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CHAPTER 5 CONVERGENCE OF FOURIER SERIES

5. Convergence of Fourier Series

We understand that a function f being integrable over the interval [a, b] is to be interpreted in an
elementary, that is, f is either continuous or have a finite number of discontinuities (which can be
either either bounded or unbounded).

Definition. Let f be defined on [a, b] with at most a finite number of discontinuities. Then f is said
to be absolutely integrable if |f(x)| is absolutely integrable over [a, b]. That is,

∫

b

a

|f(x)| dx

exists.

We also recall that f being an absolutely integrable on [a, b] must also be integrable there. Note that
we require stronger integrability than the Riemann integrability since a Riemann integrable function
may have an infinite number of discontinuities, while we allow for only a finite number of discontinuities
for our absolute integrability. In this case, absolute integrability implies integrability.

Here is an example of an unbounded absolute integrable function.

Example. Consider f(x) = − ln |2 sin(
x

2
)| on the real axis.

It becomes positive infinite when x = 2kπ, k = 0,±1,±2, . . . , but is otherwise an even continuous
function. On the other hand, it is easy to see that f has period 2π:

f(x+ 2π) = − ln

∣

∣

∣

∣

2 sin(
x+ 2π

2
)

∣

∣

∣

∣

= − ln
∣

∣

∣
2 sin(

x

2
+ π)

∣

∣

∣
= − ln

∣

∣

∣
2 sin(

x

2
)
∣

∣

∣
= f(x).

Figure 1

We show that f is absolutely integrable. Since f is periodic, so it suffice to show f to be absolutely
integrable over the interval [0, a], where a < π

3 (since f(π3 ) = 0). Let ε > 0. Then
1
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∫

a

ε

∣

∣

∣
− ln

∣

∣2 sin(
x

2
)
∣

∣

∣

∣

∣
= −

∫

a

ε

ln
(

2 sin(
x

2
)
)

dx

= −x ln
(

2 sin(
x

2
)
)∣

∣

∣

a

ε
+

∫

a

ε

x cos x

2

2 sin x

2

dx

=
[

− a ln(2 sin
x

2
) + ε ln(2 sin

ε

2
)
]

+
1

2

∫

a

ε

x
cos x

2

sin x

2

dx.

Since
ε ln(2 sin

ε

2
) ∼ ε ln ε → 0

as ε → 0, and

x
cos(x2 )

sin(x2 )
∼

x · 1
x

2

= 2

as x → 0, so the last integral exists, and f is therefore absolutely integrable over [−π, π].

Lemma 5.1. Let f be an absolutely integrable function on [a, b]. Then for each ε > 0, there is piecewise
continuous function g such that

∫

b

a

|f(x)− g(x)| dx ≤ ε.

We skip the proof of this elementary lemma.

Remark. (1) It is known that the product of an absolutely integrable function and a bounded
integrable function is again absolutely integrable.

(2) If f and g are continuous, piecewise smooth functions on [a, b], then if f ′ and g′ are absolutely
integrable, we have

∫

b

a

f(x) g′(x) dx = f(x)g(x)
∣

∣

∣

b

a
−

∫

b

a

f ′(x) g(x) dx.

Theorem 5.2 (Riemann-Lebesgue Lemma). Let f be an absolutely integrable function on [a, b]. Then

lim
m→∞

∫

b

a

f(x) cosmxdx = lim
m→∞

∫

b

a

f(x) sinmxdx = 0.

Proof. Let ε be given. Then the Lemma 5.1 asserts that there exists a piecewise continuous function g
such that

∫

b

a

|f(x)− g(x)| dx ≤
ε

2
.

Then
∣

∣

∣

∫

b

a

f(x) cosmx dx
∣

∣

∣
≤

∣

∣

∣

∫

b

a

(

f(x)− g(x)
)

cosmx dx
∣

∣

∣
+

∣

∣

∣

∫

b

a

g(x) cosmx dx
∣

∣

∣

≤
∣

∣

∣

∫

b

a

(

f(x)− g(x)
)

dx
∣

∣

∣
+

∣

∣

∣

∫

b

a

g(x) cosmxdx
∣

∣

∣
.

