MATH4822E FOURIER ANALYSIS AND APPLICATIONS
CHAPTER 4 CONVERGENCE OF FOURIER SERIES

5. CONVERGENCE OF FOURIER SERIES

We understand that a function f being integrable over the interval [a, b] is to be interpreted in an
elementary, that is, f is either continuous or have a finite number of discontinuities (which can be
either either bounded or unbounded).

Definition. Let f be defined on [a, b] with at most a finite number of discontinuities. Then f is said
to be absolutely integrable if | f(x)| is absolutely integrable over [a, b]. That is,

Lﬂf@nmv

We also recall that f being an absolutely integrable on [a, b] must also be integrable there.

exists.

Lemma 5.1. Let f be an absolutely integrable function on [a, b]. Then for each € > 0, there is piecewise
continuous function g such that

b
[ 1@ - gl do <
We skip the proof of this elementary lemma.

Theorem 5.2 (Riemann-Lebesgue Lemma). Let f be an absolutely integrable function on [a, b]. Then

b b
lim f(z) cosmzdr = lim f(z) sinmzxdx = 0.

m—r00 a m—0o0 a

Proof. Let € be given. Then the Lemma 5.1 asserts that there exists a piecewise continuous function g
such that

b
[ 1) =) av <

DO ™

Then

‘/ab f(z) cosmaz d:c‘ < /ab (f(z) = g(z)) cosma dm‘ + /abg(x) cos ma d:c‘

<

/ab (f(x) = g(x)) dw‘ + ‘ /abg(x) cosmxdx‘.

Integration-by-parts yields

b b
1 b 1
/ g(x) cosmxdxr = — [g(x) sin mx] - —/ sinmaz ¢ (z) dx,
“ m m Jq

a

which is bounded, if we choose m to be sufficiently large. Hence

b
‘/ g(x) cosmz dx‘ <=
o 2

1
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for all m sufficiently large. Hence we deduce

b
‘/ f(x) cosmzx dz| < e,

for all m sufficiently large. O

Theorem 5.3 (Partial sum integral representation). Let f be periodic function of period 2w, and
suppose that

f(z) ~ % —i—Zakcoskx—i—bksinkx.

k=1
Let
n
a .
sp(z) = 50 + Z ay, cos kx + by sin kx.
k=1
Then

sin[(n + 2)u]
2sin(3)

(That is, an integral representation of the n—th partial sum).

Sp(x) = % ! flx+u) du

Proof. Let
1
5:§+cosu+cos2u+---+cosnu.
Then
QSSing:sing+2singcosu+2singcos2u—|—---+2singcosnu
. u+(, 3u . u)+< 5u . 3u>+ +(, (2n+ 1)u . (2n—1)u>
= sin — sin — — sin — sin — — sin — sin ——%— —sin ———
2 2 2 2 2 2
. (2n+1u
=sin ——.

So
. sin[(n + %)u]
2sin(y)

On the other hand,
™ sin[(n + )ul - /7r 1 < _ -
/ Wdu- (§+;COSI€U) d’U,—7T+0—7T.

—T —T

That is,

1 sin[(n + 3)u] "
=2 S
2T sin[(n + 3)u]
“2 b Ty

2sin()

—T
du,

since the integrand is even.

We rewrite
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1
sul@) = o= | f ydt + = [Z f ) cos kt - cosk:xdt+z )sink:t-sink:cdt]
k=1
1 n

Z(cos kt cos kx + sin kt sin kx)} dt
k=1

= / f() —|—Zcosk:t—:c]

- [ swl5+

T 2sin(%)
1 T—2 : 4 1
:—/ f(u—i—x)-wdu Let u=t—=x
T ) ra 2sin(3)
1 [ sin(n + 4)u
== flu+z) ——2—du
T ) 2sin(3)

sin(n + $)u

snce both £(r+ ) and " 53N

have period 2. O

Theorem 5.4. Let f be absolutely integrable function with period 2mw. Then at any continuity point
where the right-hand and the left-hand derivatives exist, the Fourier series converges to f(x). (In
particular, the result holds if f has a derivative at x)

Proof. Let x be a continuity point of f and
() =

u—0 u

u>0
/ : f(x+u)_f(x_0)
fi(z) = lim
&

(5.1)

exist. We want to show that
f(x) = Tim s (x)

| Sin(n—i—l)u
:nlglgo; f( u) 2sin%2 du
That is,
L 7 , 1 L7 1
0= tim [ [ st S o) "
1 [T i 1
= tm 2 [ e+ - 1) W du.
v fatw—f@) S+ - @)
z+u)— flz z+u)— flz U
) = 2sin § - U .2sin% = o1(u) - da(w),
where
o1(u) =: flz+u) - f@) and  ¢o(u) := 4

. u'
U QSln2



4 FOURIER ANALYSIS AND APPLICATIONS

We claim that ¢ is absolutely integrable over [—m, w]. That is,

/W (6(w)] du < +oo.

