MATH150 Introduction to odes, Fall 2010

Week 02 Worksheet: Complex numbers and separable odes

(c)
$$\frac{-1-2i}{-4+3i}$$
:

(d)
$$-(7-i)(-4-2i)(2-i)$$
:

- 4. (Class work) Convert to polar form $z = r \exp(i\theta)$:
 - (a) $1 + \sqrt{3}i$:
 - (b) $(\sqrt{2} + \sqrt{2}i)^7$:
- 5. (Class work) Find all solutions of the following equations by writing $z = z \exp(n2\pi i)$, with n a natural number:
 - (a) $z^4 = 1$
 - (b) $z^5 = 6i$:
 - (c) $z^5 = 1 + i$:
- 6. (Class work) Solve for x and y where x and y are real numbers
 - (a) 2y + ix = 4 + x i:
- 7. (Class work) Find the real part and the imaginary part of the following expression, where x is real:
 (a) exp((5+12i)x):
- 8. (Class work) Solve the following differential equations by separating variables

(a)
$$y' = \frac{x^2}{y(1+x^3)}, \quad y(0) = y_0:$$

(b) $y' = 2x/(y + x^2y), y(0) = -2$: (c) $y' = xy^3(1 + x^2)^{-1/2}, y(0) = 1$: (d) $y' = 3x^2/(3y^2 - 4), y(1) = 0$ (Leave as a cubic equation): ______

(e) $y' = (2 - e^x)/(3 + 2y), y(0) = 0$: