
MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

9. The Fourier Bessel series

9.1. Bessel functions. Let ν be a complex number. We call the differential equation

(9.1) z2
d2y

dz2
+ z

dy

dz
+ (z2 − ν2) y = 0.

the Bessel equation of order ν. This equation has a regular singular point at z = 0. It is known that
via the work of Frobenius that one can have power series of the form

y(z) =

∞∑
k=0

ckz
α+k,

where α is a parameter and ck are coefficients to be determined. Substituting the above series into the
Bessel equation

(9.2) z2
d2y

dz2
+ x

dy

dz
+ (z2 − ν2) y = 0.

and separating the coefficients yields:

0 = z2
d2y

dz2
+ x

dy

dz
+ (z2 − ν2) y

=
∞∑
k=0

ck(α+ k)(α+ k − 1)zα+k +
∞∑
k=0

ck(α+ k)zα+k

+ (z2 − ν2) ·
∞∑
k=0

ckz
α+k

=
∞∑
k=0

ck[(α+ k)− ν2]zα+k +
∞∑
k=0

ckz
α+k+2

= c0(α
2 − ν2)zα +

∞∑
k=0

{
ck[(α+ k)2 − ν2] + ck−2

}
zα+k

The first term on the right side of the above expression is

c0(α
2 − ν2)zα

and the remaining are
1
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c1[(α+ 1)2 − ν2] + 0 = 0

c2[(α+ 2)2 − ν2] + c0 = 0

c3[(α+ 3)2 − ν2] + c1 = 0

· · · · · ·
ck[(α+ k)2 − ν2] + ck−2 = 0(9.3)

· · · · · ·(9.4)

Hence a series solution could exist only if α = ±ν. Hence a series solution could exist only if α = ±ν.
When k > 1, then we require

ck[(α+ k)2 − ν2] + ck−2 = 0,

and this determines ck in terms of ck−2 unless α − ν = −2ν or α + ν = 2ν is an integer. Suppose we
discard these exceptional cases for the moment, then it follows from (9.3) that

c1 = c3 = c5 = · · · = c2k+1 = · · · = 0.

Thus we could express the coefficients c2k in terms of

c2k =
(−1)kc0

(α− ν + 2)(α− ν + 4) · · · (α− ν + 2k) · (α+ ν + 2)(α+ ν + 4) · · · (α+ ν + 2k)
.

If we now choose α = ν, then we obtain

(9.5) c0z
ν
[
1 +

∞∑
k=0

(−1)k(12z)
2k

k!(ν + 1)(ν + 2) · · · (ν + k)

]
.

Alternatively, if we choose α = −ν, then we obtain

(9.6) c′0 z
−ν
[
1 +

∞∑
k=0

(−1)k(12z)
2k

k!(−ν + 1)(−ν + 2) · · · (−ν + k)

]
.

9.2. Gamma function. We recall that

(9.7) k! = k × (k − 1)× · · · 3× 2× 1.

Euler was able to give a correct definition to k! when k is not a positive integer. He invented the
Euler-Gamma function in the year 1729 that solved the interpolation problem of finding a function
that equals to k ! for every positive integer k but has meaning elsewhere. That is,

(9.8) Γ(x) =

∫ ∞
0

tx−1e−t dt, x > 0.



FOURIER ANALYSIS AND APPLICATIONS 3

So the integral will “converge” for all positive real x. Since

(9.9) Γ(1) =

∫ ∞
0

e−t dt = 1.

In fact, the integral

(9.10) Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0,

converges for all complex x with <(x) > 0. In fact, it can be shown that it is an analytic function in
<(x) > 0. One the other hand, an integration-by-parts yields

Γ(x+ 1) =

∫ ∞
0

tx e−t dt = −txe−t
∣∣∣∞
0

+ x

∫ ∞
0

tx−1 e−t dt = xΓ(x)

since x > 0. So one has

(9.11) Γ(x+ 1) = xΓ(x),

and so for each positive integer n

(9.12) Γ(n+ 1) = nΓn = n(n− 1)Γ(n− 1) = n(n− 1) · 3 · 2 · 1 · Γ(1) = n !.

Euler worked out that

(9.13)
(1

2

)
! =

1

2

√
π.

So

(9.14)
(

5
1

2

)
! =

11

2
· 9

2
· 7

2
· 5

2
· 3

2

(1

2

)
!.

In fact, the infinite integral will not only “converge” for all positive real x. That is, it is not just
continuous and (real) differentiable function for all positive x, the integral

(9.15) Γ(z) =

∫ ∞
0

tz−1e−t dt, <(z) > 0,

converges for all complex x with <(x) > 0. In fact, it can be shown that it is an analytic function in
<(x) > 0.
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We can now use the recursion formula (9.11) to “analytically continue” the Γ(x) into the <(x) > −1,
and then again to <(x) > −2, etc, and eventually into whole complex plane C except on the negative
integers, since, for example,

(−5)! = Γ(−4) = (−4 + 1)(−4 + 2)(−4 + 3)(−4 + 4)Γ(0) = (−3)(−2)(−1)(0) Γ(0)

meaning that Γ(0) would need to be infinity if the left side is to have a meaning. In fact, Γ(x) is
analytic in C except at the negative integers including 0 which are simple poles. So it is a meromorphic
function.

