
MATH4822E FOURIER ANALYSIS AND APPLICATIONS

CHAPTER 1 INTRODUCTION

EDMUND Y.-M. CHIANG

1. Introduction

Joseph Fourier first published his theory in a book entitled “The Analytic Theory of Heat”
in 1822. Since then the Fourier series and related topics have been standard tools in, but
not limited to, physical and engineering sciences. As a results there are numerous monographs
written on the subject. A quick search in Amazon.com under the title “Fourier” or in Wikepedia
will return in hundreds of items. You may find numerous videos about the Fourier series even
from UTube.

This course draws heavily on the following texts:

• G. P. Tolstov, “Fourier Series”, Dover publication, 1976,
• G. B. Folland, “Fourier Analysis and its Applications”, Brooks/Cole Publishing Com-
pany, 1992. Republished by American Mathematical Society,

• D. M. Bressoud, “A Radical Approach to Real Analysis”, 2nd Ed., Mathematical Asso-
ciation of America, Washington, DC, 2007

We may quote directly from these texts from time to time. Full credits will be given to these
authors when we do so. These notes may contain typos/errors and you are encouraged to let
me know when you have spotted them. This is course will teach Fourier series as a technique
of solving some important physical science problems, like what Fourier did almost two centuries
ago, but we put equal weight in the vigorous reasoning behind. So it is also a mathematical
analysis course. We will review all basics about mathematical analysis in the next chapter.
This course is also about mathematics culture, both the past and the present. For we cannot
really appreciate the value and place of the subject matter in science today if we do not know
something of the past and the cause of investigation. Some knowledge of history will help us not
to loss sight easily when scientific advancement has been accumulating at a very high speed at
present. As a result, we may better position ourselves in exploring the unknown in the future.
In fact, the story that set off by Fourier has just barely begun, despite its long history. We may
have occasions to describe some new development in due course.

A short biography of Joseph Fourier

• Born on 21st March 1768, died on 16th May 1830.
• French mathematician, physicist. .
• Discovered the underlying equations for heat conduction
• Discovered new mathematical methods and techniques for solving these equations
• Applied his results to various situations and problems
• Used experimental evidence to test and check his results
• Discoverer of greenhouse effect
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• He took a prominent part in his own district in promoting the French Revolution, serving
on the local Revolutionary Committee. He was imprisoned briefly during the Terror but
in 1795 was appointed to the école Normale Supérieure, and subsequently succeeded
Joseph-Louis Lagrange at the école Polytechnique.(Wikipedia)

• Fourier accompanied Napoleon Bonaparte on his Egyptian expedition in 1798, as scien-
tific adviser, and was appointed secretary of the Institut d’égypte.

• His name is one of the 72 names inscribed on the Eiffel Tower.

The Analytic Theory of Heat (1822)

Primary causes are unknown to US; but are subject to simple and
constant laws, which may be discovered by observation, the study of
them being the object of natural philosophy. Heat, like gravity, pene-
trates every substance of the universe, its rays occupy all parts of space.
The object of our work is to set forth the mathematical laws which this
element obeys. The theory of heat will hereafter form .one of the most
important branches of general physics.

Crisis in Mathematics: Fourier Series

This section is taken directly from Bressoud.

The crisis struck four days before Christmas 1807. The edifice of calculus was shaken to
its foundations. In retrospect, the difficulties had been building for decades. Yet while most
scientists realized that something had happened, it would take fifty years before the full impact
of the event was understood. the nineteenth century would see ever expanding investigations
into the assumptions of calculus, an inspection and refitting of the structure from the footings
to the pinnacle, so thorough a reconstruction that calculus was given a new name: Analysis.
Few of those who witnessed the incident of 1807 would have recognized mathematics as it stood
one hundred years later. the twentieth century was to open with a redefinition of the integral
by Henri Lebesgue and an examination of the logical underpinnings of arithmetic by Bertrand
Russell and Alfred North Whitehead, both direct consequences of the events set in motion in
that critical year. The crisis was precipitated by the deposition at the Institut de France in
Paris of a manuscript, Theory of the Propagation of Heat in Solid Bodies, by the 39-year old
prefect of the department of Isère, Joseph Fourier.

Background to the Problem

Fourier began his investigations with the problem of describing the flow of heat in a very long
and thin rectangular plate or lamina. He considered the situation where there is no heat loss
from either face of the plate and the two long sides are held at a constant temperature which
he set equal to 0. Heat is applied in some known manner to one of the short sides, and the
remaining short side is treated as infinitely far away.
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Figure 1. Fourier’s thin plate.

This sheet can be represented in the wx−plane by a region bounded below by x = −1, above
by x = 1, and on the left by w = 0. It was a constant temperature of 0 along the top and
bottom edges so that if z(w, x) represents the temperature at the point (w, x), then

(1.1) z(w, −1) = z(w, 1) = 0, w > 0.

The known temperature distribution along the left-hand edge is described as a function of x:

(1.2) z(0, x) = f(x).