Integration-by-parts yields

∫

b

a

g(x) cosmxdx =
1

m

[

g(x) sinmx
]b

a
−

1

m

∫

b

a

sinmxg′(x) dx,
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which is bounded, if we choose m to be sufficiently large (the g′ is continuous and hence absolutely
integrable). Hence

∣

∣

∣

∫

b

a

g(x) cosmx dx
∣

∣

∣
<

ε

2
.

for all m sufficiently large. Hence we deduce

∣

∣

∣

∫

b

a

f(x) cosmx dx
∣

∣

∣
< ε,

for all m sufficiently large. �

Remark. We note that this lemma implies that the Fourier coefficients of an absolutely integrable
function tend to zero as m → ∞.

Theorem 5.3 (Partial sum integral representation). Let f be periodic function of period 2π, and
suppose that

f(x) ∼
a0
2

+
∞
∑

k=1

ak cos kx+ bk sin kx.

Let

sn(x) =
a0
2

+

n
∑

k=1

ak cos kx+ bk sin kx.

Then

sn(x) =
1

π

∫

π

−π

f(x+ u)
sin[(n + 1

2)u]

2 sin(u2 )
du

(That is, an integral representation of the n−th partial sum).

Proof. Let

s =
1

2
+ cos u+ cos 2u+ · · ·+ cosnu.

Then

2s sin
u

2
= sin

u

2
+ 2 sin

u

2
cosu+ 2 sin

u

2
cos 2u+ · · ·+ 2 sin

u

2
cosnu

= sin
u

2
+

(

sin
3u

2
− sin

u

2

)

+
(

sin
5u

2
− sin

3u

2

)

+ · · ·+
(

sin
(2n + 1)u

2
− sin

(2n− 1)u

2

)

= sin
(2n+ 1)u

2
.

So

s =
sin[(n+ 1

2 )u]

2 sin(u2 )
.

On the other hand,
∫

π

−π

sin[(n+ 1
2)u]

2 sin(u2 )
du =

∫

π

−π

(1

2
+

n
∑

k=1

cos ku
)

du = π + 0 = π.
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That is,

1 =
1

π

∫

π

−π

sin[(n+ 1
2)u]

2 sin(u2 )
du

=
2

π

∫

π

0

sin[(n + 1
2 )u]

2 sin(u2 )
du,

since the integrand is even.

We rewrite

sn(x) =
1

2π

∫

π

−π

f(t) dt+
1

π

[

n
∑

k=1

∫

π

−π

f(t) cos kt · cos kx dt+

n
∑

k=1

∫

π

−π

f(t) sin kt · sin kx dt
]

=
1

π

∫

π

−π

f(t)
[ 1

2
+

n
∑

k=1

(cos kt cos kx+ sin kt sin kx)
]

dt

=
1

π

∫

π

−π

f(t)
[1

2
+

n
∑

k=1

cos k(t− x)
]

dt

=
1

π

∫

π

−π

f(t) ·
sin(n + 1

2 )(t− x)

2 sin( t−x

2 )
dt

=
1

π

∫

π−x

−π−x

f(u+ x) ·
sin(n+ 1

2 )u

2 sin(u2 )
du Let u = t− x

=
1

π

∫

π

−π

f(u+ x) ·
sin(n+ 1

2)u

2 sin(u2 )
du

since both f(x+ u) and
sin(n+ 1

2)u

2 sin(u2 )
have period 2π. �

Theorem 5.4. Let f be absolutely integrable function with period 2π. Then at any continuity point
where the right-hand and the left-hand derivatives exist, the Fourier series converges to f(x). (In
particular, the result holds if f has a derivative at x)

Proof. Let x be a continuity point of f and

(5.1)

f ′

+(x) = lim
u→0
u>0

f(x+ u)− f(x+ 0)

u

f ′

−
(x) = lim

u→0
u<0

f(x+ u)− f(x− 0)

u

exist. We want to show that

f(x) = lim
n→∞

sn(x)