One can even compute negative factorial:

(9.16) Γ(1/2) = (−1/2) (−3/2) (−5/2) (−19/2) (−11/2) Γ(−11/2).

We mention that the Euler-Gamma function as an example of the Mellin transform defined by

M(f)(z) =

∫ ∞
0

tz−1f(t) dt.

That is, the Gamma function is the Mellin transform of the f(x) = ex.

9.3. Bessel functions of first kind. We recall that we have assumed that ν is not an integer. Since
c0 and c′0 are arbitrary, so we choose them to be

(9.17) c0 =
1

2νΓ(ν + 1)
, c′0 =

1

2−νΓ(−ν + 1)

so that the two series (9.5) and (9.6) can be written in the forms:

(9.18) Jν(z) =
+∞∑
k=0

(−1)k(12z)
ν+2k

Γ(ν + k + 1) k!
, J−ν(z) =

+∞∑
k=0

(−1)k(12z)
−ν+2k

Γ(−ν + k + 1) k!

and both are called the Bessel function of order ν and −ν and both are of the first kind. In this case,
we have {Jν , J−ν} forms a fundamental set of the Bessel equation. That is,

y(x) = AJν(x) +BJ−ν(x)

is the general solution to the Bessel equation. More precisely, it can be shown that the Wronskian of
Jν and J−ν is given by (G. N. Watson “A Treatise On The Theory Of Bessel Functions”, pp. 42–43):

(9.19) W (Jν , J−ν) = −2 sin νπ

πz
,

which is non-zero provided that ν is not equal to an integer and z 6= 0. This shows that the Jν and
J−ν forms a fundamental set of solutions. One can also see that when ν is not an integer, then
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Jν(x) = C J−ν(x)

would not hold for all x for any constant C. Just take s→ 0. In fact, when ν = n is an integer, then
we can easily check that

(9.20) J−n(z) = (−1)nJn(z).

9.4. Bessel functions of second kind. We define

(9.21) Yν(z) =
Jν(z) cos νπ − J−ν(z)

sin νπ

when ν is not an integer. It is easy to check that the wronskian of Jν and Yν is non-zero, thus showing
that {Jν , Yν} forms a fundamental set of the Bessel equation when when ν is not an integer. The case
when ν is an integer n is defined by

(9.22) Yn(z) = lim
ν→n

Jν(z) cos νπ − J−ν(z)

sin νπ
.

The idea behind is that both the numerator and denominator is undefined as ν tends to an integer. So
we apply the Ĺ Hospital’s rule to yields

Yn(x) = lim
ν→n

(∂/∂ν)
(
Jν(z) cos νπ − J−ν(z)

)
(∂/∂ν) sin νπ

= lim
ν→n

cos νπ(∂/∂ν)Jν(z)− πJν(z) sin νπ − (∂/∂ν)J−ν(z)

π cos νπ

=
(−1)ν(∂/∂ν)Jν(z)− (∂/∂ν)J−ν(z)

π(−1)ν

∣∣∣
ν=n

The Yν so defined is linearly independent with Jν for all values of ν.

In particular, we obtain

Yn(x) =
−1

π

n−1∑
k=0

(n− k − 1)!

k!

(x
2

)2k−n
+

1

π

∞∑
k=0

(−1)k(x/2)n+2k

k!(n+ k)!

[
2 log

x

2
− ψ(k + 1)− ψ(k + n+ 1)

]
=

2

π
Jn(x)

(
log

x

2
+ γ
)
− 1

π

n−1∑
k=0

(n− k − 1)!

k!

(x
2

)−n+2k

− 1

π

∞∑
k=0

(−1)k(x/2)n+2k

k!(n+ k)!

( n+k∑
j=1

1

j
+

k∑
j=1

1

j

)
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for | arg x| < π and n = 0, 1, 2, · · · with the understanding that we set the sum to be 0 when n = 0.
Here the ψ(z) = Γ′(x)/Γ(x), γ = 0.57721566 is the Euler constant. We note that the function is
unbounded when x = 0.

When n = 0, we have

Y0(x) =
2

π
J0(x)

(
log

x

2
+ γ
)

− 2

π

∞∑
k=1

(−1)k

(k!)2

(x
2

)2k(
1 +

1

2
+

1

3
+ · · ·+ 1

k

)

9.5. Recurrence Formulae for Jν. We consider arbitrary complex ν.

d

dx
xνJν(x) =

d

dx

(−1)kx2ν+2k

2ν+2k k!Γ(ν + k + 1)

=
d

dx

(−1)kx2ν−1+2k

2ν−1+2k k!Γ(ν + k)

= xνJν−1(x).(9.23)

But the left side can be expanded and this yields

(9.24) xJ ′ν(x) + νJν(x) = xJν−1(x).

