MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

8. The Eigenfunction Method and its Applications to PDEs

8.1. Linear partial differential equations.

General description. Many mathematical physics problems lead to linear partial differential equations:

(8.1)
$$P\frac{\partial^2 u}{\partial x^2} + R\frac{\partial u}{\partial x} + Qu = \frac{\partial^2 u}{\partial t^2},$$

(8.2)
$$P\frac{\partial^2 u}{\partial x^2} + R\frac{\partial u}{\partial x} + Qu = \frac{\partial u}{\partial t},$$

where P,R and Q are functions of x, and u = u(x,t).

Here is a list of partial differential equations researchers often encounter.

(I) Heat Flow in a Rod:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad a = K/c\rho, \ (K = \text{thermal conductivity}, \ c = \text{heat capacity}, \ \rho = \text{density})$$

(II) Vibration String

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \qquad a^2 = T/\rho \qquad (T \text{ is Tension, } \rho \text{ is mass per unit length})$$
$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + \frac{F(u,t)}{\rho} \qquad (\text{Forced vibration})$$

(II) Vibration of Rectangular Membrane

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \qquad c^2 = T/\rho \quad (T = \text{Tension}, \ \rho = \text{surface density}).$$

(III) Vibration of Circular Membrane

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right)$$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right) + \frac{F(r, \theta, t)}{\rho} \quad \text{(Forced Vibration)}$$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} \right) \quad \text{(independent of direction, that is, } \theta)$$

Boundary and initial value conditions. However, the solutions of these partial differential equations are subjected to *boundary conditions* :

(8.3)
$$\alpha u(a, t) + \beta \frac{\partial u(a, t)}{\partial x} = 0$$
$$\gamma u(b, t) + \delta \frac{\partial u(b, t)}{\partial x} = 0,$$

for $t \ge 0$, $a \le x \le b$, where α , β , γ and δ are constants, and *initial condition*:

(8.4)
$$u(x,0) = f(x),$$

(8.5)
$$\frac{\partial u}{\partial t}(x,0) = g(x),$$

for $a \le x \le b$ where f(x) and g(x) are given continuous functions.

We note that the above boundary and initial conditions can be interpreted as:

$$\begin{split} &\alpha \lim_{x \to a} u(x,t) + \beta \lim_{x \to a} \frac{\partial u}{\partial x}(x,t) = 0, \\ &\gamma \lim_{x \to b} u(x,t) + \delta \lim_{x \to b} \frac{\partial u}{\partial x}(x,t) = 0, \end{split}$$

for $t \geq 0$, and

$$\lim_{t \to 0} u(x,t) = f(x), \qquad \lim_{t \to 0} \frac{\partial u}{\partial t}(x,t) = g(x),$$

for $a \leq x \leq b$. We also assume that $(\alpha, \beta) \neq (0, 0)$ and $(\gamma, \delta) \neq (0, 0)$.

8.2. Separation of variables method. The idea is to write

$$u = u(x,t) = \Phi(x) T(t)$$

where $\Phi(x)$ and T(t) are functions of x and t only respectively. We further assume this u(x, t) satisfies the boundary conditions wrote down above. We substitute u into

$$P \, u_{xx} + R \, u_x + Q \, u = u_{tt}$$

and this gives

$$P\Phi''T + R\Phi'T + Q\Phi T = \Phi T'',$$

or, after dividing both sides by $u = \Phi \cdot T$

$$\frac{P\Phi'' + R\Phi' + Q\Phi}{\Phi} = \frac{T''}{T}.$$

We observe that the left-side of the above equation is a function of x only, and the right-side is a function of t only. We deduce both sides must be equal to the same constant $-\lambda$, say. Thus we obtain

(8.6)
$$P \Phi'' + R \Phi' + Q \Phi + \lambda \Phi = 0,$$

and

$$(8.7) T'' + \lambda T = 0$$

It can easily be verified that the above boundary conditions for Φ becomes

(8.8)
$$\begin{aligned} \alpha \, \Phi(a) + \beta \, \Phi'(a) &= 0\\ \gamma \, \Phi(b) + \delta \, \Phi'(b) &= 0. \end{aligned}$$

The second order ODE (8.6) and the boundary condition (8.8) is called a *Sturm-Liouville boundary* value problem.

