MATH1013 Calculus I

Introduction to Functions¹

Edmund Y. M. Chiang

Department of Mathematics Hong Kong University of Science & Technology

February 17, 2013

Functions (Chapter 1, to be completed)

Definition of functions

Composition

Polynomial and Rational Functions

Transformations

Logarithm

Definition of functions

- Definition A function is a rule f that assigns to each x in a set D a unique value denoted f(x). C.
- **Definitions** The set *D* is called the domain of the function *f*, and the set of values of *f*(*x*) assumes, as *x* varies over the domain, is called the range of the function *f*(*x*).

$$x \longmapsto f(x), \quad \text{or} \quad y = f(x),$$

• One can think of this as a model of

one input \rightarrow one output

- Important point: for each x in D, one can find (there exists)
 one value f(x) (or y) that corresponds to it.
- However, depending on the f under consideration, one could have **two or more** x that correspond to the same f(x).
- This strange looking idea was created to describe dynamical ...

Examples of functions

• (p. 1)
$$x \mapsto x^2 - 2x$$
 or $f(x) = x^2 - 2x$.

- (p. 2) Identifying functions
- (p. 2) Domain and range
 - 1. $y = f(x) = x^2 + 1$, $[-3, 3] \times [-1, 5]$ 2. $y = g(t) = \sqrt{4 - t^2}$, $[-3, 3] \times [-1, 3]$ 3. $y = h(u) = \frac{1}{u - 1}$, $[-3, 5] \times [-4, 4]$
 - 4. (Ex.1.1, Q 16) $\overline{F(w)} = \sqrt[4]{2-w}$, [-3, 2] × [0, 2] 5. (Ex.1.1, Q 14) $g(y) = \frac{y+1}{(y+2)(y-3)}$, [-4, 6] × [-3, 3]
- (p.3: In context) At time t = 0 a stone is thrown vertically upward from the ground at a speed of 30m/s. Its height above the ground in meters is approximated by the function $h = f(t) = 30t - 5t^2$, where t is in seconds. Find the domain and range of this function as they apply to this particular problem.

(日) (同) (三) (三) (三) (○) (○)

Different types of functions

- y = f(x) = x + 1. For each x there corresponds to one and only one y.
- $y = x^3$. For each x there corresponds to one and only one y
- Where f(x₁) = f(x₂) implies x₁ = x₂, or equivalently x₁ ≠ x₂ implies f(x₁) ≠ f(x₂), we say the function f is injective or one-one. So the above two examples are injective functions.
- (Eg revisited) $f(x) = x^2 2x$ is not injective, as two different x can correspond to the same $f(x_1) = y = f(x_2)$
- (Non-function) $y^2 = 1 x^2$. Since for each x input, there always correspond to two outputs of $f(x) = \pm \sqrt{1 x^2}$ within the domain of f.

Logarithm

Function indicative figures

Figure: 1.2 (source textbook)

・ロト ・回ト ・ヨト ・ヨト

æ

A quick test

Figure: 1.3 (source textbook)

Logarithm

Domain and Range figure I

Figure: 1.4 (source: textbook) · < □ > < ≡ > < ≡ > < ∞

Domain and Range figure II

Figure: 1.5 (source: textbook)

Logarithm

Domain and Range figure III

Composition

• **Definition** Given two functions f and g, their composition $f \circ g$ is defined, by

$$(f \circ g)(x) = f(u) = f(g(x))$$

for each x in the domain of $f \circ g$. Let u = g(x) and y = f(u), then $f \circ g$ is understood as

$$y = (f \circ g)(x) = f(g(x)) = f(u), \qquad u = g(x),$$

as shown in

$$x \longmapsto u = g(x) \longmapsto y = f(u)$$

with g takes the domain of g (range) into (part of) domain of f, and f maps that into (part of) the range of f. The two together thus forms a new function f o g.

