
Math150-L2 Final Exam Answers, Spring 06

Part I: MC Questions

Version A

Question 1 2 3 4 5 6 7 8 9 Total

Answer d b d c e a e b d

Version B

Question 1 2 3 4 5 6 7 8 9 Total

Answer c e c a b d b e c

Answers of Version A MC Questions

1. Suppose that the population p(t) of certain field mice after t years from now is described by the
initial value problem

dp

dt
= 0.5p − 500 , p(0) = 800 .

Find the time when the population just become extinct; i.e., the time T (in years) when p(T ) = 0.

(a) 1.2476 (b) 1.8637 (c) 2.7645 (d) 3.2189 (e) 4.2537

Answer: (d).

∫

dp

p − 1000
=

∫

1

2
dt ⇐⇒ p(t) = 1000 + Cet/2. p(0) = 800 implies C = −200, and

hence p(t) = 1000 − 200et/2.
p(t) = 0 ⇐⇒ t = 2 ln 5 = 3.2189

2. For which of the following functions M(x, y) is the equation

M(x, y) + (x3 + 8y − 3x)
dy

dx
= 0

an exact equation?

(a) x(y2 + 1) (b) 3y(x2 − 1) (c) x2 − 2y2 (d) x2 + y (e) xy

Answer: (b).
∂(3y(x2 − 1))

∂y
= 3x2 − 3 =

∂(x3 + 8y − 3x)

∂x
.
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3. By the method of undetermined coefficients, there is a particular solution of the equation

y′′ − 4y′ − 5y = (1 + 2t2 − t3)e5t

which has the form u = p(t)e5t, where p(t) is a polynomial. The degree of p(t) is:

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

Answer : (d). 5 is a single root of the characteristic equation r2 − 4r − 5 = (r − 5)(r + 1) = 0.
Hence the degree of p(t) is 4. Or by directly putting u = p(t)e5t into the equation to see the degree
of p(t):

(p′′e5t + 10p′e5t + 25pe5t) − 4(p′e5t + 5pe5t) − 5pe5t = (1 + 2t2 − t3)e5t

p′′ − 6p′ = 1 + 2t2 − t3

4. A periodic external force F (t) = 9 cos(ωt) is applied to a undamped spring-mass system so that the
equation of motion of the mass is

2y′′ + 6y = 9cos(ωt) .

Which of the following values of ω will cause an unbounded oscillation (resonance) of the mass?

(a) 2
3 (b) 3 (c)

√
3 (d)

√

2
3 (e) none of the above

Answer: (c). The natural frequency is
√

6
2 =

√
3.

5. Which of the following differential equations has e−2t cos
√

3t and e−2t sin
√

3t as a pair of funda-
mental solutions?

(a) y′′ + 2y′ + 3y = 0 (b) y′′ − 2y′ + 3y = 0 (c) y′′ + 2y′ − 3y = 0

(d) y′′ + 4y′ − 7y = 0 (e) y′′ + 4y′ + 7y = 0

Answer: (e). −2 ±
√

3 i are the roots of the characteristic equation r2 + 4r + 7 = 0.

6. The Wronskian W (y1, y2)(t) of a pair of fundamental solutions y1(t), y2(t) of the equation

t2y′′ − 3y′ + (1 + t2)y = 0

has value W (y1, y2)(3) = 3 at t = 3. Find the value W (y1, y2)(6).

(a) 3
√

e (b)
√

3 e (c) 3e (d) 3e2 (e) 6e

Answer: (a). y′′ − 3
t2 y′ + 1+t2

t2 y = 0. Thus W = Ce
∫

3

t2
dt = Ce−3t−1

.

3 = W (3) = Ce−1 ⇐⇒ C = 3e

W (6) = 3e · e−3/6 = 3e1/2 .
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7. Find the Laplace transform of the piecewise defined function

f(t) =

{

t, 0 ≤ t < 3,

2t − 3, t ≥ 3

(a)
3e−3s(1 − s)

s2
(b)

3 − 3s

s2
(c)

1 + 2e−3s − 3s

s2

(d)
1 + e−3s(2s − 3)

s2
(e)

1 + e−3s

s2

Answer: (e). f(t) = t + u3(t)(t − 3), and hence

L{f(t)} = L{t} + L{u3(t)(t − 3)} =
1

s2
+

e−3s

s2

8. Find the Laplace transform Y (s) = L{y(t)} of the solution of the following initial value problem:

2y′′ − 4y′ + 5y = e−3tcos 2t, y(0) = −1, y′(0) = 2 .

