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Definition of functions

e Definition A function is a rule f that assigns to each x in a
set D a unique value denoted f(x). C.

e Definitions The set D is called the domain of the function f,
and the set of values of f(x) assumes, as x varies over the
domain, is called the range of the function f(x).

o y=Ff(x),

9

x — f(x)

e One can think of this as a model of

one input — one output

e Important point: for each x in D, one can find (there exists)
one value f(x) (or y) that corresponds to it.

e However, depending on the f under consideration, one could
have two or more x that correspond to the same f(x).

e This strange looking idea was created to describe dynamical
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Examples of functions

e (p. 1) x — x% —2x or f(x) = x> — 2x.
e (p. 2) Identifying functions
e (p. 2) Domain and range

Ly=f(x)=x>+1, [-3,3] x[-1,5]
2. y=g(t)=Va—t2,  [-3,3]x[-1,3
3y=hu)=—to.  [35x[44
4. (Ex.1.1, Q 16) F(w) = v2 —w, [-3, 2] x [0, 2]
. y+1 B B
5. (Ex.1.1, Q 14) g(y) = 090 =3) [—4, 6] x [-3, 3]

(p-3: In context) At time t = 0 a stone is thrown vertically
upward from the ground at a speed of 30m/s. Its height
above the ground in meters is approximated by the function
h = f(t) = 30t — 5t2, where t is in seconds. Find the domain
and range of this function as they apply to this particular
problem.
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Different types of functions

e y = f(x) = x+ 1. For each x there corresponds to one and
only one y.

e y = x3. For each x there corresponds to one and only one y
e Where f(x1) = f(x2) implies x; = xo, or equivalently x; # x;
implies f(x1) # f(x2), we say the function f is injective or
one-one. So the above two examples are injective functions.

e (Eg revisited) f(x) = x> — 2x is not injective, as two different

x can correspond to the same f(x1) =y = f(x2)
e (Non-function) y? =1 — x2. Since for each x input, there

always correspond to two outputs of f(x) = £v/1 — x? within
the domain of f.
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Function indicative figures
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Figure: 1.2 (source textbook)



Definition of functions Composition Polynomial and Rational Functions Transformations Logarithm

A quick test

(a) (d)

Figure: 1.3 (source textbook)
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Domain and Range figure |
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Ficure: 1.4 (source: textbook)
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Figure: 1.5 (source: textbook)
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Domain and Range figure Il
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Figure: 1.6 (source: textbook)
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Composition

¢ Definition Given two functions f and g, their composition
f o g is defined, by

(fog)(x) = f(u) = fg(x))

for each x in the domain of f o g. Let u = g(x) and
y = f(u), then f o g is understood as

y=(fog)(x)=f(g(x)) =f(u),  uv=gx)
e as shown in
e with g takes the domain of g (range) into (part of) domain of

f, and f maps that into (part of) the range of f. The two
together thus forms a new function f o g.
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Diagram of composition
— | |
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Figure: 1.8 (source: textbook)
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Examples of composition

e (p. 4) Let f(x) =3x%> — x and g(x) = 1/x.
1. fog
2. gof
3. domain and ranges

e (p. 4) Recognising composition

1. h(x) = v9x — x?
2

e (p. 5) Given f(x) = ¥/x and g(x) = x*> — x — 6.
1. fog

2. gof
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Examples of composition: Gradients

f(x+ h) —f(x)
h
e The above quantity is called the gradient (or slope in less
formal language) of f between the two points x and f(x + h).
Alternatively, it is the average rate of change of f between x
and x + h. It is an important quantity as we enter Chapters
two and three.

e (p. 6) Given f(x) = 3x? — x. Find

o (p. 6) let | = ;I measures sound intensity in watts per
square meter (W/m ), at a point r meters from a sound
source with acoustic power P = 100 W. Find the gradient of
the secant line through (i) the points (r1, /(r1)) and
(ra. I(r2)) (—=22E2) W/m?), and (ii) the points (10, /(10))

47rr r

and (15, /(15)) (71/(3677) W/m?).