For this first equation in Φ above, we will indicate that the Strum-Liouville problem has an infinite set of solutions Φ and their corresponding positive λ , that is,

$$\Phi = \Phi_n(x), \qquad \lambda = \lambda_n, \qquad n = 0, 1, 2, \dots$$

and $\lambda_n \to +\infty$ (see later). In the second equation in T, then

$$T = T_n(t) = A_n \cos(\sqrt{\lambda_n t}) + B_n \sin(\sqrt{\lambda_n})t,$$

 $n = 0, 1, 2, \dots$ Since the PDE is linear, The superposition principle gives

(8.9)
$$u(x,t) = \sum_{k=0}^{\infty} u_k(x,t) = \sum_{k=0}^{\infty} T_k(t)\Phi_k(x),$$

if the series converges and we can differentiate term-by-term twice. We note that the $\{\Phi_n\}$ are in fact orthogonal called the *eigenfunctions* and $\{\lambda_n\}$ are called the *eigenvalues* corresponding to the eigenfunctions.

Substitute the infinite sum of u from (8.9) into the PDEs and after rearranging yields

$$P\frac{\partial^2 u}{\partial x^2} + R\frac{\partial u}{\partial x} + Qu - \frac{\partial^2 u}{\partial t^2}$$

= $P\sum_{k=0}^{\infty} \frac{\partial^2 u_k}{\partial x^2} + R\sum_{k=0}^{\infty} \frac{\partial u_k}{\partial x} + Q\sum_{k=0}^{\infty} u_k - \sum_{k=0}^{\infty} \frac{\partial^2 u_k}{\partial t^2}$
= $\sum_{k=0}^{\infty} \left(P \frac{\partial^2 u_n}{\partial x^2} + R \frac{\partial u_k}{\partial x} + Q u_k - \frac{\partial^2 u_k}{\partial t^2} \right) = 0.$

The u in infinite sum (8.9) should satisfy the initial condition (8.4):

$$f(x) = u(x, 0) = \sum_{k=0}^{\infty} T_k(0) \Phi_k(x),$$

and

$$g(x) = \frac{\partial u}{\partial t}(x,0) = \sum_{k=0}^{\infty} T'_k(0) \Phi_k(x)$$

Thus the problem becomes to expand f and g by the orthogonal family of eigenfunctions $\{\Phi_n\}$:

$$f(x) = \sum_{k=0}^{\infty} C_k \Phi_k(x), \qquad g(x) = \sum_{k=0}^{\infty} c_k \Phi_k(t)$$

and requiring $T_k(0) = C_k$, $T'_k(0) = c_k$ for k = 0, 1, 2, ... If $\lambda > 0$, then we could also work out the A_k and B_k for $T_k(t)$:

$$A_k = C_k, \qquad B_k = \frac{c_k}{\sqrt{\lambda_k}}, \qquad k = 0, \ 1, \ 2, \ \dots$$

8.3. An example of vibrating string.

Example. Equation of Vibrating String

We consider a homogeneous string, stretched, and fastened at both ends (x = 0 and x = l). If the string is displaced by a small displacement and then released, then it will start to vibrate. Let u(x,t) be the vertical displacement at the distance x and time t. We analyze the forces acting on a portion AB of the string: Then the difference of the tensions in the vertical direction is approximately

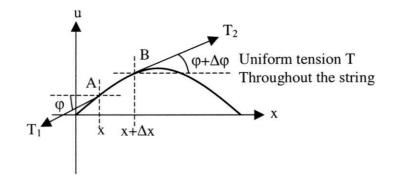


FIGURE 1

measured by:

$$T \cdot \left(\sin(\phi + \Delta\phi) - \sin\phi\right) \approx T \cdot \left(\frac{\sin(\phi + \Delta\phi)}{\cos(\phi + \Delta\phi)} - \frac{\sin\phi}{\cos\phi}\right)$$
$$= T \cdot \left(\tan(\phi + \Delta\phi) - \tan\phi\right) = T \cdot \left(\frac{\partial u(x + \Delta x, t)}{\partial x} - \frac{\partial u}{\partial x}(x, t)\right)$$
$$= T \cdot \frac{\partial^2 u}{\partial x^2}(x + \theta\Delta x, t) \cdot \Delta x, \qquad 0 < \theta < 1.$$