Fourier restricted himself to the case where f is an evenfunction of x: f(−x) = f(x). The
first and most important example he considered was that of a constant temperature normalized
to

(1.3) z(0, x) = f(x) = 1.

The task was to find a stable solution under these constraints.

Fourier began by demonstrating that a stationary solution satisfies the differential equation
now known as Laplace’s equation:

(1.4)
∂2z

∂w2
+
∂2z

∂x2
= 0

Pierre Simon Laplace (1749-1827) and others had come across the equation in various contexts.
In modern terminology, it is simply the observation that when the flow of heat (∇z) has reached
a state of equilibrium, it is incompressible (∇·∇z = 0). The equation is different from what we
call heat equation with the time evolution is taken into consideration.

To solve his partial differential equation (1.4), Fourier introduced a technique that is standard
today. He researched for special solutions of the form

(1.5) z = φ(w)ψ(x).

When z is of this form, equation (1.4) reduces to

(1.6) φ′′(w)ψ(x) + φ(w)ψ′′(x) = 0,
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or, assuming the second derivatives are not zero. That is,

φ(w)

φ′′(w)
+

ψ(x)

ψ′′(x)

or

(1.7)
φ(w)

φ′′(w)
= −

ψ(x)

ψ′′(x)
.

The left side of equation (1.7) is independent of x while the right side is independent of w. This
implies that both sides are independent of both w and x, and so each of these ratios is constant.
It follows that the sign of ψ(x) is either always the same as the sign of ψ′′(x) or is always the
opposite. Equation (1.1) tells us that

ψ(−1) = ψ(1) = 0,

and so
ψ(x)

ψ′′(x)
must be negative:

φ(w)

φ′′(w)
= A > 0,

ψ(x)

ψ′′(x)
= −A < 0,

for some positive constant A. Fourier set A = 1/n2 and solved for φ(w) = c1e
−nw + c3e

nw and
ψ(x) = c2 cosnx+ c4 sinnx. The coefficient of sinnx must be zero because ψ is an even function
of x. He then argued that c3 must be zero because the temperature will approach 0 as we move
away from the source of heat at w = 0 at the x−axis. He had found a solution:

z(w, x) = ae−nw cosnx,

where a and n are unknown constants. The general solution is a sum of such functions:

(1.8) z = a1e
−n1w cosn1x+ a2e

−n2w cosn2x+ a3e
−n3w cosn3x+ . . . .

Equation (1.1) holds if and only if each ni is an odd multiple of
π

2
:

n1 =
π

2
, n2 =

3π

2
, n3 =

5π

2
, · · ·

The temperature distribution along the left-hand edge, z(0, x) = f(x), implies that

f(x) = a1e
−n1·0 cosn1x+ a2e

−n2·0 cosn2x+ a3e
−n3·0 cos n3x+ . . .

= a1 cos
πx

2
+ a2 cos

3πx

2
+ a3 cos

5πx

2
+ · · · ,

(1.9)

Fourier had reduced his problem to that of taking an even function and expressing it as a possibly
infinite sum of cosines, what we today call a Fourier series. His next step was to demonstrate
how to accomplish this.
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Here was the crux of the crisis. Infinite sums of trigonometric functions had appeared before.
Daniel Bernoulli (1700-1782) proposed such sums in 1753 as solutions to the problem of modelling
the vibrating string. They had been summarily dismissed by the greatest mathematician of the
time, Leonhard Euler (1707-1783). Perhaps Euler scented the danger they presented to his
understanding of calculus. the committee that reviewed Fourier’s manuscript: Laplace, Joseph
Louis Lagrange (1736-1813), Sylvestre Francois Lacroix (1765-1843), and Gaspard Monge (1746-
1818), echoed Euler’s dismissal in an unenthusiastic summary written by Simeon Denis Poisson
(1781-1840). Lagrange was later to make his objections explicit. Well into the 1820s, Fourier
series would remain suspect because they contradicted the established wisdom about the nature
of functions.

Fourier did more than suggest that the solution to the heat equation lay in his trigonometric
series. He gave a simple and practical means of finding those coefficients, the ai. In so doing,
he produced a vast array of verifiable solutions to specific problems. Bernoulli’s proposition
could be debated endlessly with little effect for it was only theoretical. Fourier’s method could
actually be implemented. It could not be rejected without forcing the question of why it seemed
to work.

There are problems with Fourier series, but they are subtler than anyone realized in that winter
of 1807-08. It was not until the 1850s that Berhard Riemann (1826-1866) and Karl Weierstrass
(1815-1897) would sort out the confusion that had greeted Fourier and clearly delineate the real
questions.

Solution and Objections

While Fourier described the cosine expansion of many different even functions, all of the
relevant techniques and difficulties can be found in his first example: the expansion of f(x) = 1.
Several different approaches to finding the coefficients, the an, are proposed. The one that has
become standard is to use the observation that

(1.10)

∫

1

−1

cos
((2m− 1)πx

2

)

cos
((2n− 1)πx

2

)

dx =

{

0 if m 6= n,

1 if m = n.

