
MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

8. The Eigenfunction Method and its Applications to PDEs

8.1. Linear partial differential equations.

General description. Many mathematical physics problems lead to linear partial differential equations:

(8.1) P
∂2u

∂x2
+R

∂u

∂x
+Qu =

∂2u

∂t2
,

(8.2) P
∂2u

∂x2
+R

∂u

∂x
+Qu =

∂u

∂t
,

where P ,R and Q are functions of x, and u = u(x, t).

Here is a list of partial differential equations researchers often encounter.

(I) Heat Flow in a Rod:

∂u

∂t
= a2

∂2u

∂x2
, a = K/cρ, (K = thermal conductivity, c = heat capacity, ρ = density)

(II) Vibration String

∂2u

∂t2
= a2

∂2u

∂x2
, a2 = T/ρ (T is Tension, ρ is mass per unit length)

∂2u

∂t2
= a2

∂2u

∂x2
+
F (u, t)

ρ
(Forced vibration)

(II) Vibration of Rectangular Membrane

∂2u

∂t2
= c2

(∂2u

∂x2
+
∂2u

∂y2

)

c2 = T/ρ (T = Tension, ρ = surface density).

(III) Vibration of Circular Membrane

∂2u

∂t2
= c2

(∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)

∂2u

∂t2
= c2

(∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)

+
F (r, θ, t)

ρ
(Forced Vibration)

∂2u

∂t2
= c2

(∂2u

∂r2
+

1

r

∂u

∂r

)

(independent of direction, that is, θ)

1
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Boundary and initial value conditions. However, the solutions of these partial differential equations
are subjected to boundary conditions :

(8.3)
αu(a, t) + β

∂u(a, t)

∂x
= 0

γ u(b, t) + δ
∂u(b, t)

∂x
= 0,

for t ≥ 0, a ≤ x ≤ b, where α, β, γ and δ are constants, and initial condition:

u(x, 0) = f(x),(8.4)

∂u

∂t
(x, 0) = g(x),(8.5)

for a ≤ x ≤ b where f(x) and g(x) are given continuous functions.

We note that the above boundary and initial conditions can be interpreted as:

α lim
x→a

u(x, t) + β lim
x→a

∂u

∂x
(x, t) = 0,

γ lim
x→b

u(x, t) + δ lim
x→b

∂u

∂x
(x, t) = 0,

for t ≥ 0, and

lim
t→0

u(x, t) = f(x), lim
t→0

∂u

∂t
(x, t) = g(x),

for a ≤ x ≤ b. We also assume that (α, β) 6= (0, 0) and (γ, δ) 6= (0, 0).

8.2. Separation of variables method. The idea is to write

u = u(x, t) = Φ(x)T (t)

where Φ(x) and T (t) are functions of x and t only respectively. We further assume this u(x, t) satisfies
the boundary conditions wrote down above. We substitute u into

P uxx +Rux +Qu = utt

and this gives
PΦ′′T +RΦ′T +QΦT = ΦT ′′,

or, after dividing both sides by u = Φ · T

PΦ′′ +RΦ′ +QΦ

Φ
=
T ′′

T
.

We observe that the left-side of the above equation is a function of x only, and the right-side is a
function of t only. We deduce both sides must be equal to the same constant −λ, say. Thus we obtain
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(8.6) P Φ′′ +RΦ′ +QΦ+ λΦ = 0,

and

(8.7) T ′′ + λT = 0.

It can easily be verified that the above boundary conditions for Φ becomes

(8.8)
αΦ(a) + βΦ′(a) = 0

γ Φ(b) + δΦ′(b) = 0.

The second order ODE (8.6) and the boundary condition (8.8) is called a Sturm-Liouville boundary
value problem.

For this first equation in Φ above, we will indicate that the Strum-Liouville problem has an infinite
set of solutions Φ and their corresponding positive λ, that is,

Φ = Φn(x), λ = λn, n = 0, 1, 2, . . .

and λn → +∞ (see later). In the second equation in T , then

T = Tn(t) = An cos(
√

λnt) +Bn sin(
√

λn)t,

n = 0, 1, 2, . . . . Since the PDE is linear, The superposition principle gives

(8.9) u(x, t) =

∞∑

k=0

uk(x, t) =

∞∑

k=0

Tk(t)Φk(x),

if the series converges and we can differentiate term-by-term twice. We note that the {Φn} are in
fact orthogonal called the eigenfunctions and {λn} are called the eigenvalues corresponding to the
eigenfunctions.

