
MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

9. The Fourier Bessel series

9.1. Bessel functions. Let ν be a complex number. We call the differential equation

(9.1) z2
d2y

dz2
+ z

dy

dz
+ (z2 − ν2) y = 0.

the Bessel equation of order ν. This equation has a regular singular point at z = 0. It is known that
via the work of Frobenius that one can have power series of the form

y(z) =

∞∑
k=0

ckz
α+k,

where α is a parameter and ck are coefficients to be determined. Substituting the above series into the
Bessel equation

(9.2) z2
d2y

dz2
+ x

dy

dz
+ (z2 − ν2) y = 0.

and separating the coefficients yields:

0 = z2
d2y

dz2
+ x

dy

dz
+ (z2 − ν2) y

=
∞∑
k=0

ck(α+ k)(α+ k − 1)zα+k +
∞∑
k=0

ck(α+ k)zα+k

+ (z2 − ν2) ·
∞∑
k=0

ckz
α+k

=
∞∑
k=0

ck[(α+ k)− ν2]zα+k +
∞∑
k=0

ckz
α+k+2

= c0(α
2 − ν2)zα +

∞∑
k=0

{
ck[(α+ k)2 − ν2] + ck−2

}
zα+k

The first term on the right side of the above expression is

c0(α
2 − ν2)zα

and the remaining are
1



2 FOURIER ANALYSIS AND APPLICATIONS

c1[(α+ 1)2 − ν2] + 0 = 0

c2[(α+ 2)2 − ν2] + c0 = 0

c3[(α+ 3)2 − ν2] + c1 = 0

· · · · · ·
ck[(α+ k)2 − ν2] + ck−2 = 0(9.3)

· · · · · ·(9.4)

Hence a series solution could exist only if α = ±ν. Hence a series solution could exist only if α = ±ν.
When k > 1, then we require

ck[(α+ k)2 − ν2] + ck−2 = 0,

and this determines ck in terms of ck−2 unless α − ν = −2ν or α + ν = 2ν is an integer. Suppose we
discard these exceptional cases for the moment, then it follows from (9.3) that

c1 = c3 = c5 = · · · = c2k+1 = · · · = 0.

Thus we could express the coefficients c2k in terms of

c2k =
(−1)kc0

(α− ν + 2)(α− ν + 4) · · · (α− ν + 2k) · (α+ ν + 2)(α+ ν + 4) · · · (α+ ν + 2k)
.

If we now choose α = ν, then we obtain

(9.5) c0z
ν
[
1 +

∞∑
k=0

(−1)k(12z)
2k

k!(ν + 1)(ν + 2) · · · (ν + k)

]
.

Alternatively, if we choose α = −ν, then we obtain

(9.6) c′0 z
−ν
[
1 +

∞∑
k=0

(−1)k(12z)
2k

k!(−ν + 1)(−ν + 2) · · · (−ν + k)

]
.

9.2. Gamma function. We recall that

(9.7) k! = k × (k − 1)× · · · 3× 2× 1.

Euler was able to give a correct definition to k! when k is not a positive integer. He invented the
Euler-Gamma function in the year 1729 that solved the interpolation problem of finding a function
that equals to k ! for every positive integer k but has meaning elsewhere. That is,

(9.8) Γ(x) =

∫ ∞
0

tx−1e−t dt, x > 0.
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So the integral will “converge” for all positive real x. Since

(9.9) Γ(1) =

∫ ∞
0

e−t dt = 1.

In fact, the integral

(9.10) Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0,

converges for all complex x with <(x) > 0. In fact, it can be shown that it is an analytic function in
<(x) > 0. One the other hand, an integration-by-parts yields

Γ(x+ 1) =

∫ ∞
0

tx e−t dt = −txe−t
∣∣∣∞
0

+ x

∫ ∞
0

tx−1 e−t dt = xΓ(x)

since x > 0. So one has

(9.11) Γ(x+ 1) = xΓ(x),

and so for each positive integer n

(9.12) Γ(n+ 1) = nΓn = n(n− 1)Γ(n− 1) = n(n− 1) · 3 · 2 · 1 · Γ(1) = n !.

