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CHAPTER 4 CONVERGENCE OF FOURIER SERIES

5. Convergence of Fourier Series

We understand that a function f being integrable over the interval [a, b] is to be interpreted in an
elementary, that is, f is either continuous or have a finite number of discontinuities (which can be
either either bounded or unbounded).

Definition. Let f be defined on [a, b] with at most a finite number of discontinuities. Then f is said
to be absolutely integrable if |f(x)| is absolutely integrable over [a, b]. That is,

∫

b

a

|f(x)| dx

exists.

We also recall that f being an absolutely integrable on [a, b] must also be integrable there.

Lemma 5.1. Let f be an absolutely integrable function on [a, b]. Then for each ε > 0, there is piecewise
continuous function g such that

∫

b

a

|f(x)− g(x)| dx ≤ ε.

We skip the proof of this elementary lemma.

Theorem 5.2 (Riemann-Lebesgue Lemma). Let f be an absolutely integrable function on [a, b]. Then

lim
m→∞

∫

b

a

f(x) cosmxdx = lim
m→∞

∫

b

a

f(x) sinmxdx = 0.

Proof. Let ε be given. Then the Lemma 5.1 asserts that there exists a piecewise continuous function g

such that
∫

b

a

|f(x)− g(x)| dx ≤
ε

2
.

Then
∣

∣

∣

∫

b

a

f(x) cosmx dx

∣

∣

∣
≤

∣

∣

∣

∫

b

a

(

f(x)− g(x)
)

cosmx dx

∣

∣

∣
+

∣

∣

∣

∫

b

a

g(x) cosmx dx

∣

∣

∣

≤
∣

∣

∣

∫

b

a

(

f(x)− g(x)
)

dx
∣

∣

∣
+

∣

∣

∣

∫

b

a

g(x) cosmxdx
∣

∣

∣
.

Integration-by-parts yields

∫

b

a

g(x) cosmxdx =
1

m

[

g(x) sinmx
]b

a

−
1

m

∫

b

a

sinmxg′(x) dx,

which is bounded, if we choose m to be sufficiently large. Hence
∣

∣

∣

∫

b

a

g(x) cosmx dx

∣

∣

∣
<

ε

2
.

1
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for all m sufficiently large. Hence we deduce
∣

∣

∣

∫

b

a

f(x) cosmx dx
∣

∣

∣
< ε,

for all m sufficiently large. �

Theorem 5.3 (Partial sum integral representation). Let f be periodic function of period 2π, and
suppose that

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos kx+ bk sin kx.

Let

sn(x) =
a0

2
+

n
∑

k=1

ak cos kx+ bk sin kx.

Then

sn(x) =
1

π

∫

π

−π

f(x+ u)
sin[(n + 1

2
)u]

2 sin(u
2
)

du

(That is, an integral representation of the n−th partial sum).

Proof. Let

s =
1

2
+ cos u+ cos 2u+ · · ·+ cosnu.

Then

2s sin
u

2
= sin

u

2
+ 2 sin

u

2
cosu+ 2 sin

u

2
cos 2u+ · · ·+ 2 sin

u

2
cosnu

= sin
u

2
+

(

sin
3u

2
− sin

u

2

)

+
(

sin
5u

2
− sin

3u

2

)

+ · · ·+
(

sin
(2n + 1)u

2
− sin

(2n− 1)u

2

)

= sin
(2n+ 1)u

2
.

So

s =
sin[(n+ 1

2
)u]

2 sin(u
2
)

.

On the other hand,
∫

π

−π

sin[(n+ 1
2
)u]

2 sin(u
2
)

du =

∫

π

−π

(1

2
+

n
∑

k=1

cos ku
)

du = π + 0 = π.

That is,

1 =
1

π

∫

π

−π

sin[(n+ 1
2
)u]

2 sin(u
2
)

du

=
2

π

∫

π

0

sin[(n + 1
2
)u]

2 sin(u
2
)

du,

since the integrand is even.