Substitute the infinite sum of u from (8.9) into the PDEs and after rearranging yields

P
∂2u

∂x2
+R

∂u

∂x
+Qu− ∂2u

∂t2

= P

∞∑

k=0

∂2uk
∂x2

+R

∞∑

k=0

∂uk
∂x

+Q

∞∑

k=0

uk −
∞∑

k=0

∂2uk
∂t2

=

∞∑

k=0

(

P
∂2un
∂x2

+R
∂uk
∂x

+Quk −
∂2uk
∂t2

)

= 0.

The u in infinite sum (8.9) should satisfy the initial condition (8.4):

f(x) = u(x, 0) =

∞∑

k=0

Tk(0)Φk(x),
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and

g(x) =
∂u

∂t
(x, 0) =

∞∑

k=0

T ′

k(0)Φk(x)

Thus the problem becomes to expand f and g by the orthogonal family of eigenfunctions {Φn}:

f(x) =

∞∑

k=0

CkΦk(x), g(x) =

∞∑

k=0

ckΦk(t)

and requiring Tk(0) = Ck, T
′

k
(0) = ck for k = 0, 1, 2, . . . If λ > 0, then we could also work out the Ak

and Bk for Tk(t):

Ak = Ck, Bk =
ck√
λk
, k = 0, 1, 2, . . .

8.3. An example of vibrating string.

Example. Equation of Vibrating String

We consider a homogeneous string, stretched, and fastened at both ends (x = 0 and x = l). If
the string is displaced by a small displacement and then released, then it will start to vibrate. Let
u(x, t) be the vertical displacement at the distance x and time t. We analyze the forces acting on a
portion AB of the string: Then the difference of the tensions in the vertical direction is approximately

Figure 1.

measured by:

T ·
(

sin(φ+∆φ)− sinφ
)

≈ T ·
( sin(φ+∆φ)

cos(φ+∆φ)
− sinφ

cosφ

)

= T ·
(

tan(φ+∆φ)− tanφ
)

= T ·
(∂u(x+∆x, t)

∂x
− ∂u

∂x
(x, t)

)

= T · ∂
2u

∂x2
(
x+ θ∆x, t

)
·∆x, 0 < θ < 1.

Now the Newton’s second law of motion (F = ma) gives
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ρ ∆x
︸ ︷︷ ︸

mass density

∂2u

∂t2
︸︷︷︸

acceleration

= T · ∂
u

∂x2
∆x

︸ ︷︷ ︸

force

, ρ is mass per unit length

Dividing both sides by ∆x gives
∂2u

∂t2
= a2

∂2u

∂x2
, a2 =

T

ρ

which is the equation for free vibration of the string. Since both ends of the string are fixed, so the
boundary and initial conditions are given, respectively, by

u(0, t) = 0 = u(l, t), t ≥ 0

and u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x)

where f and g are continuous functions and vanish for x = 0, l. We now apply the method of Sturm-
Liouville to

u = u(x, t) = Φ(x)T (x)

to get

Φ(x)T ′′(t) = a2Φ′′ (x)T (t).

That is,

Φ′′

Φ
=

T ′′

a2T
= −λ.

Thus,

Φ′′ + λΦ = 0,

T ′′ + a2λT = 0,

subject to u(0, t) = Φ(0)T (t) = 0 = Φ(l)T (t) = u(l, t) for all t ≥ 0, that is, subject to Φ(0) = 0 = Φ(l).
We will assume λ is positive, so we write λ2 instead:

Φ′′ + λ2Φ = 0, T ′′ + a2λ2T = 0.

The general solution of the first equation is

Φ(x) = c1 cos λx+ c2 sinλx.

But the boundary condition gives

Φ(0) = 0 = c1 cos 0 + c2 sin 0 = c1,
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that is, c1 = 0, and so
0 = Φ(l) = c2 sinλl.

But c2 6= 0, so λ =
πk

l
. But the above analysis works for all λk, k = 0, 1, 2, . . . , we obtain λk =

πk

l
,

k = 0, 1, 2, . . . and

Φk(x) = sin
πkx

l
, k = 0, 1, 2, . . .