(a) Y (s) =
−2s + 2

2s2 − 4s + 5
+

s + 3

(2s2 − 4s + 5)(s2 + 6s + 13)

(b) Y (s) =
−2s + 8

2s2 − 4s + 5
+

s + 3

(2s2 − 4s + 5)(s2 + 6s + 13)

(c) Y (s) =
−2s + 4

2s2 − 4s + 5
+

2

(2s2 − 4s + 5)(s2 + 6s + 13)

(d) Y (s) =
−2s

2s2 − 4s + 5
+

s + 3

(2s2 − 4s + 5)(s2 + 6s + 13)

(e) Y (s) =
−2s + 3

2s2 − 4s + 5
+

2

(2s2 − 4s + 5)(s2 + 6s + 13)

Answer: (b). Taking the Laplace transform of the equation,

2(s2Y (s) − s(−1) − 2) − 4(sY (s) − (−1)) + 5Y (s) =
s + 3

(s + 3)2 + 4

(2s2 − 4s + 5)Y (s) = −2s + 8 +
s + 3

s2 + 6s + 13

Y (s) =
−2s + 8

2s2 − 4s + 5
+

s + 3

(2s2 − 4s + 5)(s2 + 6s + 13)
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9. Which of the following convolution integral is a solution of the initial value problem

d2y

dt2
+ 4y = 3uπ(t)f(t − π) , y(0) = 0, y′(0) = 0

where uπ(t) is a unit step function.

(a) y(t) =

∫ t

0

3

2
sin 2τf(t − τ)dτ

(b) y(t) =

∫ t

0

3

2
cos 2(t − τ)f(τ)dτ

(c) y(t) =

∫ t

0

3

2
δ(t − τ + π) sin 2(t − τ)f(τ)dτ

(d) y(t) =

∫ t

0

3

2
uπ(t − τ) sin 2(t − τ)f(τ)dτ

(e) y(t) =

∫ t

0

3

2
uπ(t) sin 2tf(t − τ)dτ

Answer: (d). Taking the Laplace transform of the equation,

(s2 + 4)Y (s) = 3e−πsL{f(t)} ⇐⇒ Y (s) =
3e−πs

s2 + 4
L{f(t)} = L

{

3

2
uπ(t) sin 2(t − π)

}

L{f(t)}

Y (s) = L
{

3

2
uπ(t) sin 2t ∗ f(t)

}

= L
{

∫ t

0

3

2
uπ(t − τ) sin 2(t − τ)f(τ)dτ

}

Part II: Short Questions.

10. [8 pts] The homogeneous equation (1− t)y′′+ ty′−y = 0 has two solutions y1(t) = t and y2(t) = et.

(a) Find the Wronskian of y1 and y2.

Solution:

W (y1, y2)(t) =

∣

∣

∣

∣

y1 y2

y′1 y′2

∣

∣

∣

∣

=

∣

∣

∣

∣

t et

1 et

∣

∣

∣

∣

= tet − et = (t − 1)et

Answer: The Wronskian is W (y1, y2)(t) = (t − 1)et [2 pts]

(b) Find a particular solution of the nonhomoegeneous equation

(1 − t)y′′ + ty′ − y = 2(t − 1)3e−t

which has the form y(t) = tu(t) + etv(t) for some functions u(t) and v(t). (You may leave you

answers in terms of some integrals.)

Solution: The equation in standard form: y′′ +
t

1 − t
y′ − 1

1 − t
y = −2(t − 1)2e−t.

u(t) = −
∫

g(t)y2(t)

W (t)
dt =

∫

2(t − 1)2e−tet

(t − 1)et
dt = 2

∫

(t − 1)e−tdt

(

u(t) = −2te−t + C1

)
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v(t) =

∫

g(t)y1(t)

W (t)
dt = −

∫

2(t − 1)2e−tt

(t − 1)et
dt = −2

∫

t(t − 1)e−2tdt

(

v(t) = t2e−2t + C2

)

Answer: y(t) = 2t

∫

(t − 1)e−tdt − 2et

∫

t(t − 1)e−2tdt (= −t2e−t) [6 pts]

11. [8 pts] Find the solution of the boundary value problem: y′′ + y = 2x, y(0) = 2, y
(

π
2

)

= 1 .