Definition of functions Composition Polynomial and Rational Functions Transformations

Representing Functions
e Polynomial functions
f(x) = apx" + an_1x" L4 arx + ag,

where the a,_1,... a1, ap are some constants.

e Rational functions

apX" + ap_1x" 1+ 4 aix + ag
mX™ 4+ bp_1x™~ L4 4+ byx + by’

f(x) = 5

where the a,,... a1, ag, bm, ... b1, by are constants
o Piecewise function (p. 15)

X if x <2
flx)=4¢ 3 if x=2
—3x+5 ifx>2.

Logarithm



Definition of functions Composition Polynomial and Rational Functions Transformations Logarithm

Transformations

e Given a function y = f(x) and its graph.
e Then the function

y =f(x—b)+d,

where b > 0, d are constants, has the same shape as f(x)
but which is shifted to the right by b units and shifted
up/down by d units.

e Then the function

y="f(x+b)+d

where b > 0, d are constants, has the same shape as f(x)
but which is shifted to the left by b units and shifted up/down
by d units.

e The graph of the function

y = cf(ax)

has horizontal magnification factor a, and vertical
magnification factor b.
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Transformation figure |

ya V=120

y = f(x)
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Figure: 1.38 (source: textbook)
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Transformation figure |l

y=flx+3) y=flx=2)

Figure: 1.35 (source: textbook)
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Examples of Transformation

e (p. 20, E.g. 8) Sketch the graph of y = (x —2)? — 3
e (p. 15, E.g. 4b) Recall the absolute value function is given by

X if x> 0;
x| = .

—x if x<0.

e (p. 20, E.g. 9) Sketch |2x + 1|.
e (p. 21, Ex. 10) Sketch the graph of y = 4(x +3)? + 6
e (p. 23, Ex. 44) Sketch the graph according to Exercise 44:
-1 if > 2;
- (M1 Tz 2
|| if x| < 1.
(a) y = =f(x), (b) y = f(x +2), (c) y = f(x = 2), (d)
y = F(2), (&) y = Flx — 1) +2, (£) y = 2f(x).
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Function made up by two pieces

\

6 ifr>3

n _)"(r)={2[ ifo=r=3

~Y

=
oo -
o -
N

-
g

6

Figure: 1.30 (source: textbook)
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Function made up by three pieces
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Exponential Functions

The function

y=flx)=2"
is called binary exponential function with base 2.

Let b # 1 be an arbitrary positive number. Then function
The function

y="f(x)="b"
is called exponential function with base b.
The exponential function grows very fast without bound if
b > 1 and tends to zero fast.
Amongst all exponential functions, the natural exponential
function

X

y=f(x)=e
where 2 < e =~ 2.71828 < 3 is amongst the most important.
The simpler one is the one with common base 10

y = f(x) = 10¥
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Logarithm

b x bY = b1y, b+~ b = b

(b*)Y = b*Y.

These observations, about turning multiplication or division
into addition or subtraction of the exponents respectively, may

seem elementary, but it actually becomes so important in all
kinds of applications, some quite unexpected.

The application of these rules were known since Babylonians’
time in 2000-1600 BC. But it was the Scottish John Napier
(1550-1617) who wrote the book entitled Mirifici
Logarithmorum Canonis Descriptio (Description of the
Wonderful Rule of Logarithms) in 1614 that popularized their
use (source from Wiki)

First called artificial number, then "logarithm” meaning from
Latin “proportional-arithmetic

Applications: http://en.wikipedia.org/wiki/Logarithm
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John Napier

Figure: (1550-1617) Source from Wiki
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Tables published by Cambridge

The - Cambridge Elementc

Mathematical Tables

Figure: (Source from Wiki)
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A page in Log tables
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Notation of Logarithm

Let us recall that after agreeing to a base b, we make use of

b x b = bV, b b = b,

To simplify the writing, we need notation that shows, in the

case of multiplication, only the x, y and x + y and to
de-emphasis the base b.

Without loss of generality, we may assume to multiply two
positive numbers X, Y. We first need to turn them into
exponents of b. That is, suppose we can find positive
numbers x, y such that

X=X, b=Y.

This works if there is a unique x and y that correspond to
X, Y respectively. We want to work with x and y only.
Denote x = log, X and y = log, Y

Logarithm
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Rules of Logarithm

¢ Definition Given any X > 0, we define the exponent x for
which b* = X to be the logarithm of X with respect to the
base b. The x is commonly denoted by x = log, X. That is,

X =b*=b"%%X_ (so log,1=0)
o We write X Y = X Y in terms of the base b in two ways

blong % blong — bIOngY.