Thus, the second differential equation gives

Tk(t) = Ak cos(aλkt) +Bk sin(aλkt), k = 0, 1, 2, . . .

Hence

u(x, t) =

∞∑

k=0

uk(x, t)

=

∞∑

k=0

[

Ak cos
(aπkt

l

)

+Bk sin
(aπkt

l

)
]

sin
(πkx

l

)

.

We now apply the initial condition to u(x, t). So we require

f(x) = u(x, 0) =

∞∑

k=0

Ak sin
(πkx

l

)

and g(x) =
∂u

∂t
(x, 0) =

∞∑

k=0

Bk

(aπk

l

)

sin
(πkx

l

)

are just the Fourier series of f and g with respect to {sin πkx
l

}. Thus

Ak =
2

l

∫
l

0

f(x) sin
πkx

l
dx,

Bk =
2

aπk

∫
l

0

g(x) sin
πkx

l
dx.
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8.4. Remarks on separation of variables. Here are some reasons that one wants to study linear
second order ODEs

• Solve PDEs in R
3 such as Laplace Eqn. (∆2Φ = 0), Helmholtz Eqn. [(∆2 + k2)Φ = 0], etc.;

• Separation of variables of the PDEs under different curvilinear orthogonal coordinate systems
giving various ODEs;

• Boundary value (Sturm-Liouville type)problems;
• Some of these linear ODEs are better understood (Bessel Eqn.) than the others (Spheroidal
Wave Eqn.)

• Almost all of these Eqns are ancient.

Question: Under what 3D curvilinear orthogonal coordinate systems (u1, u2, u3) do we have a solution
of the (elliptic PDE) Helmholtz Eqn

(∆2 + k2)Φ = 0,

to be solved by separation of variables of the form

Φ(r) = Φ1(u1) · Φ2(u2) · Φ3(u3) ?

Theorem 8.1 (Eisenhart (1934)). There are precisely eleven curvilinear orthogonal coordinate systems
in each of which the Helmholtz equation separates.

(“Separable Systems of Stäckel.” Ann. Math. 35 (1934), 284–305.) (Morse & Feshbach, “Methods of
Theoretical Physics I”. NY: McGraw-Hill, pp. 125–126, 271, & 509–510, 1953)

The Eleven Coordinate Systems:

Figure 2. (Arscott & Darai 1981 IMA Appl. Math.)
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11 Curvilinear Orthogonal Coordinate systems

(1) Cartesian;
(2) Cylindrical;
(3) Spherical polar;
(4) Parabolic cylinderical;
(5) Elliptic cylinderical;
(6) Rotation paraboloidal;
(7) Prolate paraboloidal;
(8) Oblate paraboloidal;
(9) Paraboloidal;
(10) Elliptic conal;
(11) Ellipsoidal.

The Classification Table

Figure 3. (Arscott & Darai 1981 IMA Appl. Math.)
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The Equation Table

Figure 4. (Arscott & Darai 1981 IMA Appl. Math.)
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8.5. Sturm-Liouville Boundary Value Problems. We assume that the function P in (8.1) does not vanish.
As a result, we can rewrite the equation (8.1) into a self-adjoint form:

Lemma 8.2. The equation

(8.10) PΦ′′ + RΦ′ +QΦ = −λΦ
can be written in the form

(pΦ′)′ + qΦ = −λrΦ,

where p, q and r are continuous functions of x on [a, b], p is positive and has a continuous derivative, and r is
positive.

Proof. Multiply the equation (8.10) on both sides by r. Then we require:

rPΦ′′ + rRΦ′ + rQΦ = −λrΦ,
pΦ′′ + p′Φ′ + qΦ = −λrΦ

to be the same. So it is sufficient that we require

p′ = rR and p = rP,

that is, if
p′

p
=
R

P
and r =

p

P
,

or equivalently p = e
∫

R

P and r =
1

P
e
∫

R

P

which is well-defined since P is positive, and the conclusion for p, q and r thus follow. �

Lemma 8.3. Let

(8.11) L(Φ) =
d

dx

(

p
dΦ

dx

)

+ qΦ.

Then for any two twice differentiable functions Φ and Ψ, we have

(8.12) ΦL(Ψ)−ΨL(Φ) =
d

dx

(
p(ΦΨ′ − Φ′Ψ)

)
.

