
MATH150 Introduction to Ordinary Differential Equations, Spring 2010-11

Solution to Week 12 Worksheet: Systems of ODEs II

1. (Demonstration) (§7.6, p. 410, problem 17) Solve the following system in terms of α, determine the
citical values of α at which the qualitative nature of the the phase diagram changes, and sketch a phase
diagram

x′ =

(

−1 α

−1 −1

)

x.

2. (Demonstration) (§7.8, p. 428, Q. 3) Solve the following system and sketch a phase diagram

x′ =

(

− 3
2 1

− 1
4 − 1

2

)

x.

3. (Class work) (§7.6, p. 410, problem 14) Solve the following system in terms of α, determine the citical

values of α at which the qualitative nature of the the phase diagram changes, and sketch a phase diagram

x′ =

(

0 −5
1 α

)

x.

Solution:

A =

(

0 −5
1 α

)

det(λI − A) =

∣

∣

∣

∣

λ 5
−1 λ − α

∣

∣

∣

∣

= λ2 − αλ + 5 = (λ − λ+)(λ − λ−) (1)

where

λ± =
α ±

√
α2 − 20

2

(a) α2 − 20 < 0 ⇔ −2
√

5 < α < 2
√

5. There are two complex conjugate roots λ± = α

2 ±
√

20−α2

2 i. The
equilibrium point (0, 0) is therefore a spiral point. Solving the equation

(λ±I − A)v± = 0

leads to

v± =

(

−α

2 ±
√

20−α2

2 i

1

)

C±.

For convinence, we can choose C± = 1. The real and the imaginary parts of the solutions eλ±tv±
are respectively:

xre(t) = Re{eλ+tv+} = e
α

2 t

(

−α

2 cos
√

20−α2

2 t −
√

20−α2

2 sin
√

20−α2

2 t

cos
√

20−α2

2 t

)

xim(t) = Im{eλ+tv+} = e
α

2 t

(

−α

2 sin
√

20−α2

2 t +
√

20−α2

2 cos
√

20−α2

2 t

sin
√

20−α2

2 t

)

The general solution is given by

x(t) = C1xre(t) + C2xim(t)

i. −2
√

5 < α < 0, the real part of the eigenvalue is negative. Then this spiral point is attractive,
and all the solution curves spiral into the origin. To determine the direction of rotation, we
need to look into the monotonicity of the argument of xre(t)(or xim(t)). Since

cot argxre(t) = −α

2
−

√
20 − α2

2
tan

√
20 − α2

2
t

and

cot argxim(t) = −α

2
+

√
20 − α2

2
cot

√
20 − α2

2
t

are both decreasing functions of t, the arguments of xre(t) and xim(t) are both increasing
functions of t. Thus the direction of rotation is anti-clockwise.
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Figure 1: (a)i

ii. If 0 < α < 2
√

5, then the real part of the eigenvalue is positive. Then this spiral point
is repellent, and all the solution curves spiral out of the origin. The direction of rotation,
determined in case i., is anti-clockwise.

iii. If α = 0, then the real part is zero. Then this spiral point is neither attractive nor repellent.
The solution curve is a family of closed curves. The direction of rotation is anti-clockwise.

(b) If α2 − 20 > 0 ⇔ α < −2
√

5 or α > 2
√

5, then there are two different real roots λ± = α±
√

α2−20
2 .

The origin is an equilibrium point. Solving the equation

(λ±I − A)v± = 0

leads to

v± =

(

−α

2 ±
√

α2−20
2

1

)

C±.

For convinence, we can choose C± = 1. The general solution is given by

x(t) = C1e
λ+tv+ + C2e

λ−tv−

i. If α < −2
√

5, then the two real roots are both negative. Then the equilibrium point is attractive.
Since λ− < λ+ < 0, |λ+| < |λ−|. As t → +∞, eλ−tv− goes to the origin faster than eλ+tv+,
eλ+tv+ is the dominant term; as t → −∞, eλ−tv− goes to infinity faster than eλ+tv+, eλ−tv−
is the dominant term. Thus, near the origin, the solution curves tend to align with v+; but
when far from the origin, the solution curves tend to be parallel to v−.

ii. If α > 2
√

5, then the two real roots are both positive. Then the equilibrium point is repellent.
Since λ+ > λ− > 0, |λ+| > |λ−|. As t → +∞, eλ+tv+ goes to infinity faster than eλ−tv−,
eλ+tv+ is the dominant term; as t → −∞, eλ+tv+ goes to the origin faster than eλ−tv−,
eλ−tv− is the dominant term. Thus, near the origin, the solution curves tend to align with v−;
but when far from the origin, the solution curves tend to be parallel to v+.

Since the constant term in the eigenpolynomial (1) is 5, two real eigenvalues cannot be of have
different signs and there is no saddle point in this problem.
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Figure 2: (a)ii
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Figure 4: (b)i
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Figure 5: (b)ii
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(c) If α = ±2
√

5, then there are two repeated eigenvalues λ+ = λ− = α

2 = ±
√

5. Solving the equation

(λI − A)v = 0

leads to

v =

(

−α

2
1

)

C.

For convinence, we can choose C = 1. In order to find the second independent solution, we solve

(A − λI)w = v.

The solution is

w = C̃v +

(

1
0

)

.

Setting C̃ = 0 yields

w =

(

1
0

)

.

