
MATH150 Introduction to Ordinary Differential Equations, 2006-07 Spring
Final Examination Solution: Version A
Part I: Multiple Choice Question.

Question 1 2 3 4 5 6 7 8 Total

Answer c a e b a b d e

1.Part II: Short Questions

2. Suppose that the logistic equation
dx

dt
= kx(M − x),

where k and M are positive constants, models a population x(t) of fish in a lake after t months
during which no fishing occurs. Now suppose that, because of fishing, fishes are removed from the
lake at the rate of hx fishes per month, where h is a positive constant.

(a) [3 pts] If 0 < h < kM , show that the new fish population (with fishes removed at the above
rate) still satisfy a logistic equation and hence find two equilibrium solutions when fishing
occurs.

When fishing occurs, we have the following differential equation:

dx

dt
= kx(M − x)− hx = kx

(
(M − h

k
)− x

)
Therefore, the population is still logistic. Moreover, the two equilibrium solutions are x(t) = 0

and x(t) = M − h

k
.

Answer:

(b) [2 pts] Classify each equilibrium solutions in (a) as asymptotically stable or unstable.

x(t) = 0 is asymptotically unstable. x(t) = M − h

k
is asymptotically stable.

Answer:
(c) [3 pts] If h = kM , show that x(t)→ 0 as t→∞ i.e. the lake is eventually fished out.

When h = kM , we have
dx

dt
= −kx2

It is a separable equation, so we get ∫
1
x2

dx = −k
∫
dt

Solving, we get the following solution:

x(t) =
1

kt− C
for some constant C. Therefore, as t→∞, x(t)→ 0.

Answer:
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3. Find the general solution of the differential equation

y′′ − 2y = e−x sinx.

Answer: The answer is The characteristic roots are ±2. So the complementary functions are e±
√

2x.
We try

Y = Ae−x sinx+Be−x cosx.

This yields
y′ = −(A+B)e−x sinx+ (A−B)e−x cosx

and
y′′ = 2Be−x sinx− 2Ae−x cosx.

Thus we have
2(B −A)e−x sinx+ (−2A− 2B)e−x cosx ≡ e−x sinx.

This yields A = −1/4 = −B. So the general solution is given by

y = Ae
√

2x +Be−
√

2x +
1
4
(

cosx− sinx
)
e−x.

4. Consider a piecewise continuous function

g(t) =


t− π

2 if 0 ≤ t < π
2

cos t if π
2 ≤ t < π

0 if t ≥ π

(a) [3 pts] Express g(t) in terms of unit step functions uc(t) and the functions appearing in the
definition of g(t).

g(t) = (t− π

2
)(1− uπ

2
(t)) + cos t(uπ

2
(t)− uπ(t))

Answer: g(t) =

(b) [3 pts] Find the Laplace transform of g(t).

Applying Laplace transform, we get

L{g(t)} =
1
s2
− π

2s
− L

{
(t− π

2
)uπ

2
(t)
}

+ L
{

(cos t)uπ
2
(t)
}
− L{(cos t)uπ(t)}

Consider the last two terms, we rewrite them as follows:

L
{

(cos t)uπ
2
(t)
}

= −L
{

sin(t− π

2
)uπ

2
(t)
}

L{(cos t)uπ(t)} = −L{cos(t− π)uπ(t)}
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Therefore, we have

L{g(t)} =
1
s2
− π

2s
− e−

π
2
s

s2
− e−

π
2
s

s2 + 1
+
se−πs

s2 + 1

Answer: L{g(t)} =

5. Use the method of Laplace transform to solve

f(t) = sin 3t+
∫ t

0
f(s) sin 3(t− s) ds.

Answer: The answer is The equation can be written in the convolution form

f(t) = sin 3t+ (f ∗ sin 3x)(t).

We apply convolution theorem to give

L(f) = L(sin 3t) + L(f) · L(sin(3t)).

Hence

L(f) =
L(sin(3t))

1− L(sin(3t))
=

3/(s2 + 32)
1− 3/(s2 + 32)

=

√
3
2

√
6

s2 + (
√

6)2
.

So f(t) =
√

3
2 sin(

√
6t).

