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2. Introduction

Theorem 2.1. Suppose that the series
∑

anx
n

0 converges for some x0 > 0. Then the two series
∞∑

n=0

anz
n and

∞∑

n=1

nanz
n−1 both converge absolutely for |x| < x0.

Proof. Since anx
n

0 → 0 as n → ∞, we can find a M > 0 such that

anx
n

0 ≤ M for all n.

For |x| < x0,

|anxn| =
∣
∣
∣anx

n

0

( x

x0

)n
∣
∣
∣ ≤ M

∣
∣
∣
x

x0

∣
∣
∣

n

for all n.

Hence
∞∑

n=0

anx
n converges absolutely by comparison test. We leave the case

∞∑

n=1

nanz
n−1 as an

exercise. �

Theorem 2.2. A power series
∞∑

n=0

anx
n

either

converges for all x (absolutely); or(i)

there exists a R > 0 such that
∞∑

n=0

anx
n converges absolutely for(ii)

|x| < R and diverges for |x| > R; or

it converges only for x = 0.(iii)

Proof. Let S = {x ∈ R :
∞∑

n=0

anz
n converges} for |z| = x. Since 0 ∈ S, so S is non-empty.

Suppose S is unbounded, then given any x0, we have

|x0| < x, where x ∈ S,

hence
∞∑

n=0

anz
n converges absolutely for z = x0. Suppose S is bounded above. Then R = supS

exists. If R = 0, then we proves (iii), so suppose R > 0. For any |x0| < R there exists x ∈ S
1
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such that |x0| < x. Then the Theorem 2.1 implies that
∞∑

n=0

anx
n

0 converges absolutely. Moreover,

if |x0| > R, then x0 /∈ S and hence
∞∑

n=0

anx
n

0 diverges. �

Definition. The number R is called the radius of convergence of
∞∑

n=0

anx
n.

Theorem 2.3. If the power series
∞∑

n=0

anx
n = f(x)

has radius of convergence R. Then
∞∑

n=1

nanx
n−1

also has the same radius of convergence, and

f ′(x) =
∞∑

n=1

nanx
n−1.

Proof. From Theorem 2.1,
∞∑

n=1

nanx
n−1 also converges for |x| < R. For |x| > R,

∞∑

n=1

anx
n

diverges, so the terms {anxn} are note bounded (Hint: Theorem 2.1). Hence nanx
n−1 are surely

unbounded, so
∞∑

n=1

nanx
n−1 does not converge. Hence

∞∑

n=1

nanx
n−1 has radius of convergence R.

To prove f ′(x) =
∞∑

n=1

nanx
n−1, it is sufficient to make

∣
∣
∣
f(x+ h)− f(x)

h
−

∞∑

n=1

nanx
n−1

∣
∣
∣

small when h is small. Let ε > 0 be given. We write

∣
∣
∣
f(x+ h)− f(x)

h
−

∞∑

n=1

nanx
n−1

∣
∣
∣ =

∣
∣
∣

∞∑

n=0

an
(x+ h)n − xn

h
−

∞∑

n=1

nanx
n−1

∣
∣
∣

≤
∣
∣
∣

∞∑

n=0

an
(x+ h)n − xn

h
−

N∑

n=1

an
(x+ h)n − xn

h

∣
∣
∣ (1)

+
∣
∣
∣

N∑

n=1

an
(x+ h)n − xn

h
−

N∑

n=1

nanx
n−1

∣
∣
∣ (2)

+
∣
∣
∣

N∑

n=1

nanx
n−1 −

∞∑

n=1

nanx
n−1

∣
∣
∣ (3)
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We show that for a given ε > 0, each of the three terms can be made less than
ε

3
by choosing

N sufficiently large and h sufficiently small. To begin with, we choose x0, |x0| < R and h such
that |x| < |x0| < R and |x+ h| < |x0| < R. Notice that

xn − yn

x− y
= xn−1 + xn−2y + xn−3y2 + · · ·+ yn−1.

by the identity an − bn = (a− b)(an−1 + an−2b+ . . . bn−1). Hence

∣
∣
∣
(x+ h)n − xn

h

∣
∣
∣ =

∣
∣
∣
(x+ h)n − xn

(x+ h)− x

∣
∣
∣ =

∣
∣
∣ (x+ h)n−1 + x0(x+ h)n−2 + · · ·+ xn−1

︸ ︷︷ ︸

n terms

∣
∣
∣

≤ n|x0|n−1.

