
MATH150 Introduction to Ordinary Differential Equations, Fall 2010

Hints to Week 10 Wksht: Series solutions

For problems 1 and 2, solve the following differential equation by means of a power series about x = 0. Find
the recurrence relation; also find the first four terms in each of two linearly independent solutions.

1. (Demonstration) (§5.2, page 259, problem 2) y′′ − xy′ − y = 0

Hints: For this equation, each point is an ordinary point. We assume that

y =
∞∑

n=0

anx
n

Substituting the series of y′ and y′′

y′ =
∞∑

n=1

nanx
n−1, y′′ =

∞∑
n=2

n(n− 1)anx
n−2

into the DE and rearranging yields

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

or
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

nanx
n −

∞∑
n=0

anx
n = 0

Then we can get two recurrence relations:

2a2 − a0 = 0⇒ a2 =
a0

2
, for n = 0

(n+ 2)(n+ 1)an+2 − (n+ 1)an = 0⇒ an+2 =
an

n+ 2
, for n ≥ 1

So we have the general recurrence relation:

an+2 =
an

n+ 2
for n ≥ 0

Since an+2 is given in terms of an, the a’s are determined in steps of two. There exist two sequences
depending on the non-zero, but otherwise arbitray, values of a0 and a1 separately.

For the sequence a0, a2, a4, . . . in the recurrence relation:

a2 =
a0

2
, a4 =

a2

4
=

a0

2 · 4
=
a0

8
, a6 =

a4

6
=

a0

2 · 4 · 6
=
a0

48

For the sequence a1, a3, a5, . . . in the recurrence relation:

a3 =
a1

3
, a5 =

a3

5
=

a1

3 · 5
=
a1

15
, a7 =

a5

7
=

a1

3 · 5 · 7
=

a1

105

So the solution is:

y =a0

[
1 +

1
2
x2 +

1
8
x4 +

1
48
x6 + · · ·

]
+ a1

[
x+

1
3
x3 +

1
15
x5 +

1
105

x7 + · · ·
]

2. (Class work) (§5.2, page 259, problem 4) y′′ + k2x2y = 0; k a constant.

Hints: For this equation, each point is an ordinary point. We assume that

y =
∞∑

n=0

anx
n



Substituting the series of y′ and y′′ into the DE and rearranging yields

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

k2an−2x
n+2 = 0

or
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=2

k2anx
n = 0

Then we can get three recurrence relations:

2a2 = 0⇒ a2 = 0, for n = 0
6a3 = 0⇒ a3 = 0, for n = 1

(n+ 2)(n+ 1)an+2 + k2an−2 = 0⇒ an+2 =
−k2an−2

(n+ 2)(n+ 1)
, for n ≥ 2

So we have the general recurrence relation:

an+4 =
−k2an

(n+ 4)(n+ 3)
for n ≥ 0

Since an+4 is given in terms of an, the a’s are determined in steps of four. There exist two sequences
depending on the non zero, but otherwise arbitrary, values of a0 and a1 separately. The other two
sequences whose values are all zeros.

For the sequence a0, a4, a8, . . . in the recurrence relation:

a4 =
−k2a0

4 · 3
, a8 =

−k2a4

8 · 7
=

(−k2)2a0

8 · 7 · 4 · 3
, a12 =

−k2a8

12 · 11
=

(−k2)3a0

12 · 11 · 8 · 7 · 4 · 3

For the sequence a1, a5, a9, . . . in the recurrence relation:

a5 =
−k2a1

5 · 4
, a9 =

−k2a5

9 · 8
=

(−k2)2a1

9 · 8 · 5 · 4
, a13 =

−k2a9

13 · 12
=

(−k2)3a1

13 · 12 · 9 · 8 · 5 · 4

For the sequence a2, a6, a10, . . . and a3, a7, a11, . . . in the recurrence relation:

a2 = a3 = a6 = a7 = a10 = a11 = 0

So the solution is:

y =a0

[
1 +
−k2

4 · 3
x4 +

(−k2)2

8 · 7 · 4 · 3
x8 +

(−k2)3

12 · 11 · 8 · 7 · 4 · 3
x12 + · · ·

]
+ a1

[
x+
−k2

5 · 4
x5 +

(−k2)2

9 · 8 · 5 · 4
x9 +

(−k2)3

13 · 12 · 9 · 8 · 5 · 4
x13 + ·

]
3. (§5.2, page 260, problem 21) The equation

y′′ − 2xy′ + λy = 0, −∞ < x <∞,

where λ is a constant, is known as the Hermite equation.

(a) Find the first four terms in each of two linearly independent solutions about x = 0.

(b) Observe that if λ is a nonnegative even integer, then one or the other of the series solutions
terminates and becomes a polynomial . Find the polynomial solutions for λ = 0, 2, 4, 6. Note that
each polynomial is determined only up to a multiplicative constant.

(c) The Hermite polynomial Hn(x) is defines as the polynomial solution of the Hermite equation with
λ = 2n for which the coefficient of xn is 2n. Find H0(x), H1(x), H2(x), H3(x).



Hints: For this equation, each point is an ordinary point. We assume that

y =
∞∑

n=0

anx
n

Substituting the series of y′ and y′′ into the DE and rearranging yields

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=1

2nanx
n +

∞∑
n=0

λanx
n = 0

or
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

2nanx
n +

∞∑
n=0

λanx
n = 0

Then we can get two recurrence relations:

2a2 + λa0 = 0⇒ a2 = −λa0

2
, for n = 0

(n+ 2)(n+ 1)an+2 − 2nan + λan = 0⇒ an+2 =
(2n− λ)an

(n+ 2)(n+ 1)
, for n ≥ 1

So we have the general recurrence relation:

an+2 =
(2n− λ)an

(n+ 2)(n+ 1)
for n ≥ 0

Since an+2 is given in terms of an, the a’s are determined in steps of four. There exist two sequences
depending on the non zero, but otherwise arbitrary, values of a0 and a1 separately.