イロト 不得 トイヨト イヨト

æ

Diagram of composition

Figure: 1.8 (source: textbook)

Examples of composition

- (p. 4) Let $f(x) = 3x^2 x$ and g(x) = 1/x.
 - 1. $f \circ g$
 - 2. $g \circ f$
 - 3. domain and ranges
- (p. 4) Recognising composition 1. $h(x) = \sqrt{9x - x^2}$

2.
$$h(x) = \frac{2}{(x^2 - 1)^3}$$

(p. 5) Given f(x) = ³√x and g(x) = x² - x - 6.
 1. f ∘ g
 2. g ∘ f

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Composite functions Eg from table

- Compute
 - (a) *h*(*g*(0)),
 - (b) g(f(4)),
 - (c) *h*(*h*(0)),
 - (d) g(h(f(4))),
 - (e) *f*(*f*(*f*(1))),
 - (f) h(h(h(0))),
 - (g) f(g(h(2)))

(日) (同) (三) (三) (三) (○) (○)

Examples of composition: Gradients

• (p. 6) Given
$$f(x) = 3x^2 - x$$
. Find $\frac{f(x+h) - f(x)}{h}$

- The above quantity is called the gradient (or *slope* in less formal language) of f between the two points x and f(x + h). Alternatively, it is the average rate of change of f between x and x + h. It is an important quantity as we enter Chapters two and three.
- (p. 6) let $I = \frac{P}{4\pi r_1^2}$ measures sound intensity in watts per square meter (W/m^2) , at a point *r* meters from a sound source with acoustic power P = 100 W. Find the gradient of the secant line through (i) the points $(r_1, I(r_1))$ and $(r_2, I(r_2)) \left(-\frac{P(r_1+r_2)}{4\pi r_1^2 r_2^2} W/m^2\right)$, and (ii) the points (10, I(10)) and $(15, I(15)) (-1/(36\pi) W/m^2)$.

Representing Functions

• Polynomial functions

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0,$$

where the $a_{n-1}, \ldots, a_1, a_0$ are some constants.

• Rational functions

$$f(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0},$$

where the $a_n, \ldots a_1, a_0, b_m, \ldots b_1, b_0$ are constants

• Piecewise function (p. 15)

$$f(x) = \begin{cases} x & \text{if } x < 2\\ 3 & \text{if } x = 2\\ -\frac{1}{2}x + 5 & \text{if } x > 2 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Transformations

- Given a function y = f(x) and its graph.
- Then the function

$$y=f(x-b)+d,$$

where b > 0, d are constants, has the same shape as f(x) but which is shifted to the right by b units and shifted up/down by d units.

Then the function

$$y = f(x+b) + d$$

where b > 0, d are constants, has the same shape as f(x) but which is shifted to the left by b units and shifted up/down by d units.

• The graph of the function

$$y = c f(ax)$$

has horizontal magnification factor *a*, and vertical magnification factor *b*.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Logarithm

Transformation figure I

Figure: 1.38 (source: textbook)

Figure: 1.35 (source: textbook)

Examples of Transformation

- (p. 20, E.g. 8) Sketch the graph of $y = (x 2)^2 3$
- (p. 15, E.g. 4b) Recall the absolute value function is given by

$$|x| = \begin{cases} x & \text{if } x \ge 0; \\ -x & \text{if } x < 0. \end{cases}$$

- (p. 20, E.g. 9) Sketch |2x + 1|.
- (p. 21, Ex. 10) Sketch the graph of $y = 4(x+3)^2 + 6$
- (p. 23, Ex. 44) Sketch the graph according to Exercise 44:

$$f(x) = \begin{cases} |x| - 1 & \text{if } |x| \ge 2; \\ |x| & \text{if } |x| < 1. \end{cases}$$

(a) y = -f(x), (b) y = f(x + 2), (c) y = f(x - 2), (d) y = f(2x), (e) y = f(x - 1) + 2, (f) y = 2f(x).

Logarithm

Function made up by two pieces

Figure: 1.30 (source: textbook)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Logarithm

Function made up by three pieces

Figure: 1.29 (source: textbook)

Exponential Functions

• The function

$$y=f(x)=2^x$$

is called binary exponential function with base 2.

- Let $b \neq 1$ be an arbitrary positive number. Then function
- The function

$$y=f(x)=b^x$$

is called exponential function with base *b*.

- The exponential function grows very fast without bound if b > 1 and tends to zero fast.
- Amongst all exponential functions, the natural exponential function

$$y=f(x)=e^x$$

where $2 < e \approx 2.71828 < 3$ is amongst the most important.