Euler worked out that

(9.13)
(1

2

)
! =

1

2

√
π.

So

(9.14)
(

5
1

2

)
! =

11

2
· 9

2
· 7

2
· 5

2
· 3

2

(1

2

)
!.

In fact, the infinite integral will not only “converge” for all positive real x. That is, it is not just
continuous and (real) differentiable function for all positive x, the integral

(9.15) Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0,

converges for all complex x with <(x) > 0. In fact, it can be shown that it is an analytic function in
<(x) > 0.
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We can now use the recursion formula (9.11) to “analytically continue” the Γ(x) into the <(x) > −1,
and then again to <(x) > −2, etc, and eventually into whole complex plane C except on the negative
integers, since, for example,

(−5)! = Γ(−4) = (−4 + 1)(−4 + 2)(−4 + 3)(−4 + 4)Γ(0) = (−3)(−2)(−1)(0) Γ(0)

meaning that Γ(0) would need to be infinity if the left side is to have a meaning. In fact, Γ(x) is
analytic in C except at the negative integers including 0 which are simple poles. So it is a meromorphic
function.

One can even compute negative factorial:

(9.16) Γ(1/2) = (−1/2) (−3/2) (−5/2) (−19/2) (−11/2) Γ(−11/2).

We mention that the Euler-Gamma function as an example of the Mellin transform defined by

M(f)(z) =

∫ ∞
0

tz−1f(t) dt.

That is, the Gamma function is the Mellin transform of the f(x) = ex.

9.3. Bessel functions of first kind. We recall that we have assumed that ν is not an integer. Since
c0 and c′0 are arbitrary, so we choose them to be

(9.17) c0 =
1

2νΓ(ν + 1)
, c′0 =

1

2−νΓ(−ν + 1)

so that the two series (9.5) and (9.6) can be written in the forms:

(9.18) Jν(z) =
+∞∑
k=0

(−1)k(12z)
ν+2k

Γ(ν + k + 1) k!
, J−ν(z) =

+∞∑
k=0

(−1)k(12z)
−ν+2k

Γ(−ν + k + 1) k!

and both are called the Bessel function of order ν and −ν and both are of the first kind. In this case,
we have {Jν , J−ν} forms a fundamental set of the Bessel equation. That is,

y(x) = AJν(x) +BJ−ν(x)

is the general solution to the Bessel equation. More precisely, it can be shown that the Wronskian of
Jν and J−ν is given by (G. N. Watson “A Treatise On The Theory Of Bessel Functions”, pp. 42–43):

(9.19) W (Jν , J−ν) = −2 sin νπ

πz
,

which is non-zero provided that ν is not equal to an integer and z 6= 0. This shows that the Jν and
J−ν forms a fundamental set of solutions. One can also see that when ν is not an integer, then
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Jν(x) = C J−ν(x)

would not hold for all x for any constant C. Just take s→ 0. In fact, when ν = n is an integer, then
we can easily check that

(9.20) J−n(z) = (−1)nJn(z).

9.4. Bessel functions of second kind. We define

(9.21) Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ

when ν is not an integer. It is easy to check that the wronskian of Jν and Yν is non-zero, thus showing
that {Jν , Yν} forms a fundamental set of the Bessel equation when when ν is not an integer. The case
when ν is an integer n is defined by

(9.22) Yn(z) = lim
ν→n

Jν(z) cos νπ − J−ν(z)

sin νπ
.

The idea behind is that both the numerator and denominator is undefined as ν tends to an integer. So
we apply the Ĺ Hospital’s rule to yields

Yn(x) = lim
ν→n

(∂/∂ν)
(
Jν(z) cos νπ − J−ν(z)

)
(∂/∂ν) sin νπ

= lim
ν→n

cos νπ(∂/∂ν)Jν(z)− πJν(z) sin νπ − (∂/∂ν)J−ν(z)

π cos νπ

=
(−1)ν(∂/∂ν)Jν(z)− (∂/∂ν)J−ν(z)

π(−1)ν

∣∣∣
ν=n

The Yν so defined is linearly independent with Jν for all values of ν.