6. [6 pts] Let

f(x) =
{
x, −2 ≤ x < 0;
−x, 0 ≤ x ≤ 2.

Find the Fourier series of f(x).

As f(x) is an even function, its Fourier series is a cosine series. We have

an =
1
2

(∫ 0

−2
x cos(nπx/2)dx+

∫ 2

0
−x cos(nπx/2)dx

)
= − 4

(nπ)2
(cos(nπ)− 1) whenn 6= 0.

For a0, we find that

a0 =
1
2

∫
f(x)dx = −2.

Therefore,

f(x) = −1−
∞∑
n=1

4
(nπ)2

(cos(nπ)− 1) cos(nπx/2).

Answer: .
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7. [6 pts] Given that y(x) = x is a solution of

x2y′′ − x(x+ 2)y′ + (x+ 2)y = 0.

Find the general solution of the above differential equation.

We have p(x) = −x+2
x . For the second solution, let y(x) = v(x)x, we find that v(x) satisfies

v′′ − v′ = 0.

Thus, v(x) = Aex +B and the general solution is y(x) = Ax+Bxex where A and B are constants.

Answer: .

Part III: Long questions.

8. A mass of 2 kg stretches a hanging spring 0.25 metres. The mass is acted on by an external force
of 20 cos(8t) newtons, and is damped by a force which is proportional and opposite to the motion,
and which is 2 newtons when the speed is .25 metres/second. The acceleration due to gravity is 10
metres/sec2.

(a) [2 pt] Find the spring constant k; so, force = k · stretch.
Since force = k · stretch, we have

0.25k = 2× 10

Therefore, k = 80.

Answer: k =

(b) [2 pt] Find the damping constant γ; so, force = γ · speed.
Since force = γ · speed, we have

2 = 0.25γ

Therefore, γ = 8.

Answer: γ =

(c) [3 pt] Let u denote the distance the mass is from equilibrium. Write the 2nd order differential
equation for u.

2u′′ + 8u′ + 80u = 20 cos(8t)

Answer: Differential equation is :

(d) [6 pt] Suppose the mass is initially at rest at its equilibrium position. Formulate the initial
value problem for u and hence solve for u.
We need to solve the initial value problem:

2u′′ + 8u′ + 80u = 20 cos(8t), u(0) = 0, u′(0) = 0

Solving the homogeneous part of the solutions, we get

e−2t(C1 cos 6t+ C2 sin 6t)
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Let the particular solution up(t) = A cos 8t+B sin 8t. Substitute into the differential equation,
we get {

24A+ 32B = 0
−24A+ 32B = 10

Solving, we get A = − 3
20 and B = 1

5 .
Therefore, the general solution is

u(t) = e−2t(C1 cos 6t+ C2 sin 6t) +
1
20

(−3 cos 8t+ 4 sin 8t)

Applying initial conditions, we get

u(t) =
1
60
e−2t(9 cos 6t− 13 sin 6t) +

1
20

(−3 cos 8t+ 4 sin 8t)

Answer: u =

(e) [4 pt] Express the steady-state solution in the form R cos(ωt− δ) and hence find the amplitude
and phase of the motion.

We need to write
1
20

(−3 cos 8t+ 4 sin 8t) in the form R cos(ωt− δ). Obviously, ω = 8

R =

√
(− 3

20
)2 + (

4
20

)2 =
1
4

cos δ = −3
5
, sin δ =

4
5

Therefore, δ = 2.21 rad.

Amplitude =
1
4

and phase = 2.21 rad.

Answer:
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9. (A) Suppose an elastic string of length 60cm is being fixed at both ends in a horizontal position.
Let u(x, t) be the vertical displacement of the string at x centermeters from one end and at
time t. Suppose the displacement function satisfies

4uxx = utt, t > 0;
u(0, t) = 0 = u(60, t), t ≥ 0;
ut(x, 0) = 0, u(x, 0) = f(x), 0 ≤ x ≤ 60, (1)

where

f(x) =

{
−2x/50, 0 ≤ x ≤ 25;
(x− 50)/25, 25 < x ≤ 50.

(a) [2 pts] Sketch the initial position of the string given by f(x):

Answer: The sketch is .