We rewrite
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sn(x) =
1

2π

∫

π

−π

f(t) dt+
1

π

[

n
∑

k=1

∫

π

−π

f(t) cos kt · cos kx dt+

n
∑

k=1

∫

π

−π

f(t) sin kt · sin kx dt
]

=
1

π

∫

π

−π

f(t)
[ 1

2
+

n
∑

k=1

(cos kt cos kx+ sin kt sin kx)
]

dt

=
1

π

∫

π

−π

f(t)
[1

2
+

n
∑

k=1

cos k(t− x)
]

dt

=
1

π

∫

π

−π

f(t) ·
sin(n + 1

2
)(t− x)

2 sin( t−x

2
)

dt

=
1

π

∫

π−x

−π−x

f(u+ x) ·
sin(n+ 1

2
)u

2 sin(u
2
)

du Let u = t− x

=
1

π

∫

π

−π

f(u+ x) ·
sin(n+ 1

2
)u

2 sin(u
2
)

du

since both f(x+ u) and
sin(n+ 1

2
)u

2 sin(u
2
)

have period 2π. �

Theorem 5.4. Let f be absolutely integrable function with period 2π. Then at any continuity point
where the right-hand and the left-hand derivatives exist, the Fourier series converges to f(x). (In
particular, the result holds if f has a derivative at x)

Proof. Let x be a continuity point of f and

(5.1)

f ′

+(x) = lim
u→0
u>0

f(x+ u)− f(x+ 0)

u

f ′

−
(x) = lim

u→0
u<0

f(x+ u)− f(x− 0)

u

exist. We want to show that

f(x) = lim
n→∞

sn(x)

= lim
n→∞

1

π

∫

π

−π

f(x+ u)
sin(n+ 1

2
)u

2 sin u

2

du.

That is,

0 = lim
n→∞

[ 1

π

∫

π

−π

f(x+ u)
sin(n+ 1

2
)u

2 sin u

2

du− f(x) ·
1

π

∫

π

−π

sin(n+ 1
2
)u

2 sin u

2

du
]

= lim
n→∞

1

π

∫

π

−π

[f(x+ u)− f(x)]
sin(n+ 1

2
)u

2 sin u

2

du.

Let

φ(u) =
f(x+ u)− f(x)

2 sin u

2

=
f(x+ u)− f(x)

u
·

u

2 sin u

2

:= φ1(u) · φ2(u),

where

φ1(u) =:
f(x+ u)− f(x)

u
and φ2(u) :=

u

2 sin u

2

.
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We claim that φ is absolutely integrable over [−π, π]. That is,
∫

π

−π

|φ(u)| du < +∞.

It is sufficient to show that φ1(u) is absolutely integrable, since φ2(u) is a bounded continuous function
(being continuous) on [−π, π]. But then φ is a product of an absolutely integrable function and a
bounded function, so it is also absolutely integrable. Now we need to verify that φ1(u) is absolutely
integrable. But it follows from (5.1) that both the left- and right-handed derivatives exist, so there is
some δ > 0 such that

|φ1(u)| =
∣

∣

∣

f(x+ u)− f(x)

u

∣

∣

∣
≤ M

for some M > 0, on [−δ, δ].

Figure 1

Since f(x) and hence f(x+ u) are absolutely integrable, so we deduce that φ1(u) (x is fixed) can have
at most a finite number of discontinuities when u 6= 0. We conclude that it is absolutely integrable
(with respect to u) on the interval [−δ, δ]. When u lies outside [−δ, δ], we notice that

|
1

u
| ≤

1

δ

and that f(x + u) − f(x) is clearly absolutely integrable (with respect to u). So φ(u) is a product of
an absolutely integrable function and a bounded function (with respect to u) outside [−δ, δ]. So the
φ1(u) is absolutely integrable on [−π, π]. Hence φ(u) is absolutely integrable over [−π, π]. We deduce
from the Riemann-Lebesgue Lemma (Theorem 5.2) that

lim
n→∞

∫

π

−π

φ(u) sin
(

n+
1

2

)

u du = 0.

Rearranging the terms in the above equation yields the desired result. �

Theorem 5.5. Let f be absolutely integrable function of period 2π. Then, at every point of discontinuity
where f has a right-hand and left-hand derivatives, the Fourier series converges to

f(x+ 0) + f(x− 0)

2
.

Proof. We aim to prove

lim
n→∞

sn(x) = lim
n→∞

1

π

∫

π

−π

f(x+ u)
sin(n+ 1

2
)u

2 sin u

2

du =
f(x+ 0) + f(x− 0)

2
.
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It suffices to prove that

(5.2) lim
n→∞

1

π

∫

π

0

f(x+ u)
sin(n+ 1

2
)u

2 sin u

2

du =
f(x+ 0)

2

and

(5.3) lim
n→∞

1

π

∫ 0

−π

f(x+ u)
sin(n+ 1

2
)u

2 sin u

2

du =
f(x− 0)

2

hold. We first note that
f(x+ 0)

2
=

1

π

∫

π

0

f(x+ 0)
sin(n + 1

2
)u

2 sin u

2

du

Thus the (5.2) is equivalent to

(5.4) lim
n→π

1

π

∫

π

0

[

f(x+ u)−
f(x+ 0)

2

] sin(n+ 1
2
)u

2 sin u

2

du = 0

Again denote

φ(u) =
f(x+ u)− f(x)

2 sin u

2

=
f(x+ u)− f(x)

u
·

u

2 sin u

2

.