It is sufficient to show that ¢;(u) is absolutely integrable, since ¢2(u) is a bounded continuous function
(being continuous) on [—m, 7]. But then ¢ is a product of an absolutely integrable function and a
bounded function, so it is also absolutely integrable. Now we need to verify that ¢;(u) is absolutely
integrable. But it follows from (5.1) that both the left- and right-handed derivatives exist, so there is
some d > 0 such that

et — )

|p1(u) <M

u

for some M > 0, on [0, ¢].
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FIGURE 1

Since f(x) and hence f(x + u) are absolutely integrable, so we deduce that ¢ (u) (x is fixed) can have
at most a finite number of discontinuities when u # 0. We conclude that it is absolutely integrable
(with respect to u) on the interval [—d, 6]. When u lies outside [0, ¢], we notice that

1
8
and that f(x 4+ u) — f(z) is clearly absolutely integrable (with respect to u). So ¢(u) is a product of
an absolutely integrable function and a bounded function (with respect to u) outside [—d, d]. So the

¢1(u) is absolutely integrable on [—m, w]. Hence ¢(u) is absolutely integrable over [—7, w]. We deduce
from the Riemann-Lebesgue Lemma (Theorem 5.2) that

1
-] <
u

™

1
lim ¢(u) sin (n + E)u du = 0.

n—oo J_

Rearranging the terms in the above equation yields the desired result. U

Theorem 5.5. Let f be absolutely integrable function of period 2. Then, at every point of discontinuity
where f has a right-hand and left-hand derivatives, the Fourier series converges to

[ +0) + [ —0)

2
Proof. We aim to prove
e in(n + 3 0 —0
lim s,(z) = lim — Flz+u) sm(n' u2)u Ju = flz+0)+ f(x )
n—ro0 n—oo ) o 2sin % 2

2
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It suffices to prove that

I D fa 0
.2 1 _— =
(52) nsoo 7T/ uc © 2sin% 5 du 2
and
i 1 _
(5.3) . 1 f( )sm(n.+u2)u iy — f(z—0)
n—00 T 2sin 5 2

hold. We first note that

x—i—O /f sm(n—l—) du

© 2sin¥ 5

Thus the (5.2) is equivalent to

™

(5.4) tim — [ (7w -

n—=mT T Jo

du =0

flz+ 0)] sin(n + 3)u

2 2sin 5

Again denote

o = L) _feri @)
2 2

fle+u) - flz+0)

Since f! () exists, then we argue as in the proof of Theorem 5.4 that the ratio

u
is (bounded and) absolutely integrable when v — 0 and w > 0. Similarly, the ratio is also absolutely
integrable on [—, 7. Finally, we again argue as in Theorem 5.4 that ¢(u) is a product of the absolutely

integrable function above and the bounded function %(u) on [—m, |. Hence ¢(u) is absolutely
sin(%
2
integrable on [—m, w]. We then use the Riemann-Lebesgue Lemma to show that (5.4) holds. A similar
argument gives (5.3). We omit the details here. O

Theorem 5.6. Let f be an absolutely integrable function of period 27 which is piecewise smooth on
[a,b]. Then for all x € (a,b), the Fourier series converges to f(x) at points of continuity, and to

fx+0)+ f(z—0)
2

at points of discontinuity.

Proof. Since f is piecewise smooth on [a, b], so the left-hand and right-hand derivatives exist and equal
for each = € (a,b) except at at most a finite number of points, where either f has a “corner” or is
discontinuous. If f has a “corner” at x, then it is easy to see that it has both left-hand and right-hand
derivatives at x. In fact, one has, via the mean value theorem that

flet+u) - f(z)

li = = f
lim . = lim /() = f'(x +0),
u>0 u>0

for x < £ < © + u. The left-hand limit case can be dealt with similarly. Hence one can apply the
Theorem 5.4 to arrive at the desired conclusion.

Suppose that f has a discontinuity at x. Then the mean value theorem again implies

lim JEFW = S@HO) _p ) = e +0),
w30 u v30
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for x < ( < x + u. The discontinuity case follows from Theorem 5.5. O

Remark. The above argument does not apply to the end points of the interval since only one-sided
limits exist. However, one can extend f periodically beyond the 27 period so that the above theorem
applies at these end points.

Theorem 5.7. The Fourier series of a continuous, piecewise smooth function of f of period 27 con-
verges to f absolutely and uniformly.

Proof. Since f is continuous, piecewise smooth function of period 27, so f’ exists everywhere except at
the “corner” of f, and is bounded on [a,b]. So the products f'(z)sinnz and f/(x) cos nx are absolutely
integrable. Thus

1 ™ 1 . ™ 1 i / .
ay = — f(z)cosnx dx = — f(x)sin nm‘ - — f'(z)sinnx dx
- nm - nw J_,
1 1 /7
S | ——— f'(z)sinnz dz
n wJ)_,
1
= —— b

n

where b), is the Fourier coefficient of sinnx of f’(x). That is,

1 ™
b, =— f'(z) sinnx dz.
™ —T

Similarly,
1 1 1 [/~
by =—a,=—" = f'(z) cos nx du.
n n oTJ)_.

Since f’(x) is bounded (except at a finite number of points) and so it is square integrable on [—, 7).
By the Bessel inequality,

b 00
50 > / Fade >3 (a2 + b2

n=1
So
oo
St
n=1
also converges. Notice that
1 2 1
0 < (k| — 3)? = |k = Zlaf| + 5
and . ) .
/ 2 /2 /
0 < (Iba] = 2)7 = 6" = Z1bx] + 75
Hence,
’a%’ ’b;c‘ 1,2 /2 1
Pkl PEl 2 b —
PR IC A
SO
o0 o0
ARA
br| = — 4 =
|lak| + |bk| Z e + .

k=1 k=1
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converges absolutely. We deduce

o0 o0
‘ Zak cos kx + bksink:x‘ < Z lag| + |bg]-
k=1 k=1

By Weierstrass M —test, the Fourier series of f converges absolutely and uniformly to f(x) for all z. O

To be continued ...