Proof. Direct verification. �

Lemma 8.4. If Φ and Ψ satisfy the boundary condition

(8.13)
αΦ(a) + βΦ′(a) = 0,

γΦ(b) + δΦ′(b) = 0

then

(8.14) ΦΨ′ − Φ′Ψ
∣
∣
∣
x=a

= 0 = ΦΨ′ − Φ′Ψ
∣
∣
∣
x=b

.
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Proof. The equations

αΦ(a) + βΦ′(a) = 0,

αΨ(a) + βΨ′(a) = 0

have non-trivial solutions for α and β if and only if

∣
∣
∣
∣

Φ(a) Φ′(a)
Ψ(a) Ψ′(a)

∣
∣
∣
∣
= 0.

Similar argument gives the condition at x = b. �

Lemma 8.5. Let L be the Sturm-Loiuville operator given in (8.11) and

L(Φ) = −λrΦ,
L(Ψ) = −λrΨ

and both Φ and Ψ satisfy the same boundary condition in (8.13) at x = a and b. Then Φ and Ψ are orthogonal
on [a, b] with respect to the function r (called the orthogonal weight function).

Proof. Since

ΨL(Φ)− ΦL(Ψ) = (µ− λ) rΦΨ.

But (8.12) gives

d

dx
p (ΦΨ′ − Φ′Ψ) = ΨL(Φ)− ΦL(Ψ)

= (µ− λ) rΦΨ.

The (8.14) now gives

0 = p(ΦΨ′ − Φ′Ψ)
∣
∣
∣

x=b

x=a
= (µ− λ)

∫ b

a

rΦΨ dx.

This proves that Φ and Ψ are orthogonal with respect to the weight function r over [a, b]. �

Lemma 8.6. Let L be the Sturm-Loiuville operator given in (8.11) and

L(Φ) = −λ rΦ.

Then λ must be real.
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Proof. For suppose λ is complex with λ = µ+ iν, ν 6= 0 and Φ = φ+ iψ. Then

(
p(φ′ + iψ′)

)′
+ q(φ+ iν) = −(µ+ iν) r (φ+ iψ).

Taking complex conjugate of this equation gives

(
p(φ′ − iψ′)

)′
+ q(φ− iν) = −(µ− iν) r (φ− iψ).

which implies that φ− iν = Φ is an eigenvector and λ = µ− iν is the corresponding eigenvalue. If we now follow
the argument used in Lemma 8.5, then we obtain

∫ b

a

rΦΦ dx =

∫ b

a

r (φ2 + ψ2) dx > 0

contradicting that Φ and Φ are orthogonal. �

Theorem 8.7. If r > 0, q ≤ 0 and if the boundary conditions imply that

(8.15) pΦΦ′
∣
∣
∣

b

a
≤ 0,

then all the eigenvalues of the boundary value problem for

(pΦ′)′ + qΦ = −λ rΦ

are non-negative.

Proof. We multiply both sides of

(pΦ′)′ + qΦ = −λrΦ.

by Φ and integrate both sides of the resulted equation over (a, b) to get

pΦ′ Φ
∣
∣
∣

x=b

x=a
−
∫ b

a

pΦ′2 dx +

∫ b

a

qΦ2 dx = −λ
∫ b

a

rΦ2 dx.

It follows from the hypothesis that λ ≥ 0. In addition, λ = 0 only if q ≡ 0, Φ′ ≡ 0 over [a, b]. That is, if Φ is a
constant eigenvector. �

Remark. The assumption (8.15) includes

(1) Φ(a) = 0 = Φ(b),
(2) Φ′(a) = 0 = Φ′(b),
(3) Φ′(a)− hΦ(a) = 0, Φ′(b) +HΦ(b) = 0, where h and H are non-negative constants.
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8.6. Existence of eigenvalues.

Theorem 8.8. The Sturm-Liouville boundary value problem

(pΦ′)′ + qΦ = −λrΦ,
αΦ(a) + βΦ′(a) = 0,

γΦ(b) + δΦ′(b) = 0

where p, q, r are continuous functions of x on [a, b], p and r are positive and p′ is continuous, has infinitely
many eigenfunction solutions and the corresponding eigenvalues λn, such that λ1 < λ2 < . . . , and λn → ∞ as
n→ +∞.