Similarly,

(9.25)
d

dx
x−νJν(x) = −x−νJν+1(x).

and this yields

(9.26) xJ ′ν(x)− νJν(x) = −xJν+1(x)

Subtracting and adding the above recurrence formulae yield

Jν−1(x) + Jν+1(x) =
2ν

x
Jν(x)(9.27)

Jν−1(x)− Jν+1(x) = 2J ′ν(x).(9.28)

Replacing ν by −ν in (9.25) yields

(9.29)
d

dx
xνJ−ν(x) = −xνJ−ν+1(x).
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9.6. Recurrence Formulae for Yν. Suppose ν is not an integer. It follows from (9.23) and (9.29)
that

d

dx
xνYν(x) =

d

dx
xν
Jν(x) cos νπ − J−ν(x)

sin νπ

= xν
Jν−1(x) cos νπ + J−ν+1(x)

sin νπ

= −xν Jν−1(x) cos νπ + J−ν+1(x)

sin νπ

= xν
Jν−1(x) cos(ν − 1)π − J−ν+1(x)

sin(ν − 1)π

= xνYν−1(x).

Let us now replace ν by −ν in (9.23) to obtain

d

dx
x−ν Jν(x) = x−νJ−ν−1(x),

Combining this together with (9.25), yields, similarly,

d

dx
x−νYν(x) = −x−νYν+1(x).

9.7. Generating Function for Jn. Jacobi in 1836 gave

(9.30) e
1
2
z(t− 1

t
) =

+∞∑
k=−∞

tkJk(z).

Many of the forumulae derived above can be obtained from this expression.

(9.31) e
1
2
z(t− 1

t
) =

+∞∑
k=−∞

ck(z)t
k

for 0 < |t| <∞. We multiply the power series

(9.32) e
zt
2 = 1 +

(z/2)

1!
t+

(z/2)2

2!
t2 + · · ·

and

(9.33) e−
z
2t = 1− (z/2)

1!
t−1 +

(z/2)2

2!
t−2 − · · ·

and comparing the coefficients of tk yield
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cn(z) = Jn(z), n = 0, 1, · · ·(9.34)

cn(z) = (−1)nJ−n(z), n = −1, −2, · · · .(9.35)

Thus

(9.36) e
1
2
z(t− 1

t
) = J0(z) +

+∞∑
k=1

Jk[t
k + (−1)kt−k].

9.8. Bessel Functions of half-integer Orders. It follows from the definition of Bessel function that

J1/2(x) =

√
x√

2Γ(32)

(
1− x2

2 · 3
+

x4

2 · 3 · 4 · 5
− x6

2 · 3 · 4 · 5 · 6 · 7
+ · · ·

)
=

1√
2xΓ(32)

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
=

1√
2xΓ(32)

sinx

On the other hand,

Γ(3/2) =
1

2
Γ(1/2) =

1

2

∫ ∞
0

e−x
dx√
x

=

∫ ∞
0

e−t
2
dt =

1

2

√
π.

Hence

J 1
2
(x) =

( 2

πx

) 1
2

sinx

Similarly, one can check that

(9.37) J− 1
2
(x) =

( 2

πx

) 1
2

cosx,

Moreover,

(9.38) Jn+ 1
2
(z) = (−1)n

√
2

π
zn+

1
2

( d

z dz

)n sin z

z
, n = 0, 1, 2, · · · .

9.9. Lommel’s Polynomials. Iterating the recurrence formula

(9.39) Jν+1(z) =
2ν

z
Jν(z)− Jν−1

with respect to ν a number of times give

(9.40) Jν+k(x) = P (1/x)Jν(x)−Q(1/x)Jν−1(x).
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Lommel (1871) [See Watson, pp. 294–295] found that

(9.41) Jν+k(x) = Rk,ν(x)Jν(x)−Rk−1,ν+1(x)Jν−1(x).

Hence, in the special case when ν = n+ 1
2 , we have

(9.42) Jn+ 1
2
(x) = (−1)n

√
2

π
xn+

1
2

( d

x dx

)n sinx

x
, n = 0, 1, 2, · · · .

Thus applying a recurrence formula and using the Lommel polynomials yield

(9.43) Jn+ 1
2
(x) = Rn,ν(x)J 1

2
(x)−Rn−1,ν+1J− 1

2
(x)

That is, we have

(9.44) Jn+ 1
2
(x) = Rn, 1

2
(x)
( 2

πx

) 1
2

sinx−Rn−1, 3
2
(x)
( 2

πx

) 1
2

cosx,

and similarly,

(9.45) (−1)nJ−n− 1
2
(x) = Rn, 1

2
(x)
( 2

πx

) 1
2

cosx+Rn−1, 3
2
(x)
( 2

πx

) 1
2

sinx.

9.10. Some formulae for Lommel’s polynomials. For each fixed ν, the Lommel polynomials are
given by

(9.46) Rn ν(z) =

[n/2]∑
k=0

(−1)k(n− k)!(ν)n−k
k!(n− 2k)!(ν)k

(
2

z

)n−2k
where the [x] means the largest integer not exceeding x. Lommel is a German who is one of the main
mathematicians made a major contribution to Bessel functions.

