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The Dawn

• The need to invetigate dynamical problems in the 18th
century verses static problems in the past was strongly related
to the cultural and economics developments at that time.

• It was Galilei Galileo (1664-1643), called “the father of
sciences” who headed the Scientific Revolution in the 17th
century advocating beliefs should be built upon “experiments
and mathematics” and that “Philosophy is written in this grand

book, the universe ... It is written in the language of mathematics,

and its characters are triangles, circles, and other geometric

figures;....” (Wiki)

• He showed that the velocity of a falling body only depends on
its mass and has nothing to do with its shape and size

• He invented telescope and use it to discover the four largest
satellites of the planet Juipter, etc
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Galilei Galileo

Figure: (Portrait in crayon by Leoni (source Wiki)
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How one can describe the world?

• Newton’s success is built upon Galileo’s philosophy and on
Kepler’s experimental laws.

• How to describe an object that moves around and to know it
at every instant?

• Suppose a particle that has no velocity at t = 0 and its
velocity is 15 when t = 10 second. So there must be a
moment or instant when the velocity of the particle is 10, say.
However, this statement is very naive.

• In order to measure a change of velocity there must be an
interval of time, no matter how short, to compute the velocity.

• For convenience sake, Newton invented virtual distance and
virtual time to measure virtual velocity. That is,

virtual velocity =
virtual distance

virtual time

or just instantaneous velocity.
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A dynamical problem (p. 54)

A rock is launched vertically upward from the ground witha speed
of 96 ft/s. Neglecting air resistance, a well-known formula from
physics states that the position of the rock after t seconds is given
by

s(t) = −16t2 + 96 t.

The position s is measured in feet with s = 0 corresponding to the
ground. Find the average velocity of the rock between t = 1 and
t = 3, t = 1 and t = 2.
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A dynamical problem (figure 2.1)

Figure: 2.1 Publisher
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A dynamical problem (figure 2.2a)

Figure: 2.2a Publisher
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A dynamical problem (figure 2.2b)

Figure: 2.2b Publisher
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A dynamical problem (figure 2.3)

Figure: 2.3 Publisher
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A dynamical problem (table 2.1)

Figure: 2.1 Publisher
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A dynamical problem (figure 2.4)

Figure: 2.4 Publisher
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A dynamical problem (figure 2.5)

Figure: 2.5 Publisher
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Newton’s trouble
• Suppose an object moves according to the rule

S(t) = 20 + 4t2 where S measures the distance of the object
from the initial position t seconds later.

• We now compute instantaneous velocity of the object at time
t: let dt and dS be the virtual time and virtual distance
respectively. Then the change of virtual distance is given by
dS = S(t + dt)− S(t). So the virtual velocity is

dS

dt
=

S(t + dt)− S(t)

dt
=

4(t + dt)2 − 4t2

dt
= 8 t + 4 dt.

• Newton then delete the last dt:
dS

dt
= 8 t + 4 dt/// = 8 t.

• So do we have dt = 0? If so, then one would have dS
dt = 0

0 .
That was the question that Newton could not answer
satisfactorily during his life time.
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Sir Issac Newton

Figure: (1689 by Sir Godfrey Kneller (Newton Institute))
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Newton’s thought

• So he simply considers that is a virtual distance dS traveled
by the object in a virtual time dt. He considers both to be
infinitesimal small quantities.

• So do we have dt = 0? If so, then one would have dS
dt = 0

0 .
That was the question that Newton could not answer
satisfactorily during his life time.

• To put the question differently, is an infinitesimal quantity
equal to zero? If dt is infinitely small then it would have to be
less than any positive quantity, and we conclude it must be
equal to zero. For suppose dt 6= 0 then dt > 0. Hence
dt = r > 0 is an actual positive quantity. But then we could
find r/2 < dt, contradicting the fact that dt is smaller then
any positive quantity. Hence dt = 0.