Solution: The general solution of the homogeneous equation y′′ + y = 0 is C1 cos x + C2 sinx.
An obvious particular solution of the nonhomogeneous equation y′′+y = 2x is yp = 2x. The general
solution of the nonhomogeneous equation is thus

y = C1 cos x + C2 sin x + 2x

Putting in the boundary values:

2 = y(0) = C1 cos 0 + C2 sin 0 + 2(0), 1 = y
(π

2

)

= C1 cos
π

2
+ C2 sin

π

2
+ 2

(π

2

)

we have C1 = 2, C2 = 1 − π.

Answer: The solution is y(x) = 2 cos x + (1 − π) sin x + 2x

12. [8 pts] After extending the function defined by f(x) = x3, for −2 ≤ x ≤ 2, to a function of period
4 on the whole real line, the resulting periodic function has a Fourier series expansion, containing
only sine terms.

(a) Find this Fourier series. (Hint: use an appropriate integration formula in the formula sheet.)

Solution: The Fourier series is:

∞
∑

n=1

bn sin
nπx

2
, where

bn =
1

2

∫ 2

−2
x3 sin

nπx

2
dx

(

or

∫ 2

0
x3 sin

nπx

2
dx

)

=
1

2

[

− 2

nπ
x3 cos

nπx

2
+

( 2

nπ

)2
(3x2) sin

nπx

2
+

( 2

nπ

)3
(6x) cos

nπx

2
−

( 2

nπ

)4
(6) sin

nπx

2

]2

−2

=

(

− 16

nπ
+

96

n3π3

)

cos nπ = (−1)n+1 16

nπ

(

1 − 6

n2π2

)

Answer: The Fourier series is:
∞
∑

n=1

(−1)n+1 16

nπ

(

1 − 6

n2π2

)

sin
nπx

2
[6 pts]

(b) At x = 2, the Fourier series converges to the value 0 . [2 pts]
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13. [10 pts] The heat equation problem

∂2u

∂x2
=

∂u

∂t

u(0, t) = u(2π, t) = 0, u(x, 0) = 3x, (0 < x < 2π)

can be solved by considering u(x, t) = X(x)T (t) as a product.

(a) Show that the function e−λ2t sinλx satisfies the heat equation
∂2u

∂x2
=

∂u

∂t
for any constant λ.

Solution: By computing the partial derivatives,

∂
(

e−λ2t sin λx
)

∂x
= λe−λ2t cos λx

∂2
(

e−λ2t sin λx
)

∂x2
= −λ2e−λ2t sinλx

we have
∂
(

e−λ2t sin λx
)

∂t
= −λ2e−λ2t sinλx =

∂2
(

e−λ2t sinλx
)

∂x2

[2 pts]

(b) Show that there is a positive sequence λn so that un(x, t) = e−λ2
n
t sin λnx satisfies the condition

u(0, t) = u(2π, t) = 0.

Solution: u(x, t) = e−λ2t sin λx obviously satisfies u(0, t) = 0. By the boundary value at
x = 2π, we have e−λ2t sin 2λπ = 0. For postive λ > 0,

sin 2λπ = 0 ⇐⇒ 2λπ = nπ

where n = 1, 2, 3, . . .. So the positive sequence λn is n
2 , n = 1, 2, 3, . . ..

Answer: λn = n
2 , where n = 1, 2, 3, . . . . [3 pts]

(c) Using superposition of these basic solutions, i.e.,
∞

∑

n=1

cnun(x, t), and the Fourier sine series of

u(x, 0) = 3x, find the solution of the heat equation problem.

Solution: u(x, t) =
∑

∞

n=1 cne−n2t/4 sin nx
2 satisfies u(0, t) = 0 = u(2π, t). To satisfy also

the boundary condition u(x, 0) = 3x, just pick cn to be the corresponding coefficients of the
Fourier sine series of the function 3x:

cn =
1

2π

∫ 2π

−2π
3x sin

nx

2
dx =

1

2π

[

− 2

n
(3x) cos

nx

2
+

( 2

n

)2
(3) sin

nx

2

]2π

−2π

cn =
12(−1)n+1

n

Answer: the solution is u(x, t) =

∞
∑

n=1

12(−1)n+1

n
e−n2t/4 sin

nx

2
[5 pts]
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Part III: Long Questions

14. [12 pts] A damped forced vibration of a mass is described by the following differential equation:

y′′ + 4y′ + 3y = 3 sin t.