The general solution is given by

x(t) = C1e
λtv + C2e

λt(w + tv) = eλt

(

−α

2 C1 + C2(1 − α

2 t)
C1 + C2t

)

.

i. If α = −2
√

5 and λ+ = λ− = −
√

5, then the equilibrium point (0, 0) is attractive. As t → +∞,
the term C2e

λttv decays slower, so it dominates the other solution near the origin and the
solution curves tend to align with the vector v; as t → −∞, the term C2e

λttv grows faster,
so it also dominates the other solution far from the origin and the solution curves tend to
be parallel with the vector v. The eigenspace {(x1, x2) : x1 = −α

2 x2} divides the plane into
two half planes. The solution curves locating in the lower half plane satisfy x1 > −α

2 x2.
Substituting the solution into this inequality gives C2 > 0. The solution curves locating in
the upper half plane satisfy x1 > −α

2 x2. Substituting the solution into this inequality gives
C2 < 0. The eigenspace is defined by C2 = 0. As t → −∞(far from the origin), the solutions
with C2 > 0 have two components x1, x2 → −∞(in the third quarter) while both components
of the solutions with C2 < 0 have two components x1, x2 → +∞(in the first quarter).

ii. If α = 2
√

5 and λ+ = λ− =
√

5, then the equilibrium point (0, 0) is repellent. The same analysis
shows that near the origin the solution curves tend to align with the vector v while when far from
the origin they tend to be parallel with the vector v. The eigenspace {(x1, x2) : x1 = −α

2 x2}
divides the plane into two half planes. The solution curves locating in the right half plane satisfy
x1 > −α

2 x2. Substituting the solution into this inequality gives C2 > 0. The solution curves
locating in the left half plane satisfy x1 > −α

2 x2. Substituting the solution into this inequality
gives C2 < 0. The eigenspace is defined by C2 = 0. As t → +∞(far from the origin), the
solutions with C2 > 0 have two components x1 → −∞ and x2 → +∞(in the second quarter)
while the solutions with C2 < 0 have two components x1 → +∞ and x2 → −∞(in the fourth
quarter).

4. (Class work) (§7.8, p. 428, Q. 4) Solve the following system and sketch a phase diagram

x′ =

(

−3 5
2

− 5
2 2

)

x.

Solution:

A =

(

−3 5
2

− 5
2 2

)

det(λI − A) =

∣

∣

∣

∣

λ + 3 − 5
2

5
2 λ − 2

∣

∣

∣

∣

= (λ +
1

2
)2

There are two repeated real roots λ1 = λ2 = λ = − 1
2 . Suppose v =

(

v1

v2

)

is an eigenvector corre-

sponding to λ = − 1
2 . Then

(λI − A)v =

(

5
2 − 5

2
5
2 − 5

2

)(

v1

v2

)

=

(

0
0

)

⇒ v1 = v2
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Figure 6: (c)i

Therefore, the eigenspace is 1-dimensional and the eigenvector can be chosen to be

v =

(

1
1

)

.

Solving (A − λI)w = v gives w = (C − 2
5 , C)T. Choosing C = 0 we obtain w = (− 2

5 , 0)T. The general
solution is given by

x(t) = C1veλt + C2(w + vt)eλt = C1

(

1
1

)

e−
1
2 t + C2

((

− 2
5

0

)

+

(

1
1

)

t

)

e−
1
2 t

Since the repeated eigenvalues are negative, the equilibrium point (0, 0) is attractive. There is only one
asymptotic line since the eigenspace is 1-D. In the limiting cases that t → +∞ and t → −∞, the term
C2te

− 1
2 t(1, 1)T dominates in the solution since its components have greater absolute values comparing

to other terms. All the solution curves tend to align with the eigenvector near the origin and parallel
to the eigenvector far from the origin. The eigenspace {(x1, x2) : x1 = x2} divides the plane into two
half planes. The solution curves locating in the lower half plane is labeled by C2 < 0 while the solution
curves locating in the upper half plane is labeled by C2 > 0. The eigenspace is labeled by C2 = 0. As
t → −∞, both components of the solutions with C2 > 0(or C2 < 0) go to −∞(or +∞).

5. (Further work) (§7.6, modified from Q. 31) Suppose the coupled mass-spring system as on pp. 75-76
of Prof. Chasnov’s Notes has k = 1 = k12, m = 1. Write down the equation in the form ẍ = Ax and
solve for the corresponding eigenvalues/eigenvectors and the general solution.
Solution: Using the parameters given here, the system of differential equations is written in the matrix
form ẍ = Ax, where

A =

(

−2 1
1 −2

)

.

The ansatz x = veλt leads to the eigenvalue problem Av = λ2v. This suggests us to find the eigenvalues
and corresponding eigenvectors:

det(λ2I− A) =

∣

∣

∣

∣

λ2 + 2 −1
−1 λ2 + 2

∣

∣

∣

∣

= (λ2 + 1)(λ2 + 3).
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Figure 7: (c)ii
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Figure 8: The red line indicates the eigenspace while the blue lines show the orbits of the solution curves.
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The two different real eigenvalues are µ1 = −1 and µ2 = −3. The corresponding eigenvectors are
obtained by solving (µiI− A)vi = 0 with i = 1, 2:

v1 =

(

1
1

)

, v2 =

(

1
−1

)

.

The values of λ are λ
(1)
± = ±i, λ

(2)
± = ±

√
3i. Separating the real part and imaginary part of the solutions

xi = vie
λ
(i)
±

t with i = 1, 2, we can obtain four independent solutions. Thus the general solution is given
by

x(t) = v1(ARe{eλ
(1)
+ t} + BIm{eλ

(1)
+ t}) + v2(CRe{eλ

(2)
+ t} + DIm{eλ

(2)
+ t})

=

(

1
1

)

(A cos t + B sin t) +

(

1
−1

)

(C cos
√

3t + D sin
√

3t)
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