• Newton was actually attacked by many people, and among
them was the Bishop Berkeley. But he method of calculation
of instantaneous velocity has been used by other since then.
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Finding a remedy
• Let’s get close but not when dt = 0. Find the average velocity

of the object between
• t = 2 and t = 2.5

S(2.5)− S(2)

2.5− 2
=

(
20 + 4(2.5)2

)
−
(
20 + 4(2)2

)
2.5− 2

= 18;

• t = 2 and t = 2.1

S(2.1)− S(2)

2.1− 2
=

(
20 + 4(2.1)2

)
−
(
20 + 4(2)2

)
2.1− 2

= 16.4

• t = 2 and t = 2.01

S(2.01)− S(2)

2.01− 2
=

(
20 + 4(2.01)2

)
−
(
20 + 4(2)2

)
2.01− 2

= 16.04

• t = 2 and t = 2.001

S(2.001)− S(2)

2.001− 2
=

(
20 + 4(2.001)2

)
−
(
20 + 4(2)2

)
2.001− 2

= 16.004

• t = 2 and t = 2.0001

S(2.0001)− S(2)

2.0001− 2
=

(
20 + 4(2.0001)2

)
−
(
20 + 4(2)2

)
2.0001− 2

= 16.0004
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Re-assessing the problem
• Let us begin with the above example about the movement of

the object P. Since we are interested to know the magnitude
of the average velocity of P near 2, so let us rewrite the
expression in the following form:

g(x) =
S(2 + x)− S(2)

x
.

• This is a function g depends on the variable x , which can be
made as close to 16 as we wish by chooesing t close to 2.

• That is, g(x) approaches the value 16 as x approaches 0. On
the other hand, we cannot put x = 0 in the function g(x),
since both the numerator S(2 + x)− S(x) and the
denominator x would be zero.

• We say that the function g has limit equal to 16 as x
approaches 0 abbreviated as

lim
x→0

g(x) = 16.
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Limit definition

• Note that the above statement is merely an abbreviation for
the statement: The function g can get as close to 16 as
possible if we let x approach 0 as close as we wish.

• It is important to note that we are not allowed to put x = 0
above

• Definition Let a and l be two real numbers. If the value of
the funciton f (x) approaches l as close as we wish as x
approaches a, then we say the limit of f is equal to l as x
tends to a. The statement is denoted by

lim
x→a

f (x) = l .

Alternatively, we may also write

f (x)→ l as x → a.
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Examples

• Find lim
x→2

x3 − 8

x − 2
.

• Note that we can not substitute x = 2 in the expression. For
then both the numerator and denominator will be zero.
Consider

lim
x→2

x3 − 8

x − 2
= lim

x→2

(x − 2)(x2 + 2x + 4)

x − 2

= lim
x→2

(x2 + 2x + 4) = 12.

• The above is an abbreviation of the expression:

x3 − 8

x − 2
=

(x − 2)(x2 + 2x + 4)

x − 2
= x2 + 2x + 4

tends to the value 12 as x tends to 2.
• or more briefly

x3 − 8

x − 2
= x2 + 2x + 4 −→ 12, as x −→ 2.
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Illegal step

If

f (x) =
x3 − 8

x − 2
,

then it is absolutely forbidden to write

lim
x→2

f (x) =
x3 − 8

x − 2
= f (2)

since the function f is simply undefined at x = 2.
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Figure 2.7

Figure: 2.7 (Publisher)
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Figure 2.8

Figure: 2.8 (Publisher)
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Figure 2.9

Figure: 2.9 (Publisher)
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Figure 2.10

Figure: 2.10 (Publisher)
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Examples

• Exercises Find lim
x→4

x3/2 − 8

x1/2 − 2
(12)

• lim
x→2

x2 − 4

x − 2
, (4)

• lim
x→4

√
x − 2

4− x
, (−1/4)

• lim
h→0

(2 + h)4 − 16

h
, (32)

• The above examples could be misleading. There could be
situations that no easy simplification when finding limit as in
the above examples. We will show in the next chapter that

ex − 1

x
7→ 1, x 7→ 0.
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Artificial examples

• Remark We remark that the above definition does not
mention whether we could substitute x = a in f (x). In fact,
f (a) may or may not be meaningful. This is slightly different
from the physical problem about the object P where we were
not allowed to put x = 0 in g(x).

• The following examples do not have the kind of physical
context about having 0/0 problem that we encountered
earlier. They are simply created to illustrate what one should
interpret the limit definition properly, even though they seems
to be trivial:

• Example Let f (x) = 4x2 + 20. Then

1. limx→1(4x2 + 20) = 24,
2. limx→−1(4x2 + 20) = 24,
3. limx→3(4x2 + 20) = 56.
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Simple exercises
• Example Let f (x) =

√
x2 + 3. Then

1. limx→1

√
x2 + 3 =

√
12 + 3 =

√
4 = 2;

2. limx→−1

√
x2 + 3 =

√
(−1)2 + 3 =

√
4 = 2.