= lim
n→∞

1

π

∫

π

−π

f(x+ u)
sin(n+ 1

2)u

2 sin u

2

du.
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That is,

0 = lim
n→∞

[ 1

π

∫

π

−π

f(x+ u)
sin(n+ 1

2)u

2 sin u

2

du− f(x) ·
1

π

∫

π

−π

sin(n+ 1
2 )u

2 sin u

2

du
]

= lim
n→∞

1

π

∫

π

−π

[f(x+ u)− f(x)]
sin(n+ 1

2)u

2 sin u

2

du.

Let

φ(u) =
f(x+ u)− f(x)

2 sin u

2

=
f(x+ u)− f(x)

u
·

u

2 sin u

2

:= φ1(u) · φ2(u),

where

φ1(u) =:
f(x+ u)− f(x)

u
and φ2(u) :=

u

2 sin u

2

.

We claim that φ is absolutely integrable over [−π, π]. That is,
∫

π

−π

|φ(u)| du < +∞.

It is sufficient to show that φ1(u) is absolutely integrable, since φ2(u) is a bounded continuous function
(being continuous) on [−π, π]. But then φ is a product of an absolutely integrable function and a
bounded function, so it is also absolutely integrable. Now we need to verify that φ1(u) is absolutely
integrable. But it follows from (5.1) that both the left- and right-handed derivatives exist, so there is
some δ > 0 such that

|φ1(u)| =
∣

∣

∣

f(x+ u)− f(x)

u

∣

∣

∣
≤ M

for some M > 0, on [−δ, δ].

Figure 2

Since f(x) and hence f(x+ u) are absolutely integrable, so we deduce that φ1(u) (x is fixed) can have
at most a finite number of discontinuities when u 6= 0. We conclude that it is absolutely integrable
(with respect to u) on the interval [−δ, δ]. When u lies outside [−δ, δ], we notice that

|
1

u
| ≤

1

δ

and that f(x + u) − f(x) is clearly absolutely integrable (with respect to u). So φ(u) is a product of
an absolutely integrable function and a bounded function (with respect to u) outside [−δ, δ]. So the
φ1(u) is absolutely integrable on [−π, π]. Hence φ(u) is absolutely integrable over [−π, π]. We deduce
from the Riemann-Lebesgue Lemma (Theorem 5.2) that

lim
n→∞

∫

π

−π

φ(u) sin
(

n+
1

2

)

u du = 0.

Rearranging the terms in the above equation yields the desired result. �
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Theorem 5.5. Let f be absolutely integrable function of period 2π. Then, at every point of discontinuity
where f has a right-hand and left-hand derivatives, the Fourier series converges to

f(x+ 0) + f(x− 0)

2
.

Proof. We aim to prove

lim
n→∞

sn(x) = lim
n→∞

1

π

∫

π

−π

f(x+ u)
sin(n+ 1

2)u

2 sin u

2

du =
f(x+ 0) + f(x− 0)

2
.

It suffices to prove that

(5.2) lim
n→∞

1

π

∫

π

0
f(x+ u)

sin(n+ 1
2)u

2 sin u

2

du =
f(x+ 0)

2

and

(5.3) lim
n→∞

1

π

∫ 0

−π

f(x+ u)
sin(n+ 1

2 )u

2 sin u

2

du =
f(x− 0)

2

hold. We first note that
f(x+ 0)

2
=

1

π

∫

π

0
f(x+ 0)

sin(n + 1
2 )u

2 sin u

2

du

Thus the (5.2) is equivalent to

(5.4) lim
n→π

1

π

∫

π

0

[

f(x+ u)−
f(x+ 0)

2

] sin(n+ 1
2)u

2 sin u

2

du = 0

Again denote

φ(u) =
f(x+ u)− f(x)

2 sin u

2

=
f(x+ u)− f(x)

u
·

u

2 sin u

2

.

