of Newton's method

We want to solve the equation f(r) = 0 where we don't have any formula for this equation. In fact, it is rare that such formula exists for a general equation.

- A tangent line to the curve y = f(x) at the point $(x_0, f(x_0))$ is drawn.
- Suppose the tangent line drawn above intersects with the x-axis at (x₁, 0). Then the x₁ is a new approximation to the real root r.
- We repeat the above procedure of constructing tangents using the sequence of points $\{x_1, x_2, x_3, \dots\}$ obtained from the intersection of previous tangent line and the *x*-axis.

Deriving Newton's method I

• The tangent line equation to the curve f(r) = 0 at x_0 can be written in the form

$$y - f(x_0) = f'(x_0)(x - x_0).$$

When the tangent line at (x₀, f(x₀)) intersects the x-axis, we have

$$0 - f(x_0) = f'(x_0)(x - x_0).$$

• Writting the new point to be $x = x_1$ and rearranging:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Deriving Newton's method I

- We can repeat this procedure as many steps as needed unless we have found the exact solution.
- Suppose we have already reached the approximation x_n with the tangent line at $(x_n, f(x_n))$. When the tangent line intersects the *x*-axis, we have

$$0-f(x_n)=f'(x_n)(x-x_n).$$

We label the new approximation by $x = x_{n+1}$.

• We have, after rearranging,

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}.$$

Example (p. 304)

Approximate the roots of $f(x) = x^3 - 5x + 1$ by Newton's method

$$f'(x)=3x^2-5.$$

So the Newton approximation formula becomes:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^3 - 5x_n + 1}{3x_n^2 - 5} = \frac{2x_n^3 - 1}{3x_n^2 - 5}, \quad n = 0, 1, 2, 3, \cdots$$

We try a first approximation to be $x_0 = -3$. Then

$$x_1 = \frac{2x_0^3 - 1}{3x_0^2 - 5} = \frac{2(-3)^3 - 1}{3(-3)^2 - 5} = -2.5.$$

So

$$x_2 = \frac{2x_1^3 - 1}{3x_1^2 - 5} = \frac{2(-2.5)^3 - 1}{3(-2.5)^2 - 5} = -2.345455.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Example (p. 304) II

Subsequence values of approximations are given by the table below. Note that two other initial guess values, namely $x_0 = 1$ and $x_0 = 4$ are also given:

Tab	le 4.5		
k	x_k	x_k	X_k
0	-3	1	4
1	-2.500000	-0.500000	2.953488
2	-2.345455	0.294118	2.386813
3	-2.330203	0.200215	2.166534
4	-2.330059	0.201639	2.129453
5	-2.330059	0.201640	2.128420
6	-2.330059	0.201640	2.128419
7	-2.330059	0.201640	2.128419

Remarks

• **Example** (p. 306). The problem of solving f(x) = g(x) involving two functions f(x) and g(x) can be put in the form of F(x) = f(x) - g(x). For example we can use Newton's method to solve $\cos x = x$ which has no known formula for a solution. So

$$x_{n+1} = x_n - \frac{\cos x_n - x_n}{-\sin x_n - 1} = \frac{x_n \sin x_n + \cos x_n}{\sin x_n + 1}$$

• **Example** (p. 307) Find local max/min of $f(x) = e^{-x} \sin 2x$. That is to use Newton's method to solve

$$f'(x) = e^{-x}(2\cos 2x - \sin 2x) = 0.$$

• When $f'(x_n) = 0$ for some x_n during the Newton's method process. Then the method breaks. In fact, the approximation may converge to the real root very slowly or even diverges from the real root.