• The simpler one is the one with common base 10

$$y=f(x)=10^x$$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Logarithm

- $b^x \times b^y = b^{x+y}$, $b^x \div b^y = b^{x-y}$
- $(b^x)^y = b^{x \cdot y}$.
- These observations, about turning multiplication or division into addition or subtraction of the exponents respectively, may seem elementary, but it actually becomes so important in all kinds of applications, some quite unexpected.
- The application of these rules were known since Babylonians' time in 2000-1600 BC. But it was the Scottish John Napier (1550-1617) who wrote the book entitled *Mirifici Logarithmorum Canonis Descriptio* (Description of the Wonderful Rule of Logarithms) in 1614 that popularized their use (source from Wiki)
- First called artificial number, then "logarithm" meaning from Latin "proportional-arithmetic
- Applications: http://en.wikipedia.org/wiki/Logarithm

・ロト ・聞ト ・ヨト ・ヨト

э

Logarithm

John Napier

Figure: (1550-1617) Source from Wiki

Logarithm

Tables published by Cambridge

Figure: (Source from Wiki) => (=> (=> (=>) (=>)

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

Logarithm

A page in Log tables

×	•	1			3			5			7	8	9	1 t	1	2 3	-	4 : A	6	1	7 8	9		×	0	1		•	3	4				τ	8	9.	4	1	1 3	4 5 AD	6
10	-0000	004	3 00	16 0	128	01	10	1213		1	6.7			42	1	8 1	T	7.2	1 25	12	9 14	18		50	-6990	6991	1 70	07 7	1016	7024	703	3 70	2 1	10.50	7059	7067	2	1	2 3	4.4	5
11	-0414	045	1 04	a3 c	102	01	50	1213	02	3	0294	033	4 037	40	4	8 1:		6 3	24	2 7	8 32	16		51	-7076	708	4 79	93 7	IOI	7110	711	8 71:	6	135	7143	7152	8	1	1 2	34	5
12	-0792	082	8 08		800			iter	05	15	0682	071	9 075	37	4	71		5 1	11	12.0	6 30	33		53	-7243	7251	72	59 7	1267	7193	728	4 725	2	7300	7308	7316	8	1	2 2	34	5
	-1129	117	2.12		120			269	100	4	1038	107	2 110	14		7 1		41	10	2	4 27	31	3 1	54	7324	7331	2 73	40 7	1348	7350	736	4 73	2 :	7380	7388	7396	8	1	1 1	34	5
		-						303	133	15	1367	139	9 143	32	3	6 11		11	5 19	2	2 26	19		56	-7482	749	74	97 7	505	7513	752	0 75	8	7536	7543	7551	8	1	1 2	34	5
14	-1461	149	1 15	18 1	553 847	15	4	614	10,	14	1673	170	3 173	10		6 1		2 1	5 18	2 2	11 24	27		57	·7559 ·7634	7560	6 75 2 76	74 1	1657	7589	755 767	7 76	4 .	7511	7619	7027	8	I	1 1.	34	5
16	-2041	206	8 20	35 2	122	21	18 :	:172	220	H	1227	215	3 227	16	3	5 1	1	0 1	16	T	8 21	23		59	.7709	7714	6 77	23 1	1731	7738	774	5 17.	12 .	7760	3367	1774	2	I	1 2	34	4
18	-2553	257	7 26	55 2	625	16	13	673	14	15	1490	250	4 252	24	1	\$ 1	3	0 1	14	1	7 10	22		61	-7843	77.0	9 77	50 T	1003	7810	781	8 78. 0 78	5	7833	7839	7840	7	1	11	34	1
20	-3010	303	2 30	93 2 54 3	075	10	20.	1118	1 292	3	1945	118	7 298	1 11	1	4		9 1 E 1	13	1	5 10	10		63	-7924	793	1 79	08 7	945	7957	792	9 79 3 80	16	7973 IOA1	7980 5048	7987	77	I	1 1	33	4
21	-3222	324	3 32	63 7	284	33	4	1324	334	15	3365	338	5 340	1 20	2	4	s	8 1	12		4 16	18		64	-8052	806	9 80	75 8	5082	8085	805	6 81	12 :	1109	8115	8122	17	T	1 3	3 3	4
22 23	3424	344 363	4 34	54 7	483. 574	35)2)2	1523	350	10	35%0 3747	357	9 359 6 378	19	2 3	4 4	s	81	11 0	1	3 15	17.		65	-8129	8130	6 81 1 81	42 8	5149	8150	810	12 81 13 82	19	1176	8182	8189	77	1	13	33	4
24	-3802	382	0 38	18 7	856	38	14	1893	390	19	3927	394	5 396	18	2	4 :	5	7	11		3 14	16		67	-8261	\$26	7 82	74 8	1280	8187	815	3 82	19	8306	8312	8319	6	1:	1 2	2 3	4