Since f ′

+(x) exists, then we argue as in the proof of Theorem 5.4 that the ratio
f(x+ u)− f(x+ 0)

u
is (bounded and) absolutely integrable when u → 0 and u > 0. Similarly, the ratio is also absolutely
integrable on [−π, π]. Finally, we again argue as in Theorem 5.4 that φ(u) is a product of the absolutely

integrable function above and the bounded function
u

2 sin(u2 )
on [−π, π]. Hence φ(u) is absolutely

integrable on [−π, π]. We then use the Riemann-Lebesgue Lemma to show that (5.4) holds. A similar
argument gives (5.3). We omit the details here. �

Theorem 5.6. Let f be an absolutely integrable function of period 2π which is piecewise smooth on
[a, b]. Then for all x ∈ (a, b), the Fourier series converges to f(x) at points of continuity, and to

f(x+ 0) + f(x− 0)

2

at points of discontinuity.

Proof. Since f is piecewise smooth on [a, b], so the left-hand and right-hand derivatives exist and equal
for each x ∈ (a, b) except at at most a finite number of points, where either f has a “corner” or is
discontinuous. If f has a “corner” at x, then it is easy to see that it has both left-hand and right-hand
derivatives at x. In fact, one has, via the mean value theorem that
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lim
u→0
u>0

f(x+ u)− f(x)

u
= lim

u→0
u>0

f ′(ξ) = f ′(x+ 0),

for x < ξ < x + u. The left-hand limit case can be dealt with similarly. Hence one can apply the
Theorem 5.4 to arrive at the desired conclusion.

Suppose that f has a discontinuity at x. Then the mean value theorem again implies

lim
u→0
u>0

f(x+ u)− f(x+ 0)

u
= lim

u→0
u>0

f ′(ζ) = f ′(x+ 0),

for x < ζ < x+ u. The discontinuity case follows from Theorem 5.5. �

Remark. The above argument does not apply to the end points of the interval since only one-sided
limits exist. However, one can extend f periodically beyond the 2π period so that the above theorem
applies at these end points.

Example. Let us revisit the example f(x) = − ln |2 sin(
x

2
)|.

Figure 3

We have shown that f is absolutely integrable over [−π, π]. Thus,
Theorem 5.5 asserts that the Fourier series of f converges to f at every continuity point and to

1

2
[f(x+ 0) + f(x− 0)]

at every discontinuity point that has a left-hand and right-hand derivatives. It is clear that this f
do not have points of this second category. Thus the above results do not apply to points at 2kπ,
k = 0,±1,±2, . . . However, since the Fourier series is given by (check!), we have

− ln
∣

∣

∣
2 sin

x

2

∣

∣

∣
= cos x+

cos 2x

2
+

cos 3x

3
+ · · · , x 6= 2kπ.

However, we see that both sides become infinite at x = 2kπ, k = 0,±1,±2, . . . . So we may still regard
that the Fourier series is value for all x.

Putting x = π in the Fourier series above, we obtain

ln 2 = 1−
1

2
+

1

3
−

1

4
+ · · ·
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which is the harmonic sum.

Theorem 5.7. The Fourier series of a continuous, piecewise smooth function of f of period 2π con-
verges to f absolutely and uniformly.

Proof. Since f is continuous, piecewise smooth function of period 2π, so f ′ exists everywhere except at
the “corner” of f , and is bounded on [a, b]. So the products f ′(x) sin nx and f ′(x) cos nx are absolutely
integrable. Thus

an =
1

π

∫

π

−π

f(x) cosnx dx =
1

nπ
f(x) sinnx

∣

∣

∣

π

−π
−

1

nπ

∫

π

−π

f ′(x) sin nx dx

= 0−
1

n
·
1

π

∫

π

−π

f ′(x) sinnx dx

= −
1

n
b′n

where b′n is the Fourier coefficient of sinnx of f ′(x). That is,

b′n =
1

π

∫

π

−π

f ′(x) sinnx dx.

Similarly,

bn =
1

n
a′n =

1

n
·
1

π

∫

π

−π

f ′(x) cos nx dx.