In particular, we obtain

Yn(x) =
−1

π

n−1∑
k=0

(n− k − 1)!

k!

(x
2

)2k−n
+

1

π

∞∑
k=0

(−1)k(x/2)n+2k

k!(n+ k)!

[
2 log

x

2
− ψ(k + 1)− ψ(k + n+ 1)

]
=

2

π
Jn(x)

(
log

x

2
+ γ
)
− 1

π

n−1∑
k=0

(n− k − 1)!

k!

(x
2

)−n+2k

− 1

π

∞∑
k=0

(−1)k(x/2)n+2k

k!(n+ k)!

( n+k∑
j=1

1

j
+

k∑
j=1

1

j

)
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for | arg x| < π and n = 0, 1, 2, · · · with the understanding that we set the sum to be 0 when n = 0.
Here the ψ(z) = Γ′(x)/Γ(x), γ = 0.57721566 is the Euler constant. We note that the function is
unbounded when x = 0.

When n = 0, we have

Y0(x) =
2

π
J0(x)

(
log

x

2
+ γ
)

− 2

π

∞∑
k=1

(−1)k

(k!)2

(x
2

)2k(
1 +

1

2
+

1

3
+ · · ·+ 1

k

)

9.5. Recurrence Formulae for Jν. We consider arbitrary complex ν.

d

dx
xνJν(x) =

d

dx

(−1)kx2ν+2k

2ν+2k k!Γ(ν + k + 1)

=
d

dx

(−1)kx2ν−1+2k

2ν−1+2k k!Γ(ν + k)

= xνJν−1(x).(9.23)

But the left side can be expanded and this yields

(9.24) xJ ′ν(x) + νJν(x) = xJν−1(x).

Similarly,

(9.25)
d

dx
x−νJν(x) = −x−νJν+1(x).

and this yields

(9.26) xJ ′ν(x)− νJν(x) = −xJν+1(x)

Subtracting and adding the above recurrence formulae yield

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x)(9.27)

Jν−1(x)− Jν+1(x) = 2J ′ν(x).(9.28)

Replacing ν by −ν in (9.25) yields

(9.29)
d

dx
xνJ−ν(x) = −xνJ−ν+1(x).
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9.6. Recurrence Formulae for Yν. Suppose ν is not an integer. It follows from (9.23) and (9.29)
that

d

dx
xνYν(x) =

d

dx
xν
Jν(x) cos νπ − J−ν(x)

sin νπ

= xν
Jν−1(x) cos νπ + J−ν+1(x)

sin νπ

= −xν Jν−1(x) cos νπ + J−ν+1(x)

sin νπ

= xν
Jν−1(x) cos(ν − 1)π − J−ν+1(x)

sin(ν − 1)π

= xνYν−1(x).

Let us now replace ν by −ν in (9.23) to obtain

d

dx
x−ν Jν(x) = x−νJ−ν−1(x),

Combining this together with (9.25), yields, similarly,

d

dx
x−νYν(x) = −x−νYν+1(x).

9.7. Generating Function for Jn. Jacobi in 1836 gave

(9.30) e
1
2
z(t− 1

t
) =

+∞∑
k=−∞

tkJk(z).

Many of the forumulae derived above can be obtained from this expression.

(9.31) e
1
2
z(t− 1

t
) =

+∞∑
k=−∞

ck(z)t
k

for 0 < |t| <∞. We multiply the power series

(9.32) e
zt
2 = 1 +

(z/2)

1!
t+

(z/2)2

2!
t2 + · · ·

and

(9.33) e−
z
2t = 1− (z/2)

1!
t−1 +

(z/2)2

2!
t−2 − · · ·

Multiplying the two series and comparing the coefficients of tk yield
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cn(z) = Jn(z), n = 0, 1, · · ·(9.34)

cn(z) = (−1)nJ−n(z), n = −1, −2, · · · .(9.35)

Thus

(9.36) e
1
2
z(t− 1

t
) = J0(z) +

+∞∑
k=1

[tk + (−1)kt−k]Jk(z).