26	4150	416	6 41	13 4	200	42	16.	233	424	19	4265	428	1 429	16	12	3	3	6	\$ 10		1 13	14		69	-8388	\$19	5 84	101 8	\$407	8414	843	10 84	16	8432	8435	8445	6	li	1 2	23	4
27	-4314	433	0 43	96 4 22 4	162	43	8.	397	445	8	6425	444	0 445	5 16	2	3 :	s	6	10		1 13	14	1	79	-8451	845	7 84	163 8	8470	8474	848	12 84	18	8494	8500	\$506	6	1	1 2	23	4
29	4624	46)	9 46	54.4	169	46	3.	698	471	3 .	4728	474	1 475	15		3 .	1	6	1 9	1	0 11	13		71 72	8513	851	9 85	25 8	5531 8591	8537	854	13 85	99	8555	8553	8507	6	1	12	23	4
30	4271	478	6 48	20 4	814	48	19 ·	(84)	48	7	4871	488	6 490	2 14		3 .	1	6	7 8	1	0 11	13		73	-8633	863	9 86	45 8	651	865	850	53 86	59	8675	3681	8686	6	I	1 2	23	4
11	-5051	506	5 50	79.5	093	3	3	1903	513	12	\$145	515	9 517	1 13		3		5	8	F.	9 10	13		74	-3751	875	6 87	61 8	1768	8710	37:	19 87	35	8733	8735	8745	6	1 i	1 2	23	4
33	-5115	572	8 63	20.5	153	51	57 : 56 :	175	500	1	5403	541	6 542	3 13	Ľ	3 .		\$	5 8		9 10	12		70	-3364	587	1 85	120 1	1532	888	880	17 66	20	8904	5010	E015	6	1	1 2	23	4
15	-5441	545	3 54	5 5	478	54	0	500	551	4	5527	553	9 555	12	1	2 .		5	5 7	P	8 10	11		78	-8921	897	7 89	111	5938 5003	894	89	10 80	54	8960	896	8971	6	i	1.2	23	1
37	-5682	569	4 57	15 5		57	19	740	57:	2	5763	577	5 578	5 12	1	2 .		5	5 7	L	8 10	11		80	-9031	903	6 90	43 9	9047	905	90	8 90	53	9069	9074	9079	15	1	1 2	23	;
18 39	-5798	580	0_58 1_59		832 944	58 59	13 : 55 :	1855	580	16	5月77 59韩	588 599	8 589 9 601		1	2 2		4 .	57		89	10		81	-9085	909	0 90	×96 :	1010	910	91	12 91	17	9112	9128	9133	5	I	1 1	2 3	3
40	-6021	603	1 60	12 (053	60	54	k071	601	15	6096	610	7 621	11	1	2 ;	,	4	5 7		8 9	10		83	-9195	919	6 92	101	9206	915	93	17 92	23	9217	9033	9238	3	i	1 3	23	3
41 43	-6128	613	8 61	49 6	160	61 62	10	5180 5284	619	U I	6201 6304	621	2 622	10		2 :		4	5 6		7878	9		84	-9243	924	8 93	153	9258	926	92	59 92	14	9279	928	9289	1	1	11	23	3
43	-6335	63.6	5 67	55 0	365	63	75	18	639	ĸ	6405	641	5 642	5 10	1	2	3	4	5 6	1	7 8	9		86	-9345	935	0 93	55	9360	936	93	10 23	15	9380	938	9390	5	i	1 1	23	3
44	-6532	654	2 65	51 6	404	65	14	5484 5580	65	10	9903 6599	660	9 661	10		2	3	4	5 6		7 8	9 9		87	9395	940		105	9410	941	96	59 94	35	9430 9479	943	9445	3	0.0	11	1 2 2	3
46	-6628	663	7 66	46 0 10 1	1556	66	65	567:	661	54	6693 6184	670	a 671	9	1	2	3	4	5 5	1	67	8		89	9494	949	9 95	504	9509	951	95	18 95	13	9518	953	9538	13	0	11	1 2 2	3
43	-6812	682	1 68	30 0	839	68	48	\$85	68	56	6875	688	4 689	3		2	3	4	4 5		6.7			90	-9542	954	7 91 s of	552 S	9557 9605	956	95	95	71	9576	9581	9586	1 5	lo	11	1 2 2	3
44	.0901	- 91	1 95		415	1 09	21	24	- 49.	~	1904	(9)	* 095	1,	1	*	3.	4	• 5		* 7			92	-9538	964	3 91	547	960	965	96	51 96	66	9671	967	9680	15	0	11	2 2	i
		N	ю.	1	log												N	io.		log				94	-9731	973	6 97	141	9745	979	97	54 97	59	9753	976	977	13	0	11	2 2	3
	e .	3.14	159 828	04	971.9 3429		log	X = X =	log	LAX LANK	= (1 = A	(M) (108	10(E)(L)	1.1	1/1	1-	2.3	0259 1429	0 TH	362 637	23 78			95	-9777	978	2 97	186	9791	979	93	00 98 45 98	50	9809	981	9818	1 5	00	11	2 2	3 2
	P					:			4.		5		6	7		8		5			10			97	-9868	\$87	2 98	877	1986	988	5 98	30 98	94	9899	990	990	4	0	1.1	2 2	2
	log e	· 1.5	343	1.1	314	17	029 971	1 2	737:	1 3	1715	3	5058 1942	3.04	22	3'47	44 56	39	143	415	5429			98	9911 9956	991 995	7 9	921 965	9926 9969	993	99	18 95	392 83	9943 9987	994	99951	4	0	11	2 2	2
																							1	-	-	-	-	-	-	-	-		-	-	-	-	1	1	-	-	-