Since f ′(x) is bounded (except at a finite number of points) and so it is square integrable on [−π, π].
By the Bessel inequality,

∞ >

∫

b

a

f ′(x)2 dx ≥

∞
∑

n=1

|a′n|
2 + |b′n|

2.

So
∞
∑

n=1

a′n
2
+ b′n

2

also converges. Notice that

0 ≤ (|a′k| −
1

k
)2 = |a′k|

2 −
2

k
|a′k|+

1

k2

and

0 ≤ (|b′k| −
1

k
)2 = |b′k|

2 −
2

k
|b′k|+

1

k2
.

Hence,
|a′

k
|

k
+

|b′
k
|

k
≤

1

2
(a′k

2
+ b′k

2
) +

1

k2
,

so
∞
∑

k=1

|ak|+ |bk| =

∞
∑

k=1

|a′
k
|

k
+

|b′
k
|

k

converges absolutely. We deduce

∣

∣

∣

∞
∑

k=1

ak cos kx+ bk sin kx
∣

∣

∣
<

∞
∑

k=1

|ak|+ |bk|.

By Weierstrass M−test, the Fourier series of f converges absolutely and uniformly to f(x) for all x. �
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Lemma 5.8. Let f be a continuous function of period 2π, which has an absolutely integrable derivative
on [a, b], and let ω(u) be a continuously differentiable function on [a, b]. Then given any ε > 0, there
is N such that

∣

∣

∣

∫

b

a

f(x+ u)ω(u) sin(mu) du
∣

∣

∣
< ε

whenever m ≥ N for all x.

Proof. Integration-by-parts yields

∫

b

a

f(x+ u)ω(u) sinmu du =
1

m

(

− f(x+ u)ω(u) cosmu
∣

∣

∣

b

a

)

+
1

m

∫

b

a

[f(x+ u)ω(u)]′ cosmu du,

where

[f(x+ u)ω(u)]′ = f ′(x+ u)ω(u) + f(x+ u)ω′(u).

Since ω(u) and f(x+ u)ω′(u) are bounded, that is,

|ω(u)| ≤ M and |f(x+ u)ω′(u)| ≤ M,

for some M > 0. Hence

∣

∣

∣

∫

b

a

[f(x+ u)ω(u)]′ cosmudu
∣

∣

∣
≤ M

∫

b

a

|f ′(x+ u)| du+M(b− a)

≤ M

∫

π

−π

|f ′(u)| du +M(b− a) < ∞.

Assume that b− a ≤ 2π. Therefore

∣

∣

∣

∫

b

a

f(x+ u)ω(u) sinmu du
∣

∣

∣
≤

∣

∣

∣

1

m

(

− f(x+ u)ω(u) cosmu
∣

∣

∣

b

a

)
∣

∣

∣

+
1

m

∣

∣

∣

∫

b

a

[f(x+ u)ω(u)]′ cosmu du
∣

∣

∣

→ 0

since ω′ is continuous. �

Lemma 5.9. The integral

I =

∫

u

0

sin(mt)

2 sin( t2 )
dt

is bounded for −π ≤ u ≤ π for any m.
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Proof. We note that

I

∫

u

0

sin(mt)

2 sin( t2 )
dt

∫

u

0

sinmt

t
−

sinmt

t
+

sin(mt)

2 sin( t2 )
dt

=

∫

u

0

sinmt

t
+

( 1

2 sin t/2
−

1

t

)

sinmt dt

=

∫

u

0

sinmt

t
dt+

∫

u

0
ω(t) sinmt dt

where

ω(t) =
1

2 sin t/2
−

1

t
.

Since we have sin(αt)
t

→ α as t → 0, so

1

2 sin t

2

−
1

t
→

1

2(t/2)
−

1

t
,

as t → 0. So the second integral above is bounded. On the other hand, we can rewrite the first integral
as

∫

u

0

sinmt

t
dt =

∫

mu

0

sinx

x
dx

after the substitution x = mt. It is left as an exercise to show that this integral is also bounded. �

Theorem 5.10. The Fourier series of a continuous function f of period 2π with an absolutely integrable
derivative converges uniformly to f(x) for all x.