• Let g(x) =
1

x − 2
. Then

• lim
x→3

1

x − 2
=

1

3− 2
= 1;

• lim
x→−1

1

x − 2
=

1

−1− 2
= −1/3,

• Exercises
• limx→2 5 = (5)
• limx→1(x

3 − 1) = (0)
• limx→−1(x

3 − 1) = (−2)
• limx→−1(ax

3 − 1) = (−a− 1)

• limx→0

√
4x+2

2
= (1)

• limx→1

(
1
x

+ 1
x+1

)
= (3/2)

• limx→2(2 + x)5 − 1 = (45 − 1)
• limx→3(x

2 − 3x + 2) = (2)
• limx→−1

(
1

2x−5

)
= (−1/7)
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More examples
• Example Consider

f (x) =

{
2 if x 6= 1,

1 if x = 1.

We see that limx→a f (x) = 2 whenever a 6= 1. This is
different from the value of f at 1. So
limx→1 f (x) = 2 6= 1 = f (1).

• Example Consider the function

f (x) =


x + 1 if x 6= 1, 2;

3 if x = 1;

1 if x = 2.

Thus x = a and other than a = 1, 2, then f (x) approaches
the value a + 1 as x approaches a. In fact f (a) = a + 1.
Although when a = 1, 2, we still have limx→a f (x) = a + 1, it
is not equal to the values of f (1) = 3 and f (2) = 1. Thus
there are two “jumps” on the graph of f .
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More examples

• Example Suppose

f (x) =

x2 − 3 if x < 2;
1

x − 1
if x ≥ 2.

For any a < 2, f (x) approaches a2 − 3 as x approaches a,
and for any b > 2, f (x) approaches 1/(b− 1) as x approaches
b. When x = 2, x2 − 3 approaches 1 as x approaches 2 on
the left, and 1/(x − 1) approaches 1 as x approaches 2 on the
right. Hence we conclude that f approaches 1 as x
approaches 2, i.e., The limit limx→2 f (x) = 1 exists.



Instantaneous Velocities Newton’s paradox Limits Properties of Limits Infinite Limits Asymptotes Continuity

Right limit

Let a and l be two real numbers. If the values of the function f (x)
approaches l as close as we wish as x approaches a from the right
then we say the right limit of f is equal to l as x tends to a from
above. The statement is denoted by

lim
x→a+

f (x) = l .

We may also write

f (x)→ l as x → a + .

We have a similar definition for left limit, denoted by
limx→a− f (x) = l or f (x)→ l as x → a−. We note again that
both definitions do not say anything about f at the point x = a.
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Left and Right limits

• It is not difficult to see that limx→a f (x) = l exists if and only
if both

lim
x→a+

f (x) = l = lim
x→a−

f (x).

• The previous example shown three slides before clearly
illustrates this statement

• Example Show |x | has limit at all points on the real line.

• Example (p. 68) Let

f (x) =
|x |
x
, x 6= 0.

• Does limx→a f (x) exist, where a = 0 or a 6= 0?
• Sketch a graph of f (x).
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Example

• Let

f (x) =

{
1 if x < 1

x + 1 if x ≥ 1.

• Since f remains at 1 for all x < 1, f approaches 1 when x
tends to 1 on the left. So

lim
x→1−

f (x) = 1.

• Note that
f (1) = 2 6= lim

x→1−
f (x).

• On the other hand,

lim
x→1+

f (x) = lim
x→1+

x + 1 = 2.

And we have f (1) = 2 = limx→1+ f (x).
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Exercises

• Let

f (x) =


3x − 1, if x < 0;

0, if x = 0;

2x + 5, if x > 0.

• Evaluate

1. limx→2 f (x),
2. limx→−3 f (x),
3. limx→0+ f (x),
4. limx→0− f (x),
5. limx→0 f (x).
6.
(
Answers (1) 9, (2) − 10, (3) 5, (4) − 1, (5) does not exist

)
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An example that has no limit

• Recall that the earlier example f (x) =

{
2 if x 6= 1,

1 if x = 1.
has no

limit at x = 1 which is a discontinuity of f . But we could still
correct f to be continuous at x = 1 again by re-defining
f (1) = 2.

• Consider the example on page 64:

f (x) = cos
1

x

on the interval (0, 1]. It is not defined at x = 0. We see that
even a small change in x near zero would result in a large

change of
1

x
.So there would be an unlimited number of

oscillations between the values {±1} throughout (0, a].
Hence no correction of value of f (x) would make f (x)
continuous at x = 0 again.
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Figure 2.14

Figure: 2.14 (Publisher)
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How to avoid the “infinitesmal”?
Here is the real difficulty:

• Our thinking process and/or language usage generally does
not allow us to describe infinitesmal quantities clearly

• Mathematicians have found a way to get around describing
infinitesmal directly. We say that the function can get as close
to a number (limit `) as possble.