“Pythagoras’ Theorem” for Bessel Function. These Lommel polynomials have remarkable properties.
Since

(9.47) J− 1
2
(z) =

( 2

πz

) 1
2

cos z, J 1
2
(z) =

( 2

πz

) 1
2

sin z

and sin2 x+ cos2 x = 1; we now have

(9.48) J2
n+ 1

2

(z) + J2
−n− 1

2

(z) = 2(−1)n
R2n, 1

2
−n(z)

πz
.
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That is, we have

(9.49) J2
n+ 1

2

(z) + J2
−n− 1

2

(z) =
2

πz

n∑
k=0

(2z)2n−2k(2n− k)!(2n− 2k)!

[(n− k)!]2k!
.

A few special cases are

(1) J2
1
2

(z) + J2
− 1

2

(z) =
2

πz
;

(2) J2
3
2

(z) + J2
− 3

2

(z) =
2

πz

(
1 +

1

z2

)
;

(3) J2
5
2

(z) + J2
− 5

2

(z) =
2

πz

(
1 +

3

z2
+

9

z4

)
;

(4) J2
7
2

(z) + J2
− 7

2

(z) =
2

πz

(
1 +

6

z2
+

45

z4
+

225

z6

)

9.11. Asymptotics of Bessel functions. The substitution

y =
z√
x

transforms the Bessel equation

y′′(x) + xy′(x) + (x2 − ν2)y(x) = 0

into the form

(9.50) z′′(x) +
(
1 + ρ)z(x) = 0,

where ρ = ρ(x) = m/x2, and m = 1
4 − ν

2. It is clear that ρ becomes very small for large x. That is,
the equation (9.50) is “close to” to

z′′(x) + z(x) = 0,

indicating that the solutions to (9.50) are close to

z = z(x) = A sin(x+ ω), A, ω constants.

It is reasonable to assume that a solution to (9.50) assumes the form

(9.51) z = z(x) = α sin(x+ δ)
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where both α = α(x) and δ = δ(x) are functions of x, they should converge to some definite limits as
x→ +∞. We shall justify the claim below. We also make another assumption that

(9.52) z′(x) = α cos(x+ δ),

in order to establish the above claim. Differentiating (9.52) yields

z′′(x) = α′ cos(x+ δ)− α(1 + δ′) sin(x+ δ).

Combining this with

z′′(x) = −(1 + ρ)z(x) = −α(1 + δ) sin(x+ δ)

gives,

(9.53) tan(x+ δ) =
α′

α(δ′ − ρ)
.

On the other hand, differentiating (9.51) yields

z′(t) = α′ sin(x+ δ) + α(1 + δ′) cos(x+ δ).

Comparing it with (9.52) yields

(9.54) tan(x+ δ) = −α δ
′

α′
.

Multiplying (9.53) and (9.54) yields,

tan2(x+ δ) = − δ′

δ′ − ρ
,

and from which we deduce

δ′ = ρ sin2(x+ δ).

We deduce from (9.54) that

(9.55)
α′

α
= − δ′

tan(x+ δ′)
= −ρ sin(x+ δ) cos(x+ δ).

Moreover, it follows from (9.51) and (9.52) that the function α(x) must be non-vanishing throughout.
For this would mean the z(x) and z′(z) would simultaneous vanish at a same point, implying that z
be identically zero solution. A contradiction. Besides, the existence of δ can be asserted via solving
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the (9.51) and (9.52) with initial condition given there also. Once the δ is found, the α can also be
retrieved from (9.55) and initial condition again from (9.51) and (9.52).

But ρ = ρ(x) = m/x2 and so

δ(x) = δ(b)−
∫ b

x
δ′(t) dt = δ(b)−m

∫ b

x

sin2(t+ δ)

t2
dt.

We now take limit x → ∞ and observe that the improper integral exists. Therefore, δ(b) must also
exist as b→∞. Let

lim
b→∞

δ(b) = ω

then

δ(x) = ω −m
∫ ∞
x

sin2(t+ δ)

t2
dt.

However,

0 <

∫ ∞
x

sin2(t+ δ)

t2
dt <

∫ ∞
x

1

t2
dt =

1

x
,

so that

0 < mx

∫ ∞
x

sin2(t+ δ)

t2
dt < m.

We deduce that

δ(x) = ω +
η(x)

x
where

η(x) := −mx
∫ ∞
x

sin2(t+ δ)

t2
dt

is a bounded function.

On the other hand, it follows from (9.55) that

logα(x) = logα(b) +m

∫ b

x

sin(t+ δ) cos(t+ δ)

t2
dt.

We similarly deduce that limb→∞ α(b) := A 6= 0 exists. Hence

logα(x) = logA+m

∫ ∞
x

sin(t+ δ) cos(t+ δ)

t2
dt.

Hence

logα(x) = logA+
φ(x)

x

where the
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φ(x) = mx

∫ ∞
x

sin(t+ δ) cos(t+ δ)

t2
dt

is again bounded, and whence

α(x) = A exp
(φ(x)

x

)
.

We apply the Taylor expansion with one them (et = 1 + teθt for some 0 < θ < 1) to obtain

exp
(φ(x)

x

)
= 1 +

φ(x)

x
exp

(θ φ(x)

x

)
.

Hence we can write

exp
(θ φ(x)

x

)
= 1 +

ξ(x)

x
,

and so

α(x) = A
(

1 +
ξ(x)

x

)
.