Proof. We apply the partial sum formula from Theorem 5.3 to consider the difference

sn(x)− f(x) =
1

π

∫

π

−π

(

f(x+ u)− f(x)
) sin(n+ 1

2)u

2 sin u

2

du

=
1

π

(

∫

−δ

−π

+

∫

δ

−δ

+

∫

π

δ

)(

f(x+ u)− f(x)
)sin(n + 1

2 )u

2 sin u

2

du

:=
1

π
(I1 + I2 + I3),

where 0 < δ < π. Let ε be given. Integration-by-parts yields

I2 =

∫

δ

−δ

(

f(x+ u)− f(x)
) sin(n+ 1

2 )u

2 sin u

2

du

= [f(x+ u)− f(x)]
(

∫

u

0

sin(n+ 1
2)t

2 sin t

2

dt
)∣

∣

∣

δ

−δ
−

∫

δ

−δ

f ′(x+ u) ·
(

∫

u

0

sin(n+ 1
2)t

2 sin t

2

dt
)

du.
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We consider the first term above:

[f(x+ u)− f(x)]
(

∫

u

0

sin(n+ 1
2)t

2 sin t

2

dt
)∣

∣

∣

δ

−δ

= [f(x+ δ)− f(x)]

∫

δ

0

sin(n+ 1
2)t

2 sin t

2

dt− [f(x− δ)− f(x)]

∫

−δ

0

sin(n+ 1
2)t

2 sin t

2

dt

= [f(x+ δ)− f(x)]

∫

δ

0

sin(n+ 1
2)t

2 sin t

2

dt+ [f(x− δ)− f(x)]

∫

δ

0

sin(n+ 1
2)t

2 sin t

2

dt

= [f(x+ δ) + f(x− δ)− 2f(x)]

∫

δ

0

sin(n+ 1
2)t

2 sin t

2

dt <
ε

2

when δ > 0 is chosen to be sufficiently small since f(x) is continuous by our assumption and the definite
integral is bounded by the Lemma 5.9. We apply the Lemma 5.9 to the second integral above to deduce

∣

∣

∣

∫

δ

−δ

f ′(x+ u)
(

∫

u

0

sin(n+ 1
2)t

2 sin t

2

dt
)

du
∣

∣

∣
≤ M

∫

δ

−δ

|f ′(x+ u)| du

for a suitable M > 0. This integral is clearly bounded since f ′ is absolutely integrable, also

M

∫

δ

−δ

|f ′(x+ u)| du <
ε

2

if δ > 0 is sufficiently small. Therefore, I2 < ε. Next the Lemma 5.8 implies that

|I3| =
∣

∣

∣

∫

π

δ

(

f(x+ u)− f(x)
) sin(n+ 1

2 )u

2 sin u

2

du
∣

∣

∣

≤
∣

∣

∣

∫

π

δ

f(x+ u)ω(u) sin(n+
1

2
)u du

∣

∣

∣
+

∣

∣

∣

∫

π

δ

f(x)ω(u) sin(n+
1

2
)u du

∣

∣

∣

< ε,

where ω(u) = 1
2 sin(u

2
) (which is clearly continuously differentiable over [δ, π]) provided that n is chosen

sufficiently large. We skip the derivation for I1 which is similar. Hence, given ε > 0 we can find a N
such that

|sn(x)− f(x)| ≤
|I1|+ |I2|+ |I3|

π
≤

3ε

π
< ε

for all x provided n > N . �

Theorem 5.11. Let f be an absolutely integrable function of period 2π, which is continuous and has
an absolutely integrable derivative on [a, b]. Then the Fourier series of f converges uniformly to f(x)
on each interval [a+ δ, b− δ], where δ > 0.