• But we need to pay a heavy price if we want to do so precisely.
Here it is. The abbrevation limx→a f (x) = ` really means:
Given an arbitrary ε > 0, one can find a δ > 0 such that

|f (x)− `| < ε, whenever 0 < |x − a| < δ.

• Both ε and δ represent positive real numbers. Given each/any
ε > 0 one can (always) find a δ > 0 such that ... holds

• we refer to this kind of statement as ε− δ language
interpretation.
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A linear function example
How do we use δ − ε to describe limx→3 = 5 ?

Figure: 2.56 (Publisher)
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ε = 1
How do we use δ − ε to describe limx→3 = 5 ?

Figure: 2.57a (Publisher)
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δ = 2
The corresponding δ = 2. That is, 0 < |x − 3| < 2 guarantees
|f (x)− 5| < 1.

Figure: 2.57b (Publisher)
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ε = 1/2

Figure: 2.58a (Publisher)
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δ = 1
The corresponding δ = 2. That is, 0 < |x − 3| < 1 guarantees
|f (x)− 5| < 1/2.

Figure: 2.58b (Publisher)
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ε = 1/8, δ = 1/4

Figure: 2.59 (Publisher)
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General ε− δ
That is, 0 < |x − 3| < δ guarantees |f (x)− 5| < ε.

Figure: 2.60 (Publisher)
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Example p. 115
f (x) = x3 − 6x2 + 12x − 5. In order to show limx→2 f (x) = 3,
given ε = 1, find the corresponding δ.

Figure: 2.61 (Publisher)

That is, 0 < |x − 2| < 1 guarantees |f (x)− 2| < 1.
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Example p. 115 (cont.)
f (x) = x3 − 6x2 + 12x − 5. In order to show limx→2 f (x) = 3,
given ε = 1, find the corresponding δ.

Figure: 2.62 (Publisher)

That is, 0 < |x − 2| < 0.79 guarantees |f (x)− 2| < 1/2.
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ε− δ definition example

• Let f (x) = 2x . Show limx→0 2x = 0 by the ε− δ argument of
limit.

• Given ε > 0, we want to find a δ > 0 such that

|2x − 0| < ε, whenever 0 < |x − 0| < δ.

• Notice that |2x − 0| = |2x | = 2|x |. So if we impose that
0 < δ < ε/2 and that |x | < δ < ε/2. Hence under this
restriction of δ and x , we have

|2x − 0| = |2x | = 2|x | < 2 δ < 2
ε

2
= ε

Thus given the ε > 0, we have found δ > 0 (namely
δ < ε/2). Since this argument works for every ε > 0. We
conclude that limx→0 2x = 0.



Instantaneous Velocities Newton’s paradox Limits Properties of Limits Infinite Limits Asymptotes Continuity

ε− δ definition example

• Let f (x) = 3x + 1. Show limx→1 3x + 1 = 4 by the ε− δ
argument of limit.

• Given ε > 0, we want to find a δ > 0 such that

|(3x + 1)− 4| < ε, whenever 0 < |x − 1| < δ.

• Notice that |(3x + 1)− 4| = |3x − 3| = 3|x − 1|. So if we
impose that 0 < δ < ε/3 and that |x − 1| < δ < ε/3. Hence
under this restriction of δ and x , we have

|(3x + 1)− 4| = |3x − 3| = 3|x − 1| < 3 δ < 3
ε

3
= ε

Thus given the ε > 0, we have found δ > 0 (namely
δ < ε/3). Since this argument works for every ε > 0. We
conclude that limx→1 3x + 1 = 4.
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ε− δ definition example
• Let f (x) = x2. Show limx→2 x2 = 4 by the ε− δ argument of

limit.
• Given ε > 0, we want to find a δ > 0 such that

|x2 − 4| < ε, whenever 0 < |x − 2| < δ.

• Notice that |x2 − 4| = |(x − 2)(x + 2)|. We can control the
factor |x − 2|, but the other factor |x + 2| depends on x which
is unlike those of previous examples. Since we are close to 2
anyway, so WLOG, we may impose |x − 2| < 1. So
|x | − 2 ≤ |x − 2| < 1. So |x | < 3 and |x + 2| ≤ |x |+ 3 < 5.