We finally deduce

z(x) = α sin(x+ δ) = A
(

1 +
ξ(x)

x

)
sin
(
x+ ω +

η(x)

x

)
.

We can further write, by Taylor expansion that

sin
(
x+ ω +

η(x)

x

)
= sin(x+ ω) +

η(x)

x
cos
(
x+ ω + θ

η(x)

x

)
:= sin(x+ ω) +

ζ(x)

x

Clearly, the ζ(x) is a bounded function. This in turn means that

z(x) = A
(

1 +
ξ(x)

x

)(
sin(x+ ω) +

ζ(x)

x

)
(9.56)

= A sin(x+ ω) +
r(x)

x
(9.57)

where r(x) is a bounded function, so that

z(x)→ A sin(x+ ω)

as x→∞. Hence
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y(x) = A
[sin(x+ ω)

x

]
+
r(x)

x
√
x
, x→∞

One can also deduce

z′(x) = A
(

1 +
ξ(x)

x

)
cos
(
x+ ω +

η(x)

x

)
(9.58)

= A cos(x+ ω) +
s(x)

x
(9.59)

where s(x) again is a bounded function as x→∞.

We quote without proof the following more precise asymptotic formulae

Jν(x) =

√
2

πx
sin
(
x− νπ

2
+
π

4

)
+
rν(x)

x
√
x
,

and

Yν(x) =

√
2

πx
sin
(
x− νπ

2
− π

4

)
+
ρν(x)

x
√
x
,

where both rν(x) and ρν(x) are bounded functions as x → +∞. In fact, one can do better and even
on the complex plane:

Theorem 9.1. For | arg z| < π, we have

Jν(z) ∼
[

cos
(
z − 1

2
νπ − 1

4
π
) ∞∑
k=0

(−1)k(ν, 2k)

(2z)2k

− sin
(
z − 1

2
νπ − 1

4
π
) ∞∑
k=0

(−1)k(ν, 2k + 1)

(2z)2k+1

]
We note that the notation means

(v, n) = (−1)n
(12 − ν)n(12 + ν)n

n!
=

Γ(ν + n+ 1
2)

n!Γ(ν − n+ 1
2)
.

That is, one can have as many terms of accuracy as one wants.

Remark. In fact the above asymptotic formulae were derived by using complex analytic contour integral
method. We briefly introducing this. We define the Bessel function of the third kind, the Hankel

functions are defined by H
(1)
ν (x) = Jν(x) + iYν(x) and H

(2)
ν (x) = Jν(x)− iYν(x). Then Hankel found

Theorem 9.2 (Hankel 1869). Let <(ν) > −1
2 . Then

(9.60) H(1)
ν (x) =

( 2

πx

) 1
2 ei[x−νπ/2−π/4]

Γ(ν + 1/2)

∫ ∞·exp(iβ)
0

e−uuν−
1
2

(
1 +

iu

2x

)ν− 1
2
du,

where |β| < π/2 and −1
2π + β < arg x < 3

2 + β.
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from there we have found

Theorem 9.3. For −π < arg x < 2π,

(9.61) H(1)
ν (x) = ei(x−

1
2
νπ− 1

4
π)

[ p−1∑
m=0

(12 − ν)m(12 + ν)m

(2ix)mm!
+R(1)

p (x)

]
,

and for −2π < arg x < π,

(9.62) H(2)
ν (x) = e−i(x−

1
2
νπ− 1

4
π)

[ p−1∑
m=0

(12 − ν)m(12 + ν)m

(2ix)mm!
+R(2)

p (x)

]
,

where

(9.63) R(1)
p (x) = O(x−p) and R(2)

p (x) = O(x−p),

as x→ +∞, uniformly in −π + δ < arg x < 2π − δ and −2π + δ < arg x < π − δ respectively.

The two expansions are valid simultaneously in −π < arg x < π. From here, one can derive Bessel’s
asymptote stated in the Theorem 9.1 above.

9.12. Zeros of Bessel functions. There is a wealth of information about the zeros of Bessel functions
(of all kinds) of real order ν. The most comprehensive treatment on the zeros can be found from G.
N. Watson’s “A Treatise on the Theory of Bessel Functions”, Cambridge University Press 1922 (2nd
ed. 1944) and A. Erdélyi (Ed) Bateman Manuscript Project: Higher Transcendental Functions, Vol.
II, 1953.

Theorem 9.4. Let ν be a real number. Then the zeros

(i) of Jν(x) are located close to the zeros of sin(x + ω), i.e., close to kn = nπ − ω n ≥ 1, where
ω = νπ

2 −
π
4 .

(ii) of Jν(x) and the zeros of Jν+1(x) separate each other;
(iii) of Jν(x) and the zeros of J ′ν(x) separate each other;
(iv) of J ′ν(x) is an infinite set and are positive;

Proof. We first comment on the part (i). It would be difficult to give a vigorous proof about the
asymptotic locations of the large zeros of the Bessel functions without using complex analytic methods.
In fact, the idea being to work on the reminders of the asymptotic expansions of the Jν(x) given in the
Theorem 9.1 above. Thus we will only be indicative that it follows from (9.56) that the zeros situate
near

kπ − νπ

2
+
π

4
, k →∞.