Hence for (1), we have

∣
∣
∣

∞∑

n=0

an
(x+ h)n − xn

h
−

N∑

n=1

an
(x+ h)n − xn

h

∣
∣
∣ =

∣
∣
∣

∞∑

n=N+1

an
(x+ h)n − xn

h

∣
∣
∣ ≤

∞∑

n=N+1

|an|n|x0|n−1.

But
∞∑

n=1

n|an||x0|n−1

is convergent, so we may choose N sufficiently large such that

∞∑

n=N+1

n|an||x0|n−1 <
ε

3
.

We may use a similar method to prove (3).

For (2), the polynomial

g(x) =

N∑

n=0

anx
n

is certainly differentiable. Therefore we may choose h so small such that

∣
∣
∣

N∑

n=1

an
(x+ h)n − xn

h
−

N∑

n=1

nanx
n−1

∣
∣
∣ <

ε

3

since

lim
n→0

N∑

n=1

an
(x+ h)n − xn

h
=

N∑

n=1

nanx
n.

This proves the Theorem. �
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Example. From the series definition of

sin x = x− x3

3!
+

x5

5!
− · · ·

cosx = 1− x2

2!
+

x4

4!
− · · ·

ex = 1 + x+
x2

2!
+ · · ·

We obtain, by Theorem 2.3,

d

dx
ex = ex,

d

dx
cos x = − sin x

d

dx
sin x = cos x.

Theorem 2.4. (Some properties of sin x and cosx)

Let sine and cosine be defined by the above series expansion. Then

sin 0 = 0, cos 0 = 1(i)

sin(x+ y) = sin x cos y + sin y cosx(ii)

cos(x+ y) = cos x cos y − sin x sin y(iii)

sin2 x+ cos2 x = 1.(iv)

Proof. (i) From the series definition.

(ii) Let f(t) = sin(a+ t) cos(b− t) + cos(a+ t) sin(b− t). Then

f ′(t) = cos(a+ t) cos(b− t) + sin(a+ t) sin(b− t)

+− sin(a+ t) sin(b− t)− cos(a + t) cos(b− t) = 0

Hence
f(t) = constant = f(0) = f(b).

But

f(0) = sin a cos b+ cos a sin b

f(b) = sin(a+ b).

Hence we obtain (ii).

(iii) To prove (iii): as above or differentiate result result of (ii) with respect to x.

(iv)
d

dx
(sin2 x+ cos2 x) = 2 sin x cosx− 2 cosx sin x = 0.
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Hence

sinx+cos2 x = constant = sin2 0 + cos2 0 = 1.

�

Theorem 2.5. There exists a unique number α with
√
2 < α <

√
3 such that cosα = 0. Also

if 0 ≤ x < α, then cosx > 0.

Proof. Consider

(2.1) cos x =
(

1− x2

2!

)

+
(x4

4!
− x6

6!

)

+ · · ·

Note that
xn+2

(n + 2)!
<

xn

n!
if x2 < (n+ 1)(n+ 2).

Thus if 0 ≤ x ≤
√
2 the first bracketed pair of (2.1) above is 0 and the others are positive.

Hence if sn denotes the partial sum of the series (2.1), then

a1 − a2 + a3 − a4 + . . .

and

a1 − a2 < sn < a1 = 1.

By Leibniz’s theorem, if 0 < x <
√
2, we have

1− x2

2
< cos x < 1,

so that

0 < cosx < 1.

Leibniz’s Theorem

Let {an} be a sequence of positive numbers such that an > an+1 and lim
n→∞

an = 0.

Then the infinite sum
∞∑

n=1

(−1)n+1an

has a limit. Moreover,

a1 − a2 <

N∑

n=1

(−1)n+1an < a1

for any integer N .