• We impose |x | < 3 and |x − 2| < δ < ε/5, and whichever is
smaller. i.e., δ < min(1, ε

5 ). Then we have

|x2 − 4| = |(x − 2)| |(x + 2)| < 5|x − 2| < 5 δ < 5
ε

5
= ε

Thus given any ε > 0, we have found a δ > 0. We conclude
that limx→2 x2 = 4.
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ε− δ limit exercises

Employ ε− δ arguments to prove the following limits:

• limx→1 2x − 1 = 1;

• limx→−1 2x − 1 = −3;

• limx→1 ax + b = a + b;

• limx→1 x2 = 1;

• limx→−1 x2 = 1;

• limx→1
1

x
= 1;

• limx→1
1

x2
= 1.

• limx→a[f (x) + g(x)] = limx→a f (x) + limx→a g(x)
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Limit laws

• Suppose limx→a f (x) = `, limx→a g(x) = m both exist. Let c
be a constant, then the following hold:

•
lim
x→a

(
f (x) + g(x)

)
= lim

x→a
f (x) + lim

x→a
g(x) = `+ m

•
lim
x→a

(
c f (x)

)
= c lim

x→a
f (x) = c`

•
lim
x→a

(
f (x)g(x)

)
= lim

x→a
f (x) · lim

x→a
g(x) = `m

•

lim
x→a

f (x)

g(x)
=

limx→a f (x)

limx→a g(x)
=

`

m
provided m 6= 0.
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One-sided Limit laws

These properties of limit have counterparts in the left and right
limits formulations. Since the formulations are exactly the same as
the above results except that the number a is replaced by either
a− or a+, so we omit the details here.
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The real difficulty again

• So for limx→a[f (x) + g(x)] = limx→a f (x) + limx→a g(x), one
needs to show, assuming that limx→a f (x) = ` and
limx→a g(x) = s
Given an arbitrary ε > 0, one can find a δ > 0 such that∣∣[f (x) + g(x)]− (`+ s)

∣∣ < ε, whenever 0 < |x − a| < δ.

with the given assumption.

• This is slightly not easy. Some other laws are more difficult to
verify using this language. So this explains why one needs to
state these seemingly simple laws as separate entities.
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Examples

• (p. 71) Given that limx→2 f (x) = 4, limx→2 g(x) = 5,
limx→2 h(x) = 8.

•

lim
x→2

[6f (x)g(x) + h(x)] = 6 lim
x→2

[f (x)g(x)] + lim
x→2

h(x)]

= 6 · lim
x→2

f (x) · lim
x→2

g(x) + lim
x→2

h(x)

= 6 · (4 · 5) + 8 = 128.

•

lim
x→2

f (x)− g(x)

h(x)
=

limx→2[f (x)− g(x)]

limx→2 h(x)

=
limx→2 f (x)− limx→2 g(x)

limx→2 h(x)

=
4− 5

8
= −1

8
.
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Examples

• By the above properties,

lim
x→2

(4x2 + 20) = lim
x→2

4x2 + lim
x→2

20

= 4 lim
x→2

x2 + lim
x→2

20

= 4(4) + 20

= 36.

We note that since both limx→2 x2 and limx→2 20 exist, so
we can apply the above properties.
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Examples

• lim
x→3

3x2 − 1

1− 6x
Applying the above properties give

lim
x→3

3x2 − 1

1− 6x
=

limx→3(3x2 − 1)

limx→3(1− 6x)
=

26

−17
.

We again note both limx→3(3x2 − 1) and limx→3(1− 6x)
exist. Hence we can apply the above result.

• limx→3(x − 1)2(x + 1)
So

lim
x→3

(x − 1)2(x + 1) = lim
x→3

(x − 1)2 · lim
x→3

(x + 1)

= (3− 1)2 · (3 + 1)

= 16

We could apply some of the above limit laws, this is because
that both limx→3(x − 1)2 and limx→3(x + 1) exist.
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Examples

• (p. 72)

lim
x→2

√
2x3 + 9 + 3x − 1

4x + 1
=

limx→2(
√

2x3 + 9 + 3x − 1)

limx→2 4x + 1

=

√
limx→2(2x3 + 9) + limx→2(3x − 1)

limx→2 4x + 1

=

√
2 · 23 + 9 + (3 · 2− 1)

4 · 2 + 1

=

√
25 + 5

9
=

10

9
.
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Squeezed limits

• (p. 76) Theorem Assume that a functions f , g , f satisfy
f (x) ≤ g(x) ≤ h(x) for all x near a, except possibly at a. If
limx→a f (x) = L = limx→a h(x), then limx→a g(x) = L.