Now the Newton's second law of motion (F = ma) gives

$$\underbrace{\rho \, \Delta x}_{\text{mass density}} \underbrace{\frac{\partial^2 u}{\partial t^2}}_{\text{acceleration}} = \underbrace{T \cdot \frac{\partial^u}{\partial x^2} \, \Delta x}_{\text{force}}, \qquad \rho \text{ is mass per unit length}$$

Dividing both sides by Δx gives

 $\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \qquad a^2 = \frac{T}{\rho}$

which is the equation for *free vibration* of the string. Since both ends of the string are fixed, so the boundary and initial conditions are given, respectively, by

$$u(0,t) = 0 = u(l,t), \qquad t \ge 0$$

and
$$u(x,0) = f(x), \qquad \frac{\partial u}{\partial t}(x,0) = g(x)$$

where f and g are continuous functions and vanish for x = 0, l. We now apply the method of Sturm-Liouville to

$$u = u(x,t) = \Phi(x)T(x)$$

to get

$$\Phi(x) T''(t) = a^2 \Phi''(x) T(t).$$

That is,

$$\frac{\Phi''}{\Phi} = \frac{T''}{a^2T} = -\lambda$$

Thus,

$$\Phi'' + \lambda \Phi = 0,$$

$$T'' + a^2 \lambda T = 0,$$

subject to $u(0,t) = \Phi(0)T(t) = 0 = \Phi(l)T(t) = u(l,t)$ for all $t \ge 0$, that is, subject to $\Phi(0) = 0 = \Phi(l)$. We will assume λ is positive, so we write λ^2 instead:

$$\Phi'' + \lambda^2 \Phi = 0, \qquad T'' + a^2 \lambda^2 T = 0.$$

The general solution of the first equation is

$$\Phi(x) = c_1 \cos \lambda x + c_2 \sin \lambda x.$$

But the boundary condition gives

$$\Phi(0) = 0 = c_1 \cos 0 + c_2 \sin 0 = c_1,$$

that is, $c_1 = 0$, and so

$$0 = \Phi(l) = c_2 \sin \lambda l.$$

But $c_2 \neq 0$, so $\lambda = \frac{\pi k}{l}$. But the above analysis works for all λ_k , $k = 0, 1, 2, \ldots$, we obtain $\lambda_k = \frac{\pi k}{l}$, $k = 0, 1, 2, \ldots$ and

$$\Phi_k(x) = \sin \frac{\pi k x}{l}, \qquad k = 0, \, 1, \, 2, \, \dots$$

Thus, the second differential equation gives

$$T_k(t) = A_k \cos(a\lambda_k t) + B_k \sin(a\lambda_k t), \qquad k = 0, 1, 2, \dots$$

Hence

$$u(x,t) = \sum_{k=0}^{\infty} u_k(x,t)$$
$$= \sum_{k=0}^{\infty} \left[A_k \cos\left(\frac{a\pi kt}{l}\right) + B_k \sin\left(\frac{a\pi kt}{l}\right) \right] \sin\left(\frac{\pi kx}{l}\right)$$

We now apply the initial condition to u(x, t). So we require

$$f(x) = u(x,0) = \sum_{k=0}^{\infty} A_k \sin\left(\frac{\pi kx}{l}\right)$$

and
$$g(x) = \frac{\partial u}{\partial t}(x,0) = \sum_{k=0}^{\infty} B_k\left(\frac{a\pi k}{l}\right) \sin\left(\frac{\pi kx}{l}\right)$$

are just the Fourier series of f and g with respect to $\{\sin \frac{\pi kx}{l}\}$. Thus

$$A_k = \frac{2}{l} \int_0^l f(x) \sin \frac{\pi kx}{l} \, dx,$$
$$B_k = \frac{2}{a\pi k} \int_0^l g(x) \sin \frac{\pi kx}{l} \, dx.$$

To be continued ...