For the sequence a0, a2, a4, . . . in the recurrence relation:

a2 =
−λa0

2
, a4 =

(4− λ)a2

4 · 3
=
−λ(4− λ)a0

4!
, a6 =

(8− λ)a4

6 · 5
=
−λ(4− λ)(8− λ)a0

6!

For the sequence a1, a3, a5, . . . in the recurrence relation:

a3 =
(2− λ)a1

3!
, a5 =

(6− λ)a3

5 · 4
=

(2− λ)(6− λ)a1

5!
, a7 =

(10− λ)a5

7 · 6
=

(2− λ)(6− λ)(10− λ)a1

7!

(a) So the solution is:

y =a0

[
1 +
−λ
2
x2 +

−λ(4− λ)
4!

x4 +
−λ(4− λ)(8− λ)

6!
x6 + · · ·

]
+ a1

[
x+

2− λ
3!

x3 +
(2− λ)(6− λ)

5!
x5 +

(2− λ)(6− λ)(10− λ)
7!

x7 + · · ·
]

(b) If λ = 0, 4 or a double of an even integer, then the series solutions y1(x) associates with a0 becomes
a polynomial. From the expression of the series solutions associates with a0, the first two polynomial
solutions are y1(x) = a0 for λ = 0 and y1(x) = a0(1− 2x2) for λ = 4.

If λ = 2, 6 or double of an odd integer, the series solutions y2(x) associates with a1 becomes a polynomial.
From the expression of series solutions associates with a1, the first two polynomial solutions are y2(x) =

a1x for λ = 2 and y1(x) = a1(x− 2
3
x3) for λ = 6.

(c) The coefficient of xn is 2n for Hermite polynomial Hn(x). So we can get the values of a0 or a1 for
each λ respectively.

H0(x) = 1, H1(x) = 2x

H2(x) = −2(1− 2x2), H3(x) = −12(x− 2
3
x3)

4. (§5.3, page 265, problem 10) The Chebyshev differential equation is

(1− x2)y′′ − xy′ + α2y = 0, α a constant.



(a) Determine two linearly independent solution in powers of x for |x| < 1.

(b) Show that if α is a nonnegative integer n, then there is a polynomial solution of degree n.

(c) Find a polynomial solution for each of the cases α = n = 0, 1, 2, 3.

Hints: For this equation, the points in domain |x| < 1 are an ordinary point. We assume that

y =
∞∑

n=0

anx
n

Substituting the series of y′ and y′′ into the DE and rearranging yields

(1− x2)
∞∑

n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n +

∞∑
n=0

α2anx
n = 0

or
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=1

nanx
n +

∞∑
n=0

α2anx
n = 0

Then we can get three recurrence relations:

2a2 + α2a0 = 0⇒ a2 =
−α2a0

2
, for n = 0

6a3 − a1 + α2a1 = 0⇒ a3 =
(1− α2)a1

6
, for n = 1

(n+ 2)(n+ 1)an+2 − (n(n− 1) + n− α2)an = 0⇒ an+2 =
(n2 − α2)an

(n+ 2)(n+ 1)
, for n ≥ 2

So we have the general recurrence relation:

an+2 = an+2 =
(n2 − α2)an

(n+ 2)(n+ 1)
for n ≥ 0

Since an+2 is given in terms of an, the a’s are determined in steps of four. There exist two sequences
which depending on th non zero, but otherwise arbitrary, values of a0 and a1 separately.

For the sequence a0, a2, a4, . . . in the recurrence relation:

a2 =
−α2a0

2
, a4 =

(4− α2)a2

4 · 3
=
−α2(22 − α2)a0

4!
, a6 =

(16− α2)a4

6 · 5
=
−α2(22 − α2)(42 − α2)a0

6!
, · · ·

so the general expression of even sequence is a2n =

n∏
i=1

((2i− 2)2 − α2))

(2n)!
a0 for n ≥ 1.

For the sequence a1, a3, a5, . . . in the recurrence relation:

a3 =
(1− α2)a1

3!
, a5 =

(32 − α2)a3

5 · 4
=

(1− α2)(32 − α2)a1

5!
, a7 =

(52 − α2)a5

7 · 6
=

(1− α2)(32 − α2)(52 − α2)a1

7!
, · · ·

so the general expression of odd sequence is a2n+1 =

n∏
i=1

((2i− 1)2 − α2))

(2n+ 1)!
a1 for n ≥ 1.

(a) So the general solution is:

y =a0

[
1 +

∞∑
n=1

n∏
i=1

((2i− 2)2 − α2))

(2n)!
x2n

]

+ a1

[
x+

∞∑
n=1

n∏
i=1

((2i− 1)2 − α2))

(2n+ 1)!
x2n+1

]



(b) If α is an nonnegative even integer 2n, then there always exist ai = n+1 to make ((2i−2)2−α2) = 0,
so that the a0 series solutions y1(x) becomes a polynomial with all a2n+2 = 0, a2n+4 = 0, · · · , which
means the degress is 2n.

Similarly, if α is an nonnegative odd integer 2n + 1, then there always exist a i = n + 1 to make
((2i − 1)2 − α2) = 0, so that the a1 series solutions y2(x) becomes a polynomial with all a2n+3 = 0,
a2n+5 = 0, · · · , which means the degress is 2n+ 1.

(c) It is easy to write the polynomial solutions

P0(x) = a0 for α = 0, P2(x) = a0(1− 2x2) for α = 2

P1(x) = a1x for α = 1, P3(x) = a1(x− 4
3
x3) for α = 3