• (p. 76) E.g. It is clear from the graph that

−|x | ≤ sin x ≤ |x |, 0 ≤ 1− cos x ≤ |x |

hold on [−π/2, π/2]. Since limx→0 |x | = 0, so the Squeeze
theorem implies that limx→0 sin x = 0. Similarly,
limx→0 cos x = 1.

• (p. 77) E.g. Show limx→0 x2 sin
1

x
= 0.
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New situations

• Example Let f (x) = 2 +
1

x2
for x > 0.

• We want to investigate the behaviour of f (x) when “x is
large”.

• f (x) gets as close to 2 as we please by letting x “sufficiently
large”, i.e., f (x) tends to 2 as x becomes arbitrary large and
positive.

• Similarly f (x) tends to 2 as x becomes arbitrary large and
negative.

• On the other hand, f (x) becomes arbitrary large as x
approaches 0 on either sides.

• As the above description is quite long and vague, so people
naturally want to find a better way to describe the situation.
So they come up with the following definition.
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Definitions

• The behaviour of the function f (x) described on last slide
certainly has no limit in ordinary sense. But it is still
important enough to deserve a special mention.

• Infinity We give a meaning of the symbol +∞, called
positive infinity, that indicates a quantity described grows
larger than any given positive number;

• −∞ negative infinity that indicates a quantity described
grows smaller than any given negative number.

• Both the notations “±∞” are NOT NUMBERS. They are
being artificially inserted on the real axis R: So
• 10, 000 < +∞,
• 10, 000, 000 < +∞,
• 1010 < +∞
• . . . . . .
• −∞ < −10, 000,
• −∞ < −1010.
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Limits at infinity

• Definitions Let ` and a be real numbers. If f tends to ` as x
becomes arbitrary large and positive, we say f has the limit `
at positive infinity, written as

lim
x→+∞

f (x) = ` (f → `, as x → +∞).

• Similarly, if f tends to ` as x becomes arbitrary large and
negative, we say f has the limit ` at negative infinity, written
as

lim
x→−∞

f (x) = ` (f → `, as x → −∞).
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Infinity limits

• If f becomes arbitrary large and positive as x approaches a,
we denote this by

lim
x→a

f (x) = +∞ (f → +∞, as x → a).

and we either say f has no limit at a, or that f has the limit
infinity at a.

• Similarly, if f becomes arbitrary large and negative as x
approaches a, we write

lim
x→a

f (x) = −∞ (f → −∞, as x → a).

• Remark We sometimes write ∞ for +∞.

• Remark Both the notations “±∞” are NOT NUMBERS
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An example

• Example (revisited) For f (x) = 2 + 1/x2, we clearly have:

lim
x→+∞

f (x) = lim
x→+∞

(2 + 1/x2) = 2,

since f tends to 2 as x → +∞. Note that there is no finite
value x we can find so that f (x) = 2.

• Similarly

lim
x→−∞

f (x) = lim
x→−∞

(2 + 1/x2) = 2,

since f tends to 2 as x → −∞.

• Finally
lim
x→0

f (x) = lim
x→0

(2 + 1/x2) = +∞,

since f becomes arbitrary large as x → 0.
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Infinite limit examples

• (p. 82) lim
x→1

x

(x2 − 1)2
;

• (p. 82) lim
x→−1

x

(x2 − 1)2

• (p. 83) lim
x→1

x − 2

(x − 1)2(x − 3)

• (p. 83) lim
x→3±

x − 2

(x − 1)2(x − 3)

• (p. 84) lim
x→4+

−x3 + 5x2 − 6x

−x3 − 4x2

• The vertical lines where the curves that represent the above
functions that become infinite that we encounter above are
called vertical asymptotes of the function f (x).
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Properties of Limits at Infinity

Suppose limx→∞ f (x) = `, limx→∞ g(x) = m both exist. Let c be
a constant, then the following hold:

•
limx→∞

(
f (x) + g(x)

)
= limx→∞ f (x) + limx→∞ g(x) = `+ m,

• limx→∞

(
c f (x)

)
= c limx→∞ f (x) = c `,

• limx→∞

(
f (x)g(x)

)
= limx→∞ f (x) limx→∞ g(x) = `m,

• limx→∞

( f (x)

g(x)

)
=

limx→∞ f (x)

limx→∞ g(x)
=

`

m
provided m 6= 0.

• We note that the above rules do not apply when one or both
of limx→∞ f (x), and limx→∞ g(x) are infinite. Note, however,
that ∞ can be replaced by −∞.
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Examples of Limit at infinity

• Example (revisit) Let f (x) = 2 + 1/x2. Then

lim
x→∞

(2 + 1/x2) = lim
x→∞

2 + lim
x→∞

1

x2
= 2 + 0 = 2.

since both lim
x→∞

2 and lim
x→∞

1/x2 exist.

• Example (revisit) Let f (x) =
x2 + 2x

x3 + 4
. Then

lim
x→∞

x2 + 2x

x3 + 4
= lim

x→∞

x2(1 + 2/x)

x3(1 + 4/x3)
= lim

x→∞

1 + 2/x

x(1 + 4/x3)

= lim
x→∞

1

x
· lim(1 + 2/x)

lim(1 + 4/x3)
= 0· 1

1
= 0,

since lim
x→∞

1/x , lim
x→∞

(1 + 2/x), lim
x→∞

(1 + 4/x3) exist.
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More examples

• Example lim
x→∞

2x2 + 3x

6x2 − x
.

lim
x→±∞

(2x2 + 3x

6x2 − x

)
= lim

x→±∞

x2(2 + 3/x)

x2(6− 1/x)

=
lim(2 + 3/x)

lim(6− 1/x)
=

2 + 0

6− 0
= 1/3.

• Example lim
x→∞

3x3 + 3x

4x3 − x2
.
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Horizontal asymptotes
• Definition If f (x)→ ` or f (x)− `→ 0 as x →∞, then we

say y = ` is a horizontal asymptote of f (x) as x →∞.

• Example (revisited) Since lim
x→∞

(2x2 + 3x

6x2 − x

)
− 1

3
= 0, so

y = 1
3 is a horizontal asymptote of f (x) as x →∞.

• Example (p. 90) Since lim
x→∞

(
5 +

sin x√
x

)
− 5 = 0, so y = 5 is

a horizontal asymptote of the function as x →∞.

• Example (p. 90) Consider lim
x→±∞

x

2x2 − x + 3
.

Since
x/(2x2 − x + 3)→ 0 as x → +∞,

so y = 0 is a horizontal asymptote of f (x) as x → +∞
Similarly, since

x/(2x2 − x + 3)→ 0 as x → −∞,
so y = 0 is a horizontal asymptote of f (x) as x → −∞.

Observe that the f approaches the y = 0 in different manners
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An example on p. 96

• Example lim
x→∞

10x3 − 3x2 + 8√
25x6 + x4 + 2

.

10x3 − 3x2 + 8√
25x6 + x4 + 2

=
x3
(

10− 3x2

x3 + 8
x3

)
|x3|
√

25 + 1
x2 + 2

x6

→ 10√
25

= 2

as x → +∞ and since x3/|x3| = 1 as x > 0. So

lim
x→∞

10x3 − 3x2 + 8√
25x6 + x4 + 2

= 2

• We have

lim
x→−∞

10x3 − 3x2 + 8√
25x6 + x4 + 2

= −2

since x3/|x3| = −1 when x < 0.
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Other asymptotes

• Definition If f (x)→ g(x) or f (x)− g(x)→ 0 as x →∞
(resp. −∞), then we say y = g(x) is an asymptote of f (x) as
x →∞ (resp. −∞).

• Remark Usually the asymptote function y = g(x) is simpler
and more familiar to us.

• Example (p. 98) lim
x→∞

x2 − 1

x + 2
Since

x2 − 1

x + 2
− x =

−2x − 1

x + 1
→ −2

as x →∞, so

x2 − 1

x + 2
− (x − 2) =

3

x + 1
→ 0

as x →∞. Hence y = x − 2 is an asymptote of the function.

• What happens if x → −∞?
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Examples
• Example Find asymptotes of f (x) = x3 − 100, 000 x2.

f (x) = x3
(

1− 100, 000

x3

)
so that

f (x)− x3

x3
= 1− 100, 000

x3
→ 0 as x →∞.

We deduce that g(x) = 1 is an asymptote of f (x)
x3 as x →∞.

