HKUST

MATH150 Introduction to Differential Equations

Final Examination (Version A)	Name:	
20th May 2005	Student I.D.:	
16:30-18:30	Tutorial Section:	

Directions:

- Write your name, ID number, and tutorial section in the space provided above.
- DO NOT open the exam until instructed to do so.
- When instructed to open the exam, check that you have, in addition to this cover page, 11 pages of questions.
- Turn off all mobile phones and pagers during the examination.
- This is a closed book examination.
- You are advised to try the problems you feel more comfortable with first.
- You may write on both sides of the examination papers.
- There are 8 multiple choice questions. **DO NOT guess wildly!** If you do not have confidence in your answer leave the question blank. Each incorrectly answered question will result in a 0.5 point deduction.
- For the short and long questions, you must show the working steps of your answers in order to receive full points.
- Cheating is a serious offense. Students caught cheating are subject to a zero score as well as additional penalties.

Question No.	Points	Out of
Q. 1-8		32
Q. 9-15		32
Q. 16		18
Q. 17		18
Total Points		100

Part I: Each correct answer <u>in the answer box</u> for the following 8 multiple choice questions is worth 4 point. DO NOT guess wildly! If you do not have confidence in your answer leave the answer box blank. Each incorrectly answered question will result in a 0.5 point deduction.

Question	1	2	3	4	5	6	7	8	Total
Answer									

1. Which of the following functions is an integrating factor for the non-exact equation

$$(x^3 + y) + (x \ln x + 2xy) \frac{dy}{dx} = 0$$
?

is:

- (a) x
- (b) y
- (c) xy
- (d) $\frac{1}{r}$
- (e) $\frac{1}{u}$

2. Using Euler's method with step size h = 0.1, the approximate value at t = 0.3 of the solution of the initial value problem

$$\frac{dy}{dt} = ty^2 + y, \qquad y(0) = 1$$

can be found as:

- (a) 1.112
- (b) 1.256
- (c) 1.374
- (d) 1.420
- (e) 1.537

3. Given that y satisfies $\frac{dy}{dt} = y(y-1)(y-2)$, which of the equilibrium solutions is/are stable solution(s)?

(direction field of the equation)

- (a) y = 0 (b) y = 1 (c) y = 2 (d) y = 0 and y = 1
- (e) None of the previous

4. If an external force $F(t) = 3\cos(2\omega t)$ is applied to a spring-mass system so that the equation of motion is

$$u'' + 9u = 3\cos(3\omega t) ,$$

at what ω will unbounded oscillation happen?

(a) 1

(b) 2

(c) 3

(d) 6

(e) 9

5. The Wronskian of the pair of functions $y_1 = e^t \sin t$, $y_2 = e^t \cos t$ can be found as:

(a) $e^{2t}(\cos 2t - 1)$ (b) $e^{2t}(\cos 2t + 1)$ (c) $-e^{2t}$ (d) e^{2t} (e) $e^{2t}(\cos^2 t - \sin^2 t)$

6. Find a particular solution of $y'' - 3y' + 2y = 3e^{-x} - 10\cos 3x$.

(a)
$$-\frac{1}{2}e^{-x} + \frac{5}{13}\cos 3x + \frac{9}{13}\sin 3x$$

(b)
$$\frac{1}{2}e^{-x} - \frac{7}{13}\cos 3x + \frac{3}{13}\sin 3x$$

(c)
$$\frac{1}{3}e^{-x} + \frac{5}{13}\cos 3x - \frac{9}{13}\sin 3x$$

(d)
$$\frac{1}{2}e^{-x} + \frac{7}{13}\cos 3x + \frac{9}{13}\sin 3x$$

(e) none of the previous

7. Find the Laplace transform $Y(s) = \mathcal{L}\{y(t)\}\$ of the solution of the given initial value problem :

$$2y'' + 3y' + 2y = e^{-3t}\sin 4t$$
, $y(0) = -2$, $y'(0) = 1$.