Moreover, each eigenfunction corresponding to its eigenvalue, λn, say, has exactly n − 1 zeros in the open
interval (a, b).

The proof of the above theorem, which depends on Green’s functions, is beyond the scope of this course.
Interested students can consult Chapter 10 of Folland’s book.

Remark. The above problem is commonly called the regular Sturm-Liouville boundary value problems. The
singular Sturm-Liouville boundary value problems may include situation where the function p may vanish at
one or both endpoints of [a, b], the weight r(x) may vanish or be unbounded at one or both endpoints of [a, b].
Besides, the interval [a, b] may be unbounded, that is, a = −∞ and/or b = +∞.

We consider some examples that illustrate the above theorem. The examples are taken from Folland pages
91–93.

Example. We are given the differential equation

y′′(x) + λy(x) = 0,

with boundary condition

(8.16)
αy(0)− y′(0) = 0,

γy(`)− y′(`) = 0.

Suppose λ = 0. Then the solution to the differential equation y′′(x) = 0 is y = cx+d. The boundary condition
at x = 0 and ` gives

αd = c, and γ(c`+ d) = c

respectively. Thus, γ = α/(α`+1). We may therefore choose y = x+α. Suppose now that λ 6= 0, then the Lemma
8.6 asserts that λ must be real. Thus, it remains to consider λ = ν2 for some real ν > 0 or λ = (iµ)2 = −µ2 for
some real µ > 0. Suppose λ = ν2. The boundary condition (8.16) implies, without loss of generality, that the
general solution can be written as

y(x) = c cos νx+ d sin νx

= ν cos ν x+ α sin ν x

since αc = αy(0) = y′(0) = νd. Thus d = cα/ν. Hence we have discard the c above. But then the boundary
condition (8.16) at x = ` implies that
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−ν2 sin ν` + αν cos ν` = β(ν cos ν`+ α sin ν`),

or

tan ν` =
(α− β)ν

αβ + ν2
.

On the other hand, if λ = −ν2 or ν = iµ, and noting that tan ix = i tanhx, so that the above equation would
become

tanµ` =
(α− β)µ

αβ − µ2

instead. It is clear that the above equations for ν or µ does not admit nice closed form solutions unless α = β.

Case I: α = 1, β = −1, and ` = π. We plot the curves of tanπν and
2ν

ν2 − 1
respectively. The graph shows that

there are infinitely many positive solutions νn increasing to infinity. In fact, the graphical method shows that

λn = ν2n ≈ (n− 1)2,

for large n. There is no intersection for the second case when λ < 0. The corresponding eigen-functions are

yn(x) = νn cos νnx+ sin νnx.

Case II: α = 1, β = 4, and ` = π. Then we plot the curves of

tanπν =
−3ν

4 + ν2
.

It turns out that apart from λn = ν2 ≈ n2 for positive n, the equation, for λ = −µ2,

tanπν =
3ν

µ2 − 4
.

admit one positive solution ν0. Thus, the eigen-functions are

yn(x) = νn cos νnx+ sin νnx, n ≥ 1,

and

y0(x) = µ0 coshµ0x+ sinhµ0x.
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8.7. Eigen-function expansions. We quote without proof the following results.

Theorem 8.9. Let f be continuous on [a, b] with piecewise smooth f ′ such that it satisfies the Sturm-Liouville
boundary value problem with boundary condition

αf(a) + βf ′(a) = 0,

γf(b) + δf ′(b) = 0.

Then the Fourier series of f with respect to the eigenfunctions, {Φn}, that is,

f(x) ∼ c0Φ0(x) + c1Φ1(x) + . . .

and
∫ b

a

rΦ2
n(x) dx = 1, cn =

∫ b

a

rf(x)Φn(x) dx,

n = 0, 1, 2, . . . , converges to f(x) absolutely and uniformly.

Moreover

Theorem 8.10. If f is only a piecewise smooth on [a, b] instead in the last theorem, then the Fourier series of f
with respect to the eigenfunctions {Φn} converges for a < x < b to the value of f(x) at every point of continuity,
and to the value

f(x+ 0) + f(x− 0)

2

at every point of jump discontinuity.