(b) [1 pt] Is the string released initially at rest (answer “yes” or “no”) ? Yes.

(c) [6 pts] Suppose a solution to (??) is in the form

u(x, t) =
∞∑
n=1

cnun(x, t) (2)

where un(x, t) = Xn(x)Tn(t) for each n = 1, 2, 3, · · · . Derive with reason the boundary
value problem satisfied by Xn(x). Then solve the problem.

Answers .

Substituting un(x, t) = Xn(x)Tn(t) into the wave equation yields 4X ′′nTn = XnT
′′
n . That is,

X′′
n

Xn
= 1

4
T ′′
n
Tn

= λn. Since 0 = un(0, t) = Xn(0)Tn(t) = and 0 = un(50, t) = Xn(50)Tn(t) =
hold for all t, so we must haveXn(0) = Xn(50) = 0. For otherwise, Tn ≡ 0, a contradiction.
The condition (un)t(x, 0) = 0 translates, in a similar maner, to T ′n(0) = 0. Thus, we obtain
two boundary value value problems:

X ′′n + λXn = 0, Xn(0) = 0 = Xn(50)
T ′′n + 4λTn = 0, T ′n(0) = 0.

The first equation has general solution

Xn = A cos
√
λx+B sin

√
λx

and the boundary condition implies A = 0 so that Xn = sin
√
λx and sin

√
λ50 = 0. Hence

λn = n2π2

502 for n = 1, 2, 3, · · · . Thus

Xn(x) = sin
nπx

50
, n = 1, 2, 3, · · · .

The second equation has general solution Tn = C cos 2
√
λt + D sin 2

√
λt. The boundary

condition implies D = 0 so that

Tn(t) = cos
nπt

25
, n = 1, 2, 3, · · · .

Hence

u(x, t) =
∞∑
j=1

un(x, t) =
∞∑
j=1

cn sin
nπx

50
cos

nπt

25
.
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(e) [3 pts] Derive with reason the boundary value problem satisfied by Tn(t). Then solve the
problem.

T ′′n + 4λTn = 0, T ′n(0) = 0.

The second equation has general solution Tn = C cos 2
√
λt + D sin 2

√
λt. The boundary

condition implies D = 0 so that

Tn(t) = cos
nπt

25
, n = 1, 2, 3, · · · .

Answers: .

(f) [3 pts] Explain how one can determine the unknown coefficients cn. Write down a formula
for cn without actually evaluating the integrals.

Since

u(x, t) =
∞∑
j=1

un(x, t) =
∞∑
j=1

cn sin
nπx

50
cos

nπt

25
.

So the initial condition implies

f(x) = u(x, 0) =
∞∑
j=1

un(x, 0) =
∞∑
j=1

cn sin
nπx

50
.

We conclude that this is a Fourier sine series for the odd extension of f(x) to −50 < x < 0.
Thus the Fourier coefficients cn are given by

cn =
2
50

∫ 5

0
0 sin

nπx

50
f(x), dx

for n = 1, 2, 3, · · · . Answer:
.

(B) Suppose the problem (A) above is modified so that the displacement function u(x, t) still
satisfy (??) but with new conditions u(x, 0) = 0 and ut(x, 0) = g(x), 0 ≤ x ≤ 60 instead,
where g(x) is some given function. We again assume that a solution u(x, t) takes the form
(??) for some different cn.

(g) [2 pts] Is the string released at rest initially (answer “yes” or “no”) ?

No.
(h) [4 pts] Determine with details the un(x, t), n = 1, 2, 3, · · · .

Since the boundary condition for Xn remians unchanged so we still have

Xn(x) = sin
nπx

50
, n = 1, 2, 3, · · · .

But the new boundary condition u(x, 0) = 0 implies Tn(0) = 0 so that

Tn(t) = sin
nπt

25
, n = 1, 2, 3, · · · ,

and

u(x, t) =
∞∑
j=1

un(x, t) =
∞∑
j=1

dn sin
nπx

50
sin

nπt

25
.

One needs to work out ut(x, 0) = g(x) to work out the coefficients by Fouier cosine
extension. Answer:
.