But b¥ x b¥ = b*™. So
log, X + log, Y = log, XY

e Then one can deduce from b* + bY = b*™Y the relation

X
log, X — log, Y = logy, %
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Rules of Logarithm Il

e By the definition of logarithm (that is X = b* = b'°gbx),

m

2™ — plogs(a™) b(logb a+---+logy, a) — bmlogba’

so
log, a™ = m log, a

holds when m is a positive integer. If m = —n where n is a
positive integer, the logarithm is still valid:

1 1 1

M =g — = — _ _ bfnlogba _ bmlogba
2" pogs(a)  prlogsa :
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Rules of Logarithm Il

e How do these different logarithms for the same number X
relate to each other?
e Suppose X is a given number, and

blong — X = ClogCX

are the two different logarithms with respect to base b and ¢
respectively.
e Taking log, on both sides yields

(logpX)(logp b) = (log X)(logs ¢)
=1
That is, log, X/ log. X = log,, c.
e Similarly, Taking log. on both sides yields
(logpX)(log. b) = (logc X)(log. c)
=1
That is, log, X/ log. X = 1/log. b.
e Solog,c=1/log.b.
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Inverse functions

e Definition Let f be a function defined on its domain D. Then
a function ~! is called an inverse of f if

(FLof)(x) = x, for all x in D.

That is, x = f~*(y) whenever y = f(x).
e Remark 1 It follows that the domain of f~! is on the range
of f.

e Remark 2 There is no guarantee that every function has an
inverse.

e Remark 3 If f has two inverse functions, then the two inverse
functions must be identically the same.
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Figure: (Publisher) 1.49a
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Indication of inverse functions b

VA

Two values of x
correspond to y

Figure: (Publisher) 1.49b
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Examples of inverse function

e Let y = f(x) = ax + b where a, b are constants. Then

_y—b
23
is the inverse function of f. That is,

1
=fHy)=2=
x (v) ;

X

(y=0b), x=(ftof)x).

x =) = 5y —6).

e In fact, a criterion of a given f has an inverse is that it is an

injective (one-one) mapping.

e In terms of the graph of y = f(x), the graph of f is either

increasing or decreasing against the x — axis.

Logarithm
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Inverse linear functions

flx)y=2x+6

Figure: (Publisher) 1.52

Logarithm
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Graphing of inverse functions

(p. 31) y = f(x) = x> — 1.

Choose inverse as x = ++/y + 1

We really consider x as a function of y now.

Convention is that we use x for the independent variable.

Interchange the x and y

y=vx-+1

A practical graphical procedure to find the graph of the
inverse y = f1(x) is to rotate the graph of y = f(x) along
the straight line x = y by 180 degrees in our three
dimensional space.

Can apply this for x = f1(y) = (y — 6).

Logarithm
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Inverse a quadratic function example

v‘ ’

fFlo=x2+1x=0)

Figure: (Publisher) 1.53

Logarithm
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Inverse of quadratic function

o Let y = f(x) = ax? + bx + ¢, where a > 0.
e We apply the method of completing the square:

y = f(x) —ax’ 4+ bx + ¢ (a#0)

[, b c}
=a|X 4+ —x+ -
L a a

—a|x*+2 b X+ 32—1—5— 32
a 2a 2a a 2a
N VAN

a 2a a 432

N VAT

a 2a 432

< b)2 4ac — b2
—ax+—) +—.
4a
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Inverse of quadratic function

e That is, we have

x——bj:\/1< +b2—4aC)
23 2V 4a '

Recall that the solution of x when y = 0 are possible only
when b2 — 4ac > 0.

e Choosing the “+" branch and switching the roles of x and y

yields
b 1 b2 — 4ac
= f )= = \/ — ).
y (*) 2a + a (X + 43 )

e Explicit inverse functions are actually difficult to find.
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Logarithm as inverse function

e If we view y = f(x) = b* as a given function, then its inverse
is given by y = f~1(x) = log,, x since we can check

(F 1 0 F)(x) = logy(b") = x

by the definition of logarithm.
e In fact, even
(f o FH)(x) = bo8sX = x
holds trivially.

e The graph of log, x is obtained from rotating y = b* along
the line x = y by 180 degrees.
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