One can argue that there is one such zero near the above locations. For suppose that there are two
distinct zeros cluster there, then it follow from Rolle’s theorem that J ′ν(x) to have a zero in between
the two zeros of Jν(x). But this would contradict of the (9.58) and hence to J ′ν(x). Hence there can
be at most one zero close to kπ − νπ

2 + π
4 . As a by-product we easily see that the J ′ν(x) has infinitely

many zeros. Also since the J ′ν(x)/xν is an even functions, so there are as many negative zeros as with
the positive zeros. We recall from the formulae (9.25)

d

dx
x−νJν(x) = −x−νJν+1(x).
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and (9.23) that
d

dx
xν+1Jν+1(x) = xν+1Jν(x).

Hence we deduce Jν+1(x) must have a zero between any two consecutive zeros of Jν(x), and that Jν(x)
must also have a zero between any two consecutive zeros of Jν+1(x). Thus the zeros of the two functions
interlace as asserted. This proves (ii). This also establishes (iii) and also (iv). �

Remark. We note that Jν(x) and Jν+1(x) cannot share a common non-zero zero, for otherwise, this
would mean that both Jν(x) and J ′ν(x) would share that common zero. but then the the Jν(x) ≡ 0 by
the uniqueness of differential equations, or from the power series consideration.

Theorem 9.5. Let 0 < λ1 < λ2 < λ3 < · · · be the positive zeros of Jν(x). Then

(i) Jν(x) > 0 over (0, λ1),
(ii) and that Jν(x) changes signs alternatively from negative to positive between (λ1, λ2) to (λ2, λ3)

and then from positive to negative from (λ2, λ3) to (λ3, λ4), etc,
(iii) the function xJ ′ν(x) − HJν(x), for each real H, alternately negative and positive at x =

λ1, λ2, λ3, · · · .

Proof. Part (i) follows from consideration of the power series of Jν(x) for positive ν. Part (ii) follows
since Jν(λk) = 0 but J ′ν(λk) 6= 0. Hence J ′ν(λ1) < 0 because of (i). Thus, J ′ν(λ2) > 0, J ′ν(λ3) < 0, etc.
Let x = λk. Then

xJ ′ν(x)−HJν(x)
∣∣∣
x=λk

= λkJ
′
ν(λk) 6= 0,

so that xJ ′ν(x)−HJν(x) alternates its signs on the sequence λ1 < λ2 < λ3 < · · · . This also shows that
xJ ′ν(x)−HJν(x) has infinitely many positive zeros. �

9.13. Orthogonality. We have

Theorem 9.6. Let ν > −1. Suppose λ and κ are two non-negative roots of Jν(x). Then Jν(λx) and
z = Jν(κx) are orthogonal with respect to the weight x over (0, 1). That is, we have

(9.64)

∫ 1

0
Jν(λx)Jν(κx) x dx = 0.

Proof. Then it is easy to check that y = Jν(λx) and z = Jν(κx) satisfy the differential equations

x2y′′ + xy′ + (λ2x2 − ν2)y = 0

and
x2z′′ + xz′ + (κ2x2 − ν2)z = 0

respectively, or, after dividing both sides by x:

xy′′ + y′ − ν2

x
y = −λ2x y
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and

xz′′ + z′ − ν2

x
z = −κ2x z.

Let us multiply the first equation by z and the second equation by y. Then we subtract the two
equations to obtain

x(yz′′ − zy′′) + (yz′ − zy′) = (λ2 − κ2)xyz,
or

x
d

dx
(yz′ − zy′) + (yz′ − zy′) = (λ2 − κ2)xyz,

so that
d

dx
[x(yz′ − zy′)] = (λ2 − κ2)xyz.

We note from the series expansions of Bessel functions that

xyz = x2ν+1Φ(x),

for some continuous (in fact even differentiable/analytic) function Φ(x). Hence we can find a constant
M > 0 so that

|xyz| = |x2ν+1Φ(x)| ≤Mx2ν+1, 0 ≤ x ≤ 1.

But 2ν + 1 > −1 so that the integrand

[x(yz′ − zy′)]
∣∣∣x=1

x=0
= (λ2 − κ2)

∫ 1

0
xyz dx

= (λ2 − κ2)
∫ 1

0
x2ν+2Φ(x) dx

exists. But the left-side of the above equation

[x(yz′ − zy′)]
∣∣∣x=1

x=0
= κJν(λ)J ′ν(κ)− λJν(κ)J ′ν(λ)− 0 = 0− 0

obviously vanishes. However, the factor (λ2 − κ2) 6= 0 does not vanish on the right hand side. So we
deduce

∫ 1

0
Jν(λx)Jν(κx) x dx = 0,

as required. �

Remark. We note that the above argument also works if we replace the positive zeros of λk of Jν(x)
by the zeros λ′k of J ′ν(x). A slightly more lengthy argument can also show that the zero sequence
ξk of xJν(x) − HJ ′ν(x) again works. That are, both the {Jν(λ′k x)} and {xJν(ξkx) − HJ ′ν(ξkx)} are
orthogonal families.
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Theorem 9.7. Let ν ≥ −1/2. Then

(1) if Jν(λ) = 0, then ∫ 1

0
xJ2

ν (λx) dx =
1

2
J2
ν+1(λ),

(2) if J ′ν(λ) = 0, then ∫ 1

0
xJ2

ν (λx) dx =
1

2

(
1− ν2

λ2

)
J2
ν (λ).