(a)
$$\frac{-4s+8}{2s^2+3s+2} + \frac{4}{(2s^2+3s+2)(s^2+6s+25)}$$

(b)
$$\frac{-4s-6}{2s^2+3s+2} + \frac{4}{(2s^2+3s+2)(s^2+6s+25)}$$

(c)
$$\frac{-4s-4}{2s^2+3s+2} + \frac{4}{(2s^2+3s+2)(s^2+6s+25)}$$

(d)
$$\frac{-4s+3}{2s^2+3s+2} + \frac{4}{(2s^2+3s+2)(s^2+6s+25)}$$

(e)
$$\frac{4s-4}{2s^2+3s+2} + \frac{s+3}{(2s^2+3s+2)(s^2+6s+25)}$$

8. Find the Laplace transform of

$$g(t) = \begin{cases} t+1, & 0 \le t < 6, \\ 0, & 6 \le t. \end{cases}$$

(a)
$$\frac{e^{-6s}(1+s)}{s^2}$$
 (b) $\frac{e^{-6s}(1+5s)}{s^2}$ (c) $\frac{e^{-6s}(1+7s)}{s^2}$ (d) $\frac{e^{-6s}(5+s)}{s^2}$ (e) $\frac{e^{-6s}(1-7s)}{s^2}$

Part II: Answer each of the following 6 short answer questions. Show all your work for full credit.

Question	9	10	11	12	13	14	15	Total
Points								

9. A tank contains 80 gallons of pure water initially. A salt solution with 2 kg of salt per gallon is pumped into the tank at a rate of 3 gal/min, and the well-stirred mixture is pumped out at a rate of 4 gal/min. Given that the amount of salt Q(t) at time t in the tank satisfies the differential equation

$$\frac{dQ}{dt} = -\frac{4Q}{80 - t} + 6, \quad Q(0) = 0.$$

(a) Solve the initial value problem.

Answer: Q(t) =

(b) When the mixture in the tank is 40 gal, what is the salt **concentration** of the mixture in the tank.

Answer: The concentration is: _____ kg/gal.

[2]

- 10. The rate of change of a rabbit population P(t) at time t (months) is proportional to the square root of P(t). That is $\frac{dP}{dt} = k\sqrt{P},$ for some constant k > 0. (a) At time t = 0 the population numbers 100 rabbits and it is increasing at the rate of 21 rabbits per month. Determine k. Answer: $k = \underline{\hspace{1cm}}$ (b) How many rabbits will there be one year later? Answer: The number of rabbits after one year is _____ 11. (a) Find a fundamental set of solutions $\{y_1(t), y_2(t)\}$ to the differential equation: $y'' + \mu^2 y = 0,$ where μ is a positive constant. Answer: A fundamental set is _____ [2 pts] (b) Justify why your solution to (a) are linearly independent;
 - (c) Determine all a, b, c, d so that

Answer: A reason is _____

$$f_1(t) = ay_1 + by_2,$$

$$f_2(t) = cy_1 + dy_2$$

	becomes a fundamental set of solutions for each set of $\{a, b, c, d\}$ to the differential equation in Justify your answer for full credit.	(a).
	Answer: The condition is	[4]
12.	Given that $y_1(x) = x$ and $y_2(x) = 1 + x^2$ are solution of	
	$(x^2 - 1)y'' - 2xy' + 2y = 0.$	
	(a) Find the Wronskian of y_1 and y_2 .	
	Answer: The Wronskian is	
	(b) Then find the particular solution the nonhomogeneous equation,	
	$(x^2 - 1)y'' - 2xy' + 2y = x^2 - 1.$	

Answer: The particular solution is ______.

13. Let $\mathcal{L}(f(t)) = \frac{1}{(s^2+1)^2}$. Using convolution integral to find	d f(t).
--	---------

Answer: f(t) is _____

[2]

14. Consider a vibrating system described by the initial value problem

$$u'' + \frac{1}{4}u' + 2u = 2\cos\omega t$$
, $u(0) = 0$, $u'(0) = 2$.

(a) Determine the steady-state part of the solution of this problem.

Answer: U(t) is ______ .

(b) Find the amplitude R of the steady-state solution in terms of ω .