Since f ′

+(x) exists, then we argue as in the proof of Theorem 5.4 that the ratio
f(x+ u)− f(x+ 0)

u
is (bounded and) absolutely integrable when u → 0 and u > 0. Similarly, the ratio is also absolutely
integrable on [−π, π]. Finally, we again argue as in Theorem 5.4 that φ(u) is a product of the absolutely

integrable function above and the bounded function
u

2 sin(u
2
)
on [−π, π]. Hence φ(u) is absolutely

integrable on [−π, π]. We then use the Riemann-Lebesgue Lemma to show that (5.4) holds. A similar
argument gives (5.3). We omit the details here. �

Theorem 5.6. Let f be an absolutely integrable function of period 2π which is piecewise smooth on
[a, b]. Then for all x ∈ (a, b), the Fourier series converges to f(x) at points of continuity, and to

f(x+ 0) + f(x− 0)

2
at points of discontinuity.

Proof. Since f is piecewise smooth on [a, b], so the left-hand and right-hand derivatives exist and equal
for each x ∈ (a, b) except at at most a finite number of points, where either f has a “corner” or is
discontinuous. If f has a “corner” at x, then it is easy to see that it has both left-hand and right-hand
derivatives at x. In fact, one has, via the mean value theorem that

lim
u→0
u>0

f(x+ u)− f(x)

u
= lim

u→0
u>0

f ′(ξ) = f ′(x+ 0),

for x < ξ < x + u. The left-hand limit case can be dealt with similarly. Hence one can apply the
Theorem 5.4 to arrive at the desired conclusion.

Suppose that f has a discontinuity at x. Then the mean value theorem again implies

lim
u→0
u>0

f(x+ u)− f(x+ 0)

u
= lim

u→0
u>0

f ′(ζ) = f ′(x+ 0),
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for x < ζ < x+ u. The discontinuity case follows from Theorem 5.5. �

Remark. The above argument does not apply to the end points of the interval since only one-sided
limits exist. However, one can extend f periodically beyond the 2π period so that the above theorem
applies at these end points.

Theorem 5.7. The Fourier series of a continuous, piecewise smooth function of f of period 2π con-
verges to f absolutely and uniformly.

Proof. Since f is continuous, piecewise smooth function of period 2π, so f ′ exists everywhere except at
the “corner” of f , and is bounded on [a, b]. So the products f ′(x) sin nx and f ′(x) cos nx are absolutely
integrable. Thus

an =
1

π

∫

π

−π

f(x) cosnx dx =
1

nπ
f(x) sinnx

∣

∣

∣

π

−π

−
1

nπ

∫

π

−π

f ′(x) sin nx dx

= 0−
1

n
·
1

π

∫

π

−π

f ′(x) sinnx dx

= −
1

n
b′n

where b′n is the Fourier coefficient of sinnx of f ′(x). That is,

b′n =
1

π

∫

π

−π

f ′(x) sinnx dx.

Similarly,

bn =
1

n
a′n =

1

n
·
1

π

∫

π

−π

f ′(x) cos nx dx.

Since f ′(x) is bounded (except at a finite number of points) and so it is square integrable on [−π, π].
By the Bessel inequality,

∞ >

∫

b

a

f ′(x)2 dx ≥

∞
∑

n=1

|a′n|
2 + |b′n|

2.

So
∞
∑

n=1

a′n
2
+ b′n

2

also converges. Notice that

0 ≤ (|a′k| −
1

k
)2 = |a′k|

2 −
2

k
|a′k|+

1

k2

and

0 ≤ (|b′k| −
1

k
)2 = |b′k|

2 −
2

k
|b′k|+

1

k2
.

Hence,
|a′

k
|

k
+

|b′
k
|

k
≤

1

2
(a′k

2
+ b′k

2
) +

1

k2
,

so
∞
∑

k=1

|ak|+ |bk| =

∞
∑

k=1

|a′
k
|

k
+

|b′
k
|

k
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converges absolutely. We deduce
∣

∣

∣

∞
∑

k=1

ak cos kx+ bk sin kx
∣

∣

∣
<

∞
∑

k=1

|ak|+ |bk|.

By Weierstrass M−test, the Fourier series of f converges absolutely and uniformly to f(x) for all x. �

To be continued ...