As for the completeness of the system {Φn} for a square integrable function f(x) over [a, b], we quote

Theorem 8.11. Let {Φn} be the orthogonal eigenfunctions derived from the Sturm-Liouville boundary value
problem above. Then

∫ b

a

r(x)f(x)2 dx =
∞∑

k=0

c2k‖
√
rΦk(x)‖2 =

∞∑

k=0

c2k,

holds for every square integrable function f(x) over [a, b]. That is, the system {Φn} is complete with respect to
the weight function r(x).
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8.8. Solutions to PDEs.

Theorem 8.12. Let u(x, t), be a continuous solution of

P uxx +Rux +Qu = utt

in a ≤ x ≤ b, t ≥ 0 with ∂u/∂t and ∂2u/∂t2 bounded on [a, b]× [0, t0] for every t0, and it satisfies the boundary
value problem

αu(a, t) + βux(a, t) = 0, γu(b, t) + δux(b, t) = 0

and the initial condition
u(x, 0) = f(x), ut(x, 0) = g(x).

Then

u(x, t) =

∞∑

n=0

Tn(t)Φn(x),

where {Φn} are eigenfunctions associated with the boundary value problem. The function Tn can be found from
solving the second initial conditions

(8.17) T ′′
n + λnTn = 0, n = 0, 1, 2, . . .

subject to
Tn(0) = Cn, T ′

n(0) = cn, n = 0, 1, 2, . . .

where Cn, cn are, respectively, the Fourier series coefficients of f(x) and g(x).

Remark. We note that the above result does not claim that the expansion for u(x, t) necessarily be a solution
to the boundary value problem, even if the Fourier series for f(x) and g(x) (for them to be sufficiently smooth
to) converge. This is because the series for u(x, t) would need to converge uniformly after being differentiated
with respect to x twice.

Proof. We multiply both sides of the PDE by

r =
1

P
e
∫

x

x0

R

P
dx

=
p

P
,

Then we can re-write the above PDE into the form

p
∂2u

∂x2
+ p′

∂u

∂x
+ q u = r

∂2u

∂t2
,

which is in a ”self-adjoint form”:

L(u) =
∂

∂x

(

p
∂u

∂x

)

+ q u = r
∂2u

∂t2
,

so that we can apply the Lemma 8.3 to write

(8.18) L(u) = r
∂2u

∂t2

where we also have
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(8.19) L(Φn) = −λn rΦn, n = 0, 1, 2, 3, · · ·

We apply the Theorem 8.10 that for x in [a, b] and for every (fixed) t ≥ 0, the u(x, t) can be expanded in a
Fourier series in terms of the eigenfunction solutions {φn} of the form

u(x, t) = T0(t)Φ0(x) + T1(t)Φ1(x) + · · · =
∞∑

n=0

Tn(t)Φn(x)

where the Fourier coefficients Tn (with t fixed) for u(x, t) (t fixed) are given by

(8.20) Tn(t) =

∫ b

a

u(x, t)Φn(x) r(x) dx, n = 0, 1, 2, 3, · · · .

But then the (8.19) implies that

rΦn(x) = − 1

λn
L(Φn),

and so

Tn(t) =

∫ b

a

u(x, t)
(

− 1

λn
L(Φn)

)

dx = − 1

λn

∫ b

a

u(x, t) L(Φn) dx

and the Lagrange identity

uL(Φ)− ΦL(u) =
d

dx

(
p(uΦ′ − Φu′)

)

yields

Tn(t) = − 1

λn

∫ b

a

Φn(t)L(u(x, t)) dx+
1

λn

[

p
(

Φn

∂u

∂x
− Φ′

n u
)]b

a

for which the second term vanishes according to the Lemma 8.4. Thus

Tn(t) = − 1

λn

∫ b

a

Φn(t)L(u(x, t)) dx = − 1

λn

∫ b

a

∂2u

∂t2
Φn(x) r dx.