We follow Fourier and assume that our even function f can be expressed as a cosine series:

f(x) = a1 cos
(πx

2

)

+ a2 cos
(3πx

2

)

+ a3 cos
(5πx

2

)

+ · · ·

=

∞
∑

m=1

am cos
((2m− 1)πx

2

)

.
(1.11)

Fourier now argues that an can be calculated by evaluating the following integral:
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∫

1

−1

cos
((2n− 1)πx

2

)

dx

=

∫

1

−1

[

∞
∑

m=1

am cos
((2m− 1)πx

2

)]

cos
((2n− 1)πx

2

)

dx

=
∞
∑

m=1

am

∫

1

−1

cos
((2m− 1)πx

2

)

cos
((2n− 1)πx

2

)

dx

= a1 · 0 + a2 · 0 + a3 · 0 + · · ·+ an · 1 + an+1 · 0 + . . .

= an.

(1.12)

For our particular case, f(x) = 1, the coefficients are

an =

∫

1

−1

1 · cos
((2n− 1)πx

2

)

dx

=
2

(2n− 1)π

[

sin
((2n− 1)πx

2

)]1

−1

=
4

(2n− 1)π
(−1)n−1.

It follows that

(1.13) f(x) = 1 =
4

π

[

cos
πx

2
−

1

3
cos

3πx

2
+

1

5
cos

5πx

2
−

1

7
cos

7πx

2
+ · · ·

]

.

We recall that our original problem was to find the distribution of heat, z(w, x), when we hold
the side at x = 0 at the constant temperature 1 and the sides at x = −1 and x = 1 at the
constant temperature 0. The solution (see Figure 2) is given by

z(w, x) =
4

π

[

e−
πw

2 cos
πx

2
−

1

3
e−

3πw

2 cos
3πx

2

+
1

5
e−

5πw

2 cos
5πx

2
−

1

7
e−

7πw

2 cos
7πx

2
+ · · ·

]

.

(1.14)

Equation (1.13) has an interesting corollary. If we set x = 0 and multiply both sides by π, then
we see that

(1.15) π = 4
(

1−
1

3
+

1

5
−

1

7
+ · · ·

)

.
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Figure 2. f(x) =
4

π

[

cos
πx

2
−

1

3
cos

3πx

2
+ · · ·

]

.

The Objections

Fourier was quick to realize that equation (1.13) is only valid for −1 < x < 1. If we replace
x by x+ 2 in the n−th summand, then it changes sign:

cos
((2n− 1)π(x+ 2)

2

)

= cos
((2n− 1)πx

2
+ (2n− 1)π

)

= − cos
((2n− 1)πx

2

)

.

It follows that for x between 1 and 3, equation (1.13) becomes

(1.16) f(x) = −1 =
4

π

[

cos
πx

2
−

1

3
cos

3πx

2
+

1

5
cos

5πx

2
−

1

7
cos

7πx

2
+ · · ·

]

In general, f(x+ 2) = −f(x). The function represented by this cosine series has a graph which
alternates between −1 and +1 as shown in Figure 2.

This is a very strange behaviour. Equation (1.13) seems to be saying that our cosine series
is the constant function 1. Equation (1.16) says that our series is not constant. Moreover,
to the mathematicians of 1807, Figure 2 did not look like the graph of a function. Functions
were polynomials; roots, powers, and logarithms; trigonometric functions and their inverses; and
whatever could be built up by addition, subtraction, multiplication, division, or composition of
these functions. Functions had graphs with unbroken curves. Functions had derivatives and
Taylor series. Fourier’s cosine series flew in the face of everything that was known about the
behaviour of functions. Something must be dreadfully wrong.

In retrospect, there is another flaw in his reasoning. That is his assumption in equation (1.12)
that he could interchange his summation and his integral:

∫

1

−1

∑

m

am →
∑

m

am

∫

1

−1

.

It would be some years before anyone realized that this exchange, which is perfectly legal when
the summation is finite, can lead to errors when the summation is infinite.
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The process of finding this cosine series was not where his paper was attacked. It was the cosine
series itself that presented problems. These infinite summations cast doubts on what scientists
thought they knew about the nature of functions, about continuity, about differentiability and
integrability. If Fourier’s disturbing series were to be accepted, then all of calculus needed to be
rethought.

Lagrange thought he found the flaw in Fourier’s work in the question of convergence: whether
the summation approaches a single value as more terms are taken. He asserted that the cosine
series,

cos
πx

2
−

1

3
cos

3πx

2
+

1

5
cos

5πx

2
−

1

7
cos

7πx

2
+ · · · ,

does not have a well-defined value for all x. His reason for believing this was that the series
consisting of the absolute values of the coefficients,

1 +
1

3
+

1

5
+

1

7
+

1

9
+ · · · ,

grows without limit. In fact, Fourier’s cosine expansion of f(x) = 1 does converges for any x,
as Fourier demonstrated a few years later. The complete justification of the use of these infinite
trigonometric series would have to wait twenty-two years for the work of Peter Gustav Lejeune
Dirichlet (1805-1859), a young German, who, in 1807, when Fourier deposited his manuscript,
was two years old.