(a) Find the general solution of the equation.

Solution: r2 + 4r + 3 = (r + 3)(r + 1) = 0 ⇐⇒ r = −1, −3 . The general solution of the
corresponding homogeneous equation is C1e

−t + C2e
−3t.

To find a particular solution of the form yp = A cos t + B sin t, put yp into the equation:

(−A cos t − B sin t) + 4(−A sin t + B cos t) + 3(A cos t + B sin t) = 3 sin t

(2A + 4B) cos t + (−4A + 2B) sin t = 3 sin t

{

A + 2B = 0
−4A + 2B = 3

⇐⇒
A = −3

5

B = 3
10

The general solution of the given equation is

y = C1e
−t + C2e

−3t − 3

5
cos t +

3

10
sin t

Answer: The general solution is y(t) = C1e
−t + C2e

−3 − 3
5 cos t + 3

10 sin t [8 pts]

(b) Explain why the motion of the mass is approximately a damped free vibration as t → +∞.
[2 pts]

Solution: As t → +∞, e−t → 0 and e−3t → 0. Thus y(t) is approximately the periodic
vibration −3

5 cos t + 3
10 sin t for large t.

(c) Find the amplitude of the damped free vibration which approximates the motion of the mass
for large t.

Solution: The amplitude of the periodic vibration −3
5 cos t + 3

10 sin t is

√

(3

5

)2
+

( 3

10

)2
=

3

10

√
5

[2 pts]
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15. [18 pts] A damped forced vibration of a mass is described by the initial value problem

y′′ + 3y′ + 2y = 4e−5t, y(0) = 0, y′(0) = 0 .

(a) Solve the initial value problem by the method of Laplace transform. [7 pts]

Solution: Taking Laplace transforms,

(s2 + 3s + 2)Y (s) =
4

s + 5

Y (s) =
4

(s + 1)(s + 2)(s + 5)
=

A

s + 1
+

B

s + 2
+

C

s + 5

where
4 = A(s + 2)(s + 5) + B(s + 1)(s + 5) + C(s + 1)(s + 2)

Putting in s = −1, we have 4 = 4A; i.e., A = 1.
Putting in s = −2, we have 4 = −3B; i.e., B = −4

3 .
Putting in s = −5, we have 4 = 12C; i.e., C = 1

3 .

Y (s) =
1

s + 1
− 4

3

1

s + 2
+

1

3

1

s + 5
= L

{

e−t
}

− 4

3
L

{

e−2t
}

+
1

3
L

{

e−5t
}

y(t) = e−t − 4

3
e−2t +

1

3
e−5t

(b) Suppose the external force function 4e−5t is cut off at t = 3, and an impluse force is applied
to the mass at t = 6, so that the equation of motion is given by

y′′ + 3y′ + 2y = 4e−5t − 4u3(t)e
−5t + 2δ(t − 6), y(0) = 0, y′(0) = 0 .

(i) Find the solution of the new initial value problem. [8 pts]

Solution:

y′′ + 3y′ + 2y = 4e−5t − 4e−15u3(t)e
−5(t−3) + 2δ(t − 6)

(s + 1)(s + 2)Y (s) =
4

s + 5
− 4e−15e−3s

s + 5
+ 2e−6s

Y (s) = (1 − e−15e−3s)
4

(s + 1)(s + 2(s + 5)
+ 2e−6s · 1

(s + 1)(s + 2)

Y (s) = (1 − e−15e−3s)

[

1

s + 1
− 4

3
· 1

s + 2
+

1

3
· 1

s + 5

]

+ 2e−6s

[

1

s + 1
− 1

s + 2

]

Y (s) = (1 − e−15e−3s)L
{

e−t − 4

3
e−2t +

1

3
e−5t

}

+ 2e−6sL
{

e−t − e−2t
}

y(t) = e−t − 4

3
e−2t +

1

3
e−5t − e−15u3(t)

[

e−(t−3) − 4

3
e−2(t−3) +

1

3
e−5(t−3)

]

+2u6(t)
[

e−(t−6) − e−2(t−6)
]

(ii) Are there jumps in the velocity of the mass at the time t = 3 and t = 6 ? If yes, write
down the sudden change in velocity respectively. [3 pts]

Solution: No velocity jump at t = 3; but a jump of y′(6+)−y′(6−) = 2 at t = 6 caused
by the impluse force.