Proof. If the length of [a, b] is not less than 2π, it is clear that f(x) is continuous for all x and has an
absolutely integrable derivative, so by Theorem 4.10, the convergence of its Fourier series is uniform
on the whole x−axis. Assume b−a < 2π, let F (x) be a continuous function of period 2π, which equals
f(x) for a ≤ x ≤ b, equals f(a) for x = a + 2π, and is linear on the interval [b, a + 2π]. Outside
[a, a + 2π], the values of F (x) are obtained by periodic extension. F (x) has an absolutely integrable
derivative. Let φ(x) = f(x) − F (x), where φ(x) is absolutely integrable and φ(x) = 0 for a ≤ x ≤ b.
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Figure 4

Then f(x) = φ(x) + F (x), and

sn(x)− f(x) =
1

π

∫

π

−π

[f(x+ u)− F (x)]
sinmu

2 sin(u2 )
du+

1

π

∫

π

−π

[φ(x+ u)− φ(x)]
sinmu

2 sin(u2 )
du

= I1 + I2,

where we have set m = n+
1

2
.

Let ε > 0 be arbitrary. By Theorem 5.10, the Fourier series of F (x) converges uniformly to F (x), so
that

|I1| ≤
ε

2
for all x, provided that n is sufficiently large.

Now let a+ δ ≤ x ≤ b− δ. Then φ(x) = 0 and therefore

I2 =
1

π

∫

π

−π

φ(x+ u)
sinmu

2 sin(u2 )
du.

If −δ ≤ u ≤ δ, we have
a ≤ x+ u ≤ b

and hence φ(x+ u) = 0. Therefore,

I2 =
1

π

∫

−δ

−π

φ(x+ u)
sinmu

2 sin(u2 )
du+

1

π

∫

π

δ

φ(x+ u)
sinmu

2 sin(u2 )
du.

By Lemma 5.8, |I2| <
ε

2 for a+ δ ≤ x ≤ b− δ and n is sufficiently large.

Hence,
|sn(x)− f(x)| ≤ |I1|+ |I2| < ε

for all x in the interval [a+ δ, b− δ], and n is sufficiently large. �

Exercises

Q1 Show that the Theorem 5.4 can be proved if we assume f(x) is an absolutely integrable function
of period 2π and if f is continuous at x0 and that there exist positive constants c and α such
that

|f(x)− f(x0)| ≤ c|x− x0|
α

for all x in some neighbourhood of x0, then the Fourier series of f(x) converges to f(x0) at
x = x0.
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Q2 Let f(x) and g(x) be absolutely integrable functions with period 2π, and whose Fourier series
are

f(x) ∼

∞
∑

n=1

ane
inx, g(x) ∼

∞
∑

n=1

bne
inx.

Let

h(x) =
1

2π

∫ 2π

0
f(x− t) g(t) dt,

and

h(x) ∼

∞
∑

n=1

cne
inx.

Show that

1

2π

∫ 2π

0
|h(x)| dx ≤

(

1

2π

∫ 2π

0
|f(x)| dx

)(

1

2π

∫ 2π

0
|g(x)| dx

)

,

and that cn = anbn. In particular, if f and g are square integrable, show that
∞
∑

n=1

|cn| < +∞.

Q3 Assuming the following Fourier series expansion

f(x) =
π − x

2
=

∞
∑

k=1

sin kx

k
.

Let sn(x) be the n−th partial sum of the series:

sn(x) =
n
∑

k=1

sin kx

k
.

Let

Dn(x)
sin(n+ 1/2)x

2 sin(x/2)
.

Show that
• (a)

x

2
+ sn(x) =

∫

x

0
Dn(t) dt,

• (b)
∫

x

0
Dn(t) dt =

∫

x

0

sinnt

t
dt+ ωn(x) =

∫

nx

0

sin t

t
dt+ ωn(x),

where ωn(x) → 0 as n → ∞;
• (c)

∫

∞

0

sin t

t
dt =

π

2
.

Q4 Using the notation in Q3 to show that

lim
n→∞

sn

(π

n

)

=

∫

π

0

sin t

t
dt >

∫

∞

0

sin t

t
dt.