• What happens if x → −∞?
• Definiton If f (x) becomes arbitrarily large and positive when

x →∞ or x → −∞, then we write

lim
x→∞

f (x) =∞, or lim
x→−∞

f (x) =∞

respectively. If f (x) becomes arbitrarily large and negative

lim
x→∞

f (x) = −∞, or lim
x→−∞

f (x) = −∞.
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Example with no asymptote

• Example Let

f (x) =

{
n, if n < x ≤ n + 1 (n = 0, 2, 4, · · · ),
−n, if n < x ≤ n + 1 (n = 1, 3, 5, · · · ).

This function has no limit at both +∞ and −∞. This is
because f is oscillating between n and −n. It will never
“tend” to any fixed value either finite or infinite.
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Continuity

• Definition Let f be a function and that limx→a f (x) = `
exists. Then f is continuous at a if f (a) exists and f (a) = `.
We say that f is continuous on an interval I if it is continuous
at every point of I .

• Generally speaking a function is continuous at x = a, say, if
the curve of f at a has no jump, or that one does not need to
lift a pen when drawing that part of curve containing the
point a.

• Example The function f (x) =

{
2 if x 6= 1/2;

1 if x = 1/2.
is not

continuous at x = 1/2. Otherwise, it is continuous
everywhere.
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Continuity examples

• Example Show that f (x) = 2x2 + 3x is continuous at x = 1.
Since lim

x→1
2x2 = 2 lim

x→1
x2 = 2 = 2(1)2 , and lim

x→1
3x = 3.

Thus both 2x2 and 3x are continuous at x = 1. Obviously,
lim
x→1

(2x2 + 3x) = 5 = f (1) = 2(1)2 + 3(1). Thus f is

continuous at 1. The above argument clearly applies to any x
other than 1. So f is continuous not only at 1 but on R.

• Example Polynomial function
f (x) = anx

n + an−1x
n−1 + · · ·+ a0 is continuous at every

point in R. This follows from the fact that the sum of two
continuous functions is still a continuous function.
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Continuity example I

• Example Determine the region of continuity of

f (x) =
x2 − 3

x2 + 2x − 8
.

Since both x2 − 3 and x2 + 2x − 8 are continuous functions
(being polynomials), their quotient is also continuous
whenever x2 + 2x − 8 6= 0. But x2 + 2x − 8 = (x + 2)(x − 4)
equals zero only when x = −2 and 4. Thus f is continuous
except when x = −2 or 4, i.e., the region of continuity is
R\{−2, 4}, that is the whole real line except the points -2 and
4.
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Continuity example II
• Example Find the region of discontinuity of

f (x) =

{
x2, if x < 3,

x + 6, if x ≥ 3.

Since both x2 and x + 6 are continuous on the real axis, we
conclude from the definition of f that it must be continuous
except perhaps when x = 3. The left limit is

lim
x→3+

(x + 6) = 3 + 6 = 9 = f (x),

whereas the right limit is

lim
x→3−

f (x) = lim
x→3−

x2 = 9 = f (3) = 3 + 6.

Since the left and right limits are equal, it follows from the
definition that limx→3 f (x) = f (3) i.e., f (3) exists and f is
continuous at 3. Hence the region of discontinuity is an empty
set.
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Continuity example III
• Example Find the region of discontinuity of

g(x) =

{
x2, if x < 3,

x + 6, if x > 3.

Define a new function F so that it is continuous on R.
• Since g(x) is almost identical to f in the last example, we

conclude that (from the definition of g) g is continuous on R
except when x = 3 at which g is undefined. But

lim
x→3−

g(x) = lim
x→3−

x2 = 9 = lim
x→3+

(x + 6) = lim
x→3+

g(x).

and this shows that g actually converges to the right value 9
as x approaches 3. Thus the following function

F (x) =

{
g(x), if x 6= 3;

9, if x = 3.

is continuous on R and F (x) is thus identical to the function
f in the last slide.
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Continuity example IV
• Example The function f (x) = x3−8

x−2 is not continuous at
x = 2.
Although we have

x3 − 8

x − 2
=

(x − 2)//////////(x2 + 2x + 4)

x − 2///////
= x2 + 2x + 4

but the above cancellation is only valid when x − 2 6= 0 or
x 6= 2. So the function f (x) only equals to x2 + 2x + 4 when
x 6= 2. So the f is still undefined at x = 2. So the function
f (x) must be discontinuous at x = 2.

• But we do have the limit
limx→2

x3−8
x−2 = limx→2 x2 + 2x + 4 = 12 although f (x) is

undefined there.

• We define F (x) =

{
f (x), if x 6= 2;

12, if x = 2.
Then we have

limx→2 F (x) = 12 = F (2) so that F (x) is continuous at
x = 2.
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