Let us differentiate the (8.20) with respect to t twice yields

T ′′
n (t) =

∫ b

a

∂2u(x, t)

∂t2
Φn(x) r(x) dx,

which is identical to the equation (8.17). The differentiation under the integral sigh with respect to t is justified
because of the assumption of the boundedness of the first and second partial derivatives with respect to t. This
establishes the equation (8.17). On the other hand, since u(x, t) is continuous, so

lim
t→0

Tn(t) = lim
t→0

∫ b

a

u(x, t)Φn(x) r(x) dx =

∫ b

a

f(x)Φn(x) r(x) dx := Cn, n = 0, 1, 2, 3, · · · .

where Cn is the Fourier coefficient of f(x) (with respect to the system {Φn}). But the Tn(t) is continuous, so

Tn(0) = Cn, n = 0, 1, 2, 3, · · ·
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as required. Similarly, we have

T ′
n(0) = cn, n = 0, 1, 2, 3, · · ·

where the cn are the Fourier coefficients for the g(x). �

A problem of working with a general orthogonal (orthonormal) system {Φn} for a boundary value problem is
to make sure that the functions f(x) and g(x) in initial condition

u(x, 0) = f(x),
∂f

∂t
= g(x),

can be expanded in as Fourier series in terms of {Φn}. That is, suppose we have

f(x) =

∞∑

k=0

CkΦk(x),

and

g(x) =

∞∑

k=0

ckΦk(x),

then they need to match with the earlier

f(x) = u(x, 0) =

∞∑

k=0

Ak sin
(πkx

l

)

and g(x) =
∂u

∂t
(x, 0) =

∞∑

k=0

Bk

(aπk

l

)

sin
(πkx

l

)

where

Ak =
2

l

∫ l

0

f(x) sin
πkx

l
dx,

Bk =
2

aπk

∫ l

0

g(x) sin
πkx

l
dx.

That is, we require

Ak = Ck, Bk = ck/
√

λk

for k ≥ 0. So the above requirement would be true if both f and g are known to be “sufficiently smooth”,
which is rarely the case in reality. Then the problem is if the coefficients Ak and Bk decline sufficiently fast
that guarantee the convergence as well as about term-by-term differentiation of the two x−derivatives of u. In
any case, The above theorems show that if a physical problem has any solution at all, then its solution from the
above separation of variables method and Sturm-Liouville method would lead to a solution. So we use the term
generalised solution to the boundary value problem even if the solution found by the above does not satisfy some
of the above requirements (of the boundary value problem). We call exact solution for a genuine (real) solution.
We discuss below if the generalised solution is still of some use.
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Theorem 8.13. Let

u(x, t) ∼
∞∑

k=0

Tk(t)Φk(x)

be either the exact or the generalised solution of equation (8.1), that satisfies the boundary condition (8.3) and
initial condition (8.4). Suppose fm(x) and gm(x) converge to f(x) and g(x) respectively, in the mean, as m→ ∞,
that is,

(8.21) lim
m→∞

∫ b

a

[fm(x)− f(x)]2 r dx = 0 = lim
m→∞

∫ b

a

[gm(x) − g(x)]2 r dx.

Suppose that

um(x, t) =

∞∑

k=0

Tmn(t)Φn(x)

is either the exact or the generalised solution of equation (8.1), that satisfies the boundary condition (8.3) and
new initial condition

um(x, t) = fm(x),
∂um(x, 0)

∂t
= gm(x), m ≥ 0

then um(x, t) converges to u(x, t) in the mean, as m→ ∞.

Proof. So the idea is to compare the Fourier coefficients of the Tn(x) and Tnm(x). Recall that the Cn, cn are
respectively, the Fourier coefficients of f(x) and g(x) for the boundary value problem

T ′′
n + λn Tn = 0, Tn(0) = Cn, T ′

n(0) = cn; n ≥ 0

and the Cnm, cn,m are respectively, the Fourier coefficients of f(x) and g(x) for the boundary value problem

T ′′
mn + λnTmn = 0, Tmn(0) = Cmn, T ′

mn(0) = cmn; n ≥ 0

for each m ≥ 0. We also know that

λ0 < λ1 < λ2 < · · · lim
n→∞

λn = +∞.

and that all perhaps except a finite number of them can be negative. Suppose λn ≤ 0 when n ≤ N and λn > 0
for n > N . Then,

(8.22) Tn(x) =







1

2

(

Cn +
cn√
−λn

)

e
√
−λnt +

1

2

(

Cn − cn√
−λn

)

e−
√
−λnt, n ≤ N

Cn cos
√
λnt+

cn√
λn

sin
√

λnt, n > N.

and similarly,

(8.23) Tmn(x) =







1

2

(

Cmn +
cmn√
−λn

)

e
√
−λnt +

1

2

(

Cmn − cmn√
−λn

)

e−
√
−λnt, n ≤ N

Cmn cos
√
λnt+

cmn√
λn

sin
√

λnt, n > N.