Figure: (Source from Wiki)

Notation of Logarithm

• Let us recall that after agreeing to a base b, we make use of

$$b^{\mathbf{x}} \times b^{\mathbf{y}} = b^{\mathbf{x}+\mathbf{y}}, \quad b^{\mathbf{x}} \div b^{\mathbf{y}} = b^{\mathbf{x}-\mathbf{y}}.$$

- To simplify the writing, we need notation that shows, in the case of multiplication, only the x, y and x + y and to de-emphasis the base b.
- Without loss of generality, we may assume to multiply two positive numbers X, Y. We first need to turn them into exponents of b. That is, suppose we can find positive numbers x, y such that

$$b^{x} = X, \qquad b^{y} = Y.$$

- This works if there is a unique x and y that correspond to X, Y respectively. We want to work with x and y only.
- Denote $x = \log_b X$ and $y = \log_b Y$

Rules of Logarithm

Definition Given any X > 0, we define the exponent x for which b^x = X to be the logarithm of X with respect to the base b. The x is commonly denoted by x = log_b X. That is,

$$X = b^{X} = b^{\log_{b} X}$$
. (so $\log_{b} 1 = 0$)

• We write X Y = X Y in terms of the base b in two ways

$$b^{\log_b X} imes b^{\log_b Y} = b^{\log_b XY}$$

But $b^{x} \times b^{y} = b^{x+y}$. So

$$\log_b X + \log_b Y = \log_b XY$$

• Then one can deduce from $b^{x} \div b^{y} = b^{x-y}$ the relation

$$\log_b X - \log_b Y = \log_b \frac{X}{Y}$$

Rules of Logarithm II

• By the definition of logarithm (that is $X = b^{x} = b^{\log_{b} X}$),

$$a^{m} = b^{\log_{b}(a^{m})} = b^{\left(\log_{b} a + \cdots + \log_{b} a\right)} = b^{m \log_{b} a},$$

so

$\log_b a^m = m \, \log_b a$

holds when *m* is a positive integer. If m = -n where *n* is a positive integer, the logarithm is still valid:

$$a^m = a^{-n} = \frac{1}{a^n} = \frac{1}{b^{\log_b(a^n)}} = \frac{1}{b^{n\log_b a}} = b^{-n\log_b a} = b^{m\log_b a}.$$

Rules of Logarithm III

- How do these different logarithms for the same number X relate to each other?
- Suppose X is a given number, and

$$b^{\log_b X} = X = c^{\log_c X}$$

are the two different logarithms with respect to base $\frac{b}{c}$ and $\frac{c}{c}$ respectively.