Answer: R is _____

15. Extend the following function f(t) to a periodic function of period 2L with f(t+2L) = f(t) so that it can be expanded into a Fourier "sine" series:

$$f(t) = \begin{cases} 1, & 0 < t < L/4; \\ 4t, & L/4 < t < L. \end{cases}$$

(a) The formula of the extended part on the interval -L < t < 0 is :

$$f(t) =$$

(b) The value to which the above Fourier sine converges at t = -L/4 is: _____ [1]

Part III: Answer the two long questions.

16. [15 pts] A impluse force is applied to a spring-mass system at time t = 5 initially at rest at the equilibrium position. Suppose the displacement from equilibrium position of the mass at time t is the solution of the following equation:

$$y'' + 6y' + 13y = 3\delta(t - 5).$$

(a) Find y(t) by solving the given equation with appropriate initial values y(0) and y'(0). [5 pts]

- (b) If an additional impluse force $b\delta(t-5-\pi)$ is also applied to the system at $t=5+\pi$, where b is a constant, what should be the equation of motion of the mass? [2 pts]
- (c) To bring the system to rest at $t = 5 + \pi$, i.e., y(t) = 0, if $t \ge 5 + \pi$, what impluse b should one choose?

17. Suppose a metal rod of length 25 cm with thermal diffusivity $\alpha^2 = 1/4$. Let u(x, t) be the temperature distribution function at $x, 0 \le x \le 25$ and time $t \ge 0$. Suppose it is given that the initial temperature distribution of the metal rod is given by

$$u(x, 0) = \begin{cases} 5, & 0 < x < 10; \\ x, & 10 < x < 25. \end{cases}$$

It is known that the function u(x, t) satisfies the heat equation

$$\alpha^2 u_{xx} = u_t, \quad 0 \le x \le 25, \ t > 0.$$

It is known that the heat equation can be solved by the method of separation of variable by assuming that u(x, t) = X(x)T(t).

(a) If the temperatures at both ends of the metal rod are at 0°C. Write down a boundary value problem for X(x). [2]

(b) Write down all possible solutions of X(x). [2]

- (c) Write down a differential equation for T(t). [1]
- (d) Solve for all possible T(t) from the above equation. [2]
- (e) Write down a series solution to the above heat equation in part (a) which involves an infinite number of coefficients.

(f) Calculate the coefficients in the infinite expansions of functions above.

[1]

(g) Suppose we now raise the temperature of one end of the metal rod to 20° C, that is, u(25, t) = 20, t > 0, and we define

$$v(x) = \lim_{t \to \infty} u(x, t), \quad x, 0 < x < 25,$$

Use the original heat equation in (a) above to write down a boundary value problem for v(x). [3].

- (h) Solve the corresponding boundary value problem for v(x) above.
 - (i) Write down a series solution to the above heat equation, leaving the coefficients in an integral forms. Do **no** need to evaluate the integrals [4]

(j) Find $\lim_{t\to\infty} u(x, t)$ for each x, 0 < x < 25, as $t\to\infty$ under the above assumption. Does it match with the v(x) found above? [2]

Table 1: Laplace transforms

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	1	$\frac{1}{s}$, $s > 0$
2	e^{at}	$\frac{1}{s-a}$, $s>a$
3	t^n , $n = positive integer$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
4	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$
5	$\sin at$	$\frac{a}{s^2 + a^2}, \qquad s > 0$
6	$\cos at$	$\frac{s}{s^2 + a^2}, \qquad s > 0$
7	$\sinh at$	$\frac{a}{s^2 - a^2}, \qquad s > a $
8	$\cosh at$	$\frac{s}{s^2 - a^2}, \qquad s > a $
9	$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}, \qquad s > a$
10	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$
11	$t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > 0$
12	$u_c(t)$	$\frac{e^{-cs}}{s}, \qquad s > 0$
13	$u_c(t) f(t-c)$	$e^{-cs} F(s)$
14	$e^{ct} f(t)$	F(s-c)
15	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right), c > 0$
16	$\int_0^t f(t-\tau) g(\tau) d\tau$	F(s) G(s)
17	$\delta(t-c)$	e^{-cs}
18	$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
19	$(-t)^n f(t)$	$F^{(n)}(s)$