Proof. It follows from the proof of the last theorem that for arbitrary λ and κ (not necessary roots),

κJν(λ)J ′ν(κ)− λJν(κ)J ′ν(λ) = [x(yz′ − zy′)]
∣∣∣x=1

x=0

= (λ2 − κ2)
∫ 1

0
xyz dx

= (λ2 − κ2)
∫ 1

0
Jν(λx)Jν(κx) x dx,

and hence ∫ 1

0
Jν(λx)Jν(κx) x dx =

λJν(κ)J ′ν(λ)− κJν(λ)J ′ν(κ)

κ2 − λ2
.

Letting κ→ λ by LH́ospital’s rule yields

∫ 1

0
xJ2

ν (λx) dx = lim
κ→λ

λJ ′ν(κ)J ′ν(λ)− κJν(λ)J ′′ν (κ)− Jν(λ)J ′ν(κ)

2κ

=
λJ ′ν

2(λ)− λJν(λ)J ′′ν (λ)− Jν(λ)J ′ν(λ)

2λ

=
1

2

[
J ′ν

2
(λ)− Jν(λ)J ′′ν (λ)− Jν(λ)J ′ν(λ)

λ

]
=

1

2

[
J ′ν

2
(λ) +

(
1− ν2

λ2

)
J2
ν (λ)

]
,

since we have used the fact that the Jν(λ) satisfies the Bessel equation itself

λ2J ′′ν (λ) + λJ ′ν(λ) + (λ2 − ν2)Jν(λ) = 0

in the calculation above.

We deduce from this relation that

(9.65)

∫ 1

0
xJ2

ν (λx) dx =
1

2

[
J ′ν

2
(λ) +

(
1− ν2

λ2

)
J2
ν (λ)

]
When x = λ is a zero of Jν(x), then the above becomes
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∫ 1

0
xJ2

ν (λx) dx =
1

2
J ′ν

2
(λ).

We recall from (9.25) that when x = λ that

λJ ′ν(λ)− νJν(λ) = −λJν+1(λ)

holds. If now λ is a zero of Jν(x). Clearly this relation becomes

(9.66) J ′ν(λ) = −Jν+1(λ).

We now substitute this into (9.65) with the λ as a zero of Jν . This proves the part (i). Substitute λ
as a zero of J ′ν , respectively, in the identity above, and noting that the zeros of Jν or J ′ν are distinct,
gives the second part. �

9.14. Fourier-Bessel Series. Let ν > −1 and {λk} be the positive zeros of Jν(x). Then the discussion
in the last section shows that {Jν(λk x)}∞k=1 forms an orthogonal system over the internal [0, 1].

We define the Fourier-Bessel series to be

f(x) ∼ c1Jν(λ1 x) + c2Jν(λ2 x) + c3Jν(λ3 x) + · · · ,
where

cn =

∫ 1

0
f(x) Jν(λn x)x dx∫ 1

0
J2
ν (λn x)x dx

=
2

J2
ν+1(λn)

∫ 1

0
f(x) Jν(λn x)x dx,

according to the last theorem.

Theorem 9.8. Let f(x) be piecewise smooth on [0, 1]. Suppose ν ≥ −1/2. Then the Fourier-Bessel
series of f converges to f(x) over (0, 1), that is,

(9.67) f(x) =

∞∑
k=1

ck Jν
(
λkx

)
converges to f(x) at every continuity point of f(x) and to

(9.68)
1

2
[f(x+ 0) + f(x− 0)]

at every discontinuity point of f(x). Here the ck are as given above.

If f has absolutely integrable derivative, then we can achieve uniform convergence.
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Theorem 9.9. Let f(x) be continuous and have absolutely integrable derivative on [a, b] whenever
0 ≤ a < b ≤ 1. Suppose ν ≥ −1/2 and 0 < δ < (b − a)/2. Then the Fourier-Bessel series of f
converges to f(x) uniformly on [a+ δ, b− δ]. Here the ck are as given above.

Remark. We may replace the requirement of f to have an absolutely integrable derivative to
√
xf(x)

be absolutely integrable.

Example. Expand f(x) = xν (ν ≥ −1/2) into Fourier-Bessel series over (0, 1).

It follows from the definition of the Fourier-Bessel coefficient that

cn =
2

J2
ν+1(λn)

∫ 1

0
xν+1 Jν(λn x) dx, n = 1, 2, 3, · · ·

=
2

J2
ν+1(λn)λν+2

n

∫ λn

0
tν+1 Jν(t) dt

But since

d

dt
tν+1Jν+1(t) = tν+1Jν(t), n = 1, 2, 3, · · ·

So the integral becomes (recall that ν ≥ −1/2)

cn =
2

J2
ν+1(λn)λν+2

n
tν+1 Jν+1(t)

∣∣∣λn
0

=
2

J2
ν+1(λn)λν+2

n
λν+1
n Jν+1(λn)

=
2

λn Jν+1(λn),
n = 1, 2, 3, · · ·

We deduce from the above theorem that

xν = 2
( Jν(λ1 x)

λ1 Jν+1(λ1)
+

Jν(λ2 x)

λ1 Jν+1(λ2)
+

Jν(λ3 x)

λ3 Jν+1(λ3)
+ · · ·

)
,

for ν ≥ −1/2 and 0 < x < 1.