• Taking log_b on both sides yields

$$(\log_b X)(\underbrace{\log_b b}_{=1}) = (\log_c X)(\log_b c)$$

That is, $\log_b X / \log_c X = \log_b c$.

• Similarly, Taking log_c on both sides yields

$$(\log_b X)(\log_c b) = (\log_c X)(\log_c c)$$

=1

- ロ ト - 4 回 ト - 4 □ - 4

That is, $\log_b X / \log_c X = 1 / \log_c b$.

• So $\log_b c = 1/\log_c b$.

Inverse functions

 Definition Let f be a function defined on its domain D. Then a function ⁻¹ is called an inverse of f if

$$(f^{-1} \circ f)(x) = x$$
, for all x in D.

That is, $x = f^{-1}(y)$ whenever y = f(x).

- **Remark 1** It follows that the domain of f^{-1} is on the range of f.
- **Remark 2** There is no guarantee that every function has an inverse.
- **Remark 3** If *f* has two inverse functions, then the two inverse functions must be identically the same.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Logarithm

Indication of inverse functions A

Figure: (Publisher) 1.49a

Indication of inverse functions b

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Examples of inverse function

• Let y = f(x) = ax + b where a, b are constants. Then

$$x = \frac{y - b}{a}$$

is the inverse function of f. That is,

$$x = f^{-1}(y) = \frac{1}{a}(y - b), \qquad x = (f^{-1} \circ f)(x).$$

•
$$y = f(x) = 2x + 6$$
.

$$x = f^{-1}(y) = \frac{1}{2}(y - 6).$$

- In fact, a criterion of a given *f* has an inverse is that it is an injective (one-one) mapping.
- In terms of the graph of y = f(x), the graph of f is either increasing or decreasing against the x axis.

Logarithm

Inverse linear functions

Figure: (Publisher) 1.52

Graphing of inverse functions

- (p. 31) $y = f(x) = x^2 1$.
- Choose inverse as $x = +\sqrt{y+1}$
- We really consider x as a function of y now.
- Convention is that we use x for the independent variable.
- Interchange the x and y

$$y = \sqrt{x+1}.$$

- A practical graphical procedure to find the graph of the inverse y = f⁻¹(x) is to rotate the graph of y = f(x) along the straight line x = y by 180 degrees in our three dimensional space.
- Can apply this for $x = f^{-1}(y) = \frac{1}{2}(y 6)$.

Logarithm

Inverse a quadratic function example

Figure: (Publisher) 1.53

Inverse of quadratic function

- Let $y = f(x) = ax^2 + bx + c$, where a > 0.
- We apply the method of completing the square:

$y = f(x) = ax^2 + bx + c (a \neq 0)$	
$= a \left[x^2 + \frac{b}{a} x + \frac{c}{a} \right]$	
$= a \left[x^2 + 2 \left(\frac{b}{2a} \right) x + \left(\frac{b}{2a} \right)^2 + \frac{c}{a} - \left(\frac{b}{2a} \right)^2 \right]$	
$= a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{c}{a} - \frac{b^2}{4a^2} \right]$	
$= a \left[\left(x + \frac{b}{2a} \right)^2 + \frac{4ac - b^2}{4a^2} \right]$	
$=a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}.$	
	Ý

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Inverse of quadratic function

• That is, we have

$$x = -\frac{b}{2a} \pm \sqrt{\frac{1}{a}\left(y + \frac{b^2 - 4ac}{4a}\right)}.$$

Recall that the solution of x when y = 0 are possible only when $b^2 - 4ac \ge 0$.

• Choosing the "+" branch and switching the roles of x and y yields

$$y = f^{-1}(x) = -\frac{b}{2a} + \sqrt{\frac{1}{a}\left(x + \frac{b^2 - 4ac}{4a}\right)}.$$

• Explicit inverse functions are actually difficult to find.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Logarithm as inverse function

If we view y = f(x) = b^x as a given function, then its inverse is given by y = f⁻¹(x) = log_b x since we can check

 $(f^{-1} \circ f)(x) = \log_b(b^x) = x$

by the definition of logarithm.

• In fact, even

$$(f \circ f^{-1})(x) = b^{\log_b x} = x$$

holds trivially.

• The graph of $\log_b x$ is obtained from rotating $y = b^x$ along the line x = y by 180 degrees.