9.8. Bessel Functions of half-integer Orders. It follows from the definition of Bessel function that

J1/2(x) =

√
x√

2Γ(32)

(
1− x2

2 · 3
+

x4

2 · 3 · 4 · 5
− x6

2 · 3 · 4 · 5 · 6 · 7
+ · · ·

)
=

1√
2xΓ(32)

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
=

1√
2xΓ(32)

sinx

On the other hand,

Γ(3/2) =
1

2
Γ(1/2) =

1

2

∫ ∞
0

e−x
dx√
x

=

∫ ∞
0

e−t
2
dt =

1

2

√
π.

Hence

J 1
2
(x) =

( 2

πx

) 1
2

sinx

Similarly, one can check that

(9.37) J− 1
2
(x) =

( 2

πx

) 1
2

cosx,

Moreover,

(9.38) Jn+ 1
2
(z) = (−1)n

√
2

π
zn+

1
2

( d

z dz

)n sin z

z
, n = 0, 1, 2, · · · .

9.9. Lommel’s Polynomials. Iterating the recurrence formula

(9.39) Jν+1(z) =
2ν

z
Jν(z)− Jν−1

with respect to ν a number of times give

(9.40) Jν+k(x) = P (1/x)Jν(x)−Q(1/x)Jν−1(x).
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Lommel (1871) [See Watson, pp. 294–295] found that

(9.41) Jν+k(x) = Rk,ν(x)Jν(x)−Rk−1,ν+1(x)Jν−1(x).

Hence, in the special case when ν = n+ 1
2 , we have

(9.42) Jn+ 1
2
(x) = (−1)n

√
2

π
xn+

1
2

( d

x dx

)n sinx

x
, n = 0, 1, 2, · · · .

Thus applying a recurrence formula and using the Lommel polynomials yield

(9.43) Jn+ 1
2
(x) = Rn,ν(x)J 1

2
(x)−Rn−1,ν+1J− 1

2
(x)

That is, we have

(9.44) Jn+ 1
2
(x) = Rn, 1

2
(x)
( 2

πx

) 1
2

sinx−Rn−1, 3
2
(x)
( 2

πx

) 1
2

cosx,

and similarly,

(9.45) (−1)nJ−n− 1
2
(x) = Rn, 1

2
(x)
( 2

πx

) 1
2

cosx+Rn−1, 3
2
(x)
( 2

πx

) 1
2

sinx.

9.10. Some formulae for Lommel’s polynomials. For each fixed ν, the Lommel polynomials are
given by

(9.46) Rn ν(z) =

[n/2]∑
k=0

(−1)k(n− k)!(ν)n−k
k!(n− 2k)!(ν)k

(
2

z

)n−2k
where the [x] means the largest integer not exceeding x. Lommel is a German who is one of the main
contributors to Bessel functions.

“Pythagoras’ Theorem” for Bessel Function. These Lommel polynomials have remarkable properties.
Since

(9.47) J− 1
2
(z) =

( 2

πz

) 1
2

cos z, J 1
2
(z) =

( 2

πz

) 1
2

sin z

and sin2 x+ cos2 x = 1; we now have

(9.48) J2
n+ 1

2

(z) + J2
−n− 1

2

(z) = 2(−1)n
R2n, 1

2
−n(z)

πz
.
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That is, we have

(9.49) J2
n+ 1

2

(z) + J2
−n− 1

2

(z) =
2

πz

n∑
k=0

(2z)2n−2k(2n− k)!(2n− 2k)!

[(n− k)!]2k!
.

A few special cases are

(1) J2
1
2

(z) + J2
− 1

2

(z) =
2

πz
;

(2) J2
3
2

(z) + J2
− 3

2

(z) =
2

πz

(
1 +

1

z2

)
;

(3) J2
5
2

(z) + J2
− 5

2

(z) =
2

πz

(
1 +

3

z2
+

9

z4

)
;

(4) J2
7
2

(z) + J2
− 7

2

(z) =
2

πz

(
1 +

6

z2
+

45

z4
+

225

z6

)

To be continued ...
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