We omit the discussion of a corresponding Bessel-inequality for Fourier-Bessel series and order of
magnitude of the coefficients by referring the reader to Tolstov’s book. We now turn to an application.
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9.15. Radial Vibration of a Circular Membrane. We consider a simplest case of the free vibration
of a circular membrane of radius `. Apply the polar coordinate x = r cos θ, y = r sin θ, (0 ≤ r ≤ `, 0 ≤
θ ≤ 2π). Then the wave equation can be written into the form

∂2u

∂t2
= c2

(∂2u
∂r2

+
1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

)
.

Since we assume that the material of the circular membrane is made of a uniform material, so that
we could assume that the membrane vibration is independent of θ. Thus the above wave equation in
polar-coordinate can be further simplified to

∂2u

∂t2
= c2

(∂2u
∂r2

+
1

r

∂u

∂r

)
.

We state the obvious boundary condition to be

u(`, t) = 0, t ≥ 0,

and the initial condition

u(r, 0) = f(r), ut(r, 0) = g(r).

We apply the method of separation of variable again:

u(r, t) = R(r)T (t),

assuming it satisfies the above boundary and initial conditions. Substitute the u(r, t) = R(r)T (t) into
the wave equation and applying the well-known argument to obtain

R(t)T ′′(t) = c2
(
R′′(r) +

1

r
R′(r)

)
T (t).

Hence

R′′(r) + 1
rR
′(r)

R(r)
=

T ′′(t)

c2 T (t)
= −λ2.

This gives the set of equations

(9.69) R′′(r) +
1

r
R′(r) + λ2R(r) = 0,

and

(9.70) T ′′(t) + c2λ2T (t) = 0.

We note that the equation (9.69) is simply the Bessel equation of order zero in the form J0(λx). So we
can write its general solution in the form
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R(r) = C1 J0(λr) + C2 Y0(λr).

Here the λ is to be determined. On the one hand, since we need R(0) to be well-defined and Y0(0) is
unbounded at x = 0 so we must choose C2 = 0. Thus we may choose C1 = 1 and write R(r) = J0(λx).
On the other hand, we also have u(`, t) = 0 for all t ≥ 0. This implies that

J0(λ `) = 0.

That is, the µ = λ ` must be the zeros of J0(x). Let µn be the positive zeros of J0. Then λn = µn/`
for n = 1, 2, 3, · · · . So we have obtained

(9.71) Rn(r) = J0(λn r) = J0

(µn
`
r
)
, n = 1, 2, 3, · · · .

Substituing λn = µn/` into the equation (9.70) implies that

(9.72) Tn(t) = An cos
(µn
`
ct
)

+Bn sin
(µn
`
ct
)
, n = 1, 2, 3, · · · .

Hence

(9.73) u(r, θ) =
∞∑
n=1

un(r, θ) =
[
An cos

(µn
`
ct
)

+Bn sin
(µn
`
ct
)]
J0

(µn
`
r
)
.

It remains to consider the initial and boundary conditions. They are

(9.74) f(r) = u(r, 0) =
∞∑
n=1

AnJ0

(µn
`
r
)
,

and

g(r) = ut(r, 0) =
∞∑
n=1

[
−An c

µn
`

sin
(µn
`
ct
)

+Bnc
µn
`

cos
(µn
`
ct
)]
J0

(µn
`
r
)∣∣∣∣∣
t=0

=

∞∑
n=1

Bnc
µn
`
J0

(µn
`
r
)

where

An =
2

`2J2
1 (µn)

∫ `

0
f(r) J0

(µn
`
r
)
r dr,

Bn =
2

cλnJ2
1 (µn)

∫ `

0
g(r) J0

(µn
`
r
)
r dr =

2

c`µnJ2
1 (µn)

∫ `

0
g(r) J0

(µn
`
r
)
r dr.
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Remark. Let
∫∞
0 |f(r)|

√
r dr <∞ and ν ≥ −1/2. We note that the integral transform

Fν(k) =

∫ ∞
0

f(r) Jν(kr) r dr

is known as the Hankel transform.

We can re-write

un(r, θ) =
[
An cos

(µn
`
ct
)

+Bn sin
(µn
`
ct
)]
J0

(µn
`
r
)

= Hn sin(
µn
`
ct+ αn

)
J0

(µn
`
r
)

where

Hn =
√
A2
n +B2

n, sinαn =
An
Hn

, cosαn =
Bn
Hn

.

Hence the characteristic frequencies and amplitude of the membrane are given by

ωk =
µn
`
,

and
Hn

∣∣∣J0(µn
`

)∣∣∣.
The so-called nodal lines on the membrane are given by

J0

(µn
`
r
)

= 0, 0 ≤ r < `.

We note that the nodal lines for vibration of a string are given by zeros of sine functions and so are
equally distributed.

To be continued ...
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