Notice that the assumption (8.21) implies that
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(8.24) 0 = lim
m→∞

∫ b

a

[fm(x)− f(x)]2 r dx = lim
m→∞

∞∑

n=0

(Cn − Cmn)
2

and

(8.25) 0 = lim
m→∞

∫ b

a

[gm(x)− g(x)]2 r dx = lim
m→∞

∞∑

n=0

(cn − cmn)
2,

so that

lim
m→∞

Cmn = Cn, lim
m→∞

cmn = cn.

We easily deduce from above that

(8.26) lim
m→∞

(Tmn − Tn) = 0, n ≥ 0.

We actually know more when n > N :

(Tmn − Tn)
2 =

[

(Cn − Cmn) cos
√

λnt+
(cn − cmn)√

λn
sin

√

λnt
]2

≤ 2
[

(Cm − Cnn)
2 +

( (cn − cmn)√
λn

)2]
(8.27)

But then we deduce from (8.24), (8.25), (8.27) and (8.26) that

∫ b

a

[um(x, t)− u(x, t)]2 r dx =

∫ b

a

∞∑

n=0

(Tmn(t)− Tn(t))
2Φn(x)

2 r dx

=
∞∑

n=0

(Tn − Tmn)
2

∫ b

a

Φn(x)
2 r dx

=

∞∑

n=0

(Tn − Tmn)
2 · 1

=

N∑

n=0

(Tn − Tmn)
2 +

∞∑

n=N+1

(Tn − Tmn)
2

−→ 0,

as m→ ∞, which is what we desire to prove. �

Remark. Suppose we choose fm and gm above as the m−partial sums of the f(x) and g(x) respectively, then the
solutions um are exact solutions to the (8.1) subject to the conditions (8.3) and the corresponding (8.4). Thus, if
u(x, t) is either the exact or generalised solutions to (8.1) subject to the (8.3) and (8.4) is the limit of um(x, t),
as fm → f and gm → g either uniformly or in the mean.
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8.9. Remarks on Forced vibrations. We have instead

(8.28) P
∂2u

∂x2
+R

∂u

∂x
+Qu =

∂2u

∂t2
+ F (x, t),

subject to the same (8.3) and (8.4), where the F (x, t) stands for an external force. The same technique would
lead to

L(u) = r
∂2u

∂t2
+ rF (x, t).

Then the Sturm-Liouville problem would give

L(Φ) = −λrΦ.

We also have

(8.29) Tn(t) =

∫ b

a

u(x, t)Φn(x) r(x) dx, n = 0, 1, 2, 3, · · · .

A similar argument used earlier give

Tn(t) = − 1

λn

∫ b

a

Φn(t)L(u(x, t)) dx = − 1

λn

∫ b

a

∂2u

∂t2
Φn(x) r dx− 1

λn

∫ b

a

r F (x, t)Φn(x) dx

instead. Suppose

F (x, t) =

∞∑

k=0

Fk(t)Φk(x)

where

Fk(t) =
∞∑

k=0

∫ b

a

r Fk(x, t)Φk(x) dx, n = 0, 1, 2, · · · ,

and this gives

Tk = − 1

λk
T ′′
k − 1

λk
Fk,

which is

T ′′
k + λkTk + Fk = 0, n = 0, 1, 2, 3, · · · .

8.10. Remarks on Heat equations. Recall that the heat equation assumes the form

∂u

∂t
= a2

∂2u

∂x2
, a = K/cρ, (K = thermal conductivity, c = heat capacity, ρ = density)

subject to the boundary condition (8.3) but initial condition becomes only the

u(x, 0) = f(x).

So we try

(8.30) u(x, t) =

∞∑

k=0

Tk(t)Φk(x),

where the Φk proceed as before, while the Tk satisfies
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T ′
k(t) + λkTk(t) = 0, Tk(0) = Cn, k = 0, 1, 2, · · ·

and the Ck are the Fourier coefficients of f(x). Since the solution here is given by

Tk(t) = Ck e
−λkt, k ≥ 0,

so that any generalised solution for the heat equation would become exact since the convergence of the series
(8.30) is absolute and uniform and so can be differentiated any number of times.

To be continued ...
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