Now

cosx = 1− x2

2!
+

x4

4!
−
(x6

6!
− x8

8!
− · · ·

)

As before,
xn+2

(n + 2)!
>

xn

n!
if x2 < (n+ 1)(n+ 2).
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and this certainly holds if x =
√
3 and n ≥ 6. Also when x =

√
3,

cos
√
3 = 1−

√
3
2

2!
+

√
3
4

4!
+ · · · < 1− 3

2
+

9

24
=

−1

8
< 0.

Hence cosx = 0 for some x between
√
2 and

√
3.

Recall that
d

dx
(cosx) = − sin x,

and

sin x =
(

x =
x3

3!

)

+
(x5

5!
− x7

7!

)

+
x9

9!
− · · ·

Again
xn+2

(n + 2)!
<

xn

n!
if x2 < (n+ 1)(n+ 2).

if 0 < x ≤ 2 and in particular for
√
2 < x <

√
3.

Thus cos x is strictly decreasing on
√
2 ≤ x ≤

√
3. Hence cos x = 0 for just one x with√

2 ≤ x ≤
√
3. Hence result follows. �

Definition. The number α in the last theorem is denoted by
π

2
.

Uniform Convergence

From the previous arguments in this chapter we have

ex = 1 + x+
x2

2!
+ · · ·+ xn

n!
+ · · ·

can be thought as
ex = f1(x) + f2(x) + f3(x) + . . .

where

fn(x) =
xn−1

(n− 1)!
.

Hence we are interested in

sn(x) = f1(x) + f2(x) + · · ·+ fn(x).

And in the case of ex,
lim
n→∞

sn(x) = ex.

More generally, we consider
f(x) = lim

n→∞

fn(x)

instead of special case of sn(x).
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Our basic questions are
(1) if fn are continuous, is f = lim

n→∞

fn continuous?

(2) if fn are differentiable, is f = lim
n→∞

fn differentiable?

Let us have some historical background of the problem first.

Cauchy and Continuity

This section is largely an extraction from Bressoud.
On page 120 of his Cours d’analyse, Cauchy proves his first theorem about infinite series. Let

S be an infinite series of continuous functions,

S(x) = f1(x) + f2(x) + f3(x) + . . . .

Let Sn be the partial sum of the first n terms,

Sn(x) = f1(x) + f2(x) + f3(x) + · · ·+ fn(x),

and let Rn(x) be the remainder,

S(x)− Sn(x) = fn+1(x) + fn+2(x) + . . .

Cauchy remarks that Sn, a finite sum of continuous functions, must be continuous, and then
goes on to state:

Let us consider the changes in these three functions when we increase x by an
infinitely small value α. For all possible values of n, the change in Sn(x) will be
infinitely small; the change in Rn(x) will be as insignificant as the size of Rn(x)
when n is made very large. It follows that the change in the function S(x) can
only be an infinitely small quantity. From this remark, we immediately deduce
the following proposition:

Theorem. When the terms of a series are functions of a single variable x and are
continuous with respect to this variable in the neighborhood of a particular value
where the series converges, the sum S(x) of the series is also, in the neighborhood
of this particular value, a continuous function of x.

Cauchy has proven that any infinite series of continuous functions is continuous.
There is only one problem with this theorem. It is wrong. The Fourier series

cos
πx

2
− 1

3
cos

3πx

2
+

1

5
cos

5πx

2
− 1

7
cos

7πx

2
+ · · ·

is an infinite series of continuous functions. We will see in Chapter 5 that it is not continuous
at x = 1. No one seems to have noticed this contradiction until 1826 when Niel Abel pointed it
out in a footnote to his paper on infinite series.

Even though Dirichlet definitively established the validity of Fourier series in 1829, it was
1847 before anyone was able to make progress on resolving the contradiction between Cauchy’s
theorem and the properties of Fourier series. The first light was shed by George Stokes (1819-
1903). A year later, Dirichlet’s student Phillip Seidel (1821-1896) went a long way toward
clarifying Cauchy’s error. Cauchy corrected his error in 1853, but the conditions required the
continuity of an infinite series were not generally recognized until the 1860s when Weierstrass
began to emphasize their importance.
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Cauchy’s Proof

Before we search for the flaw in Cauchy’s argument, we need to restate it more carefully using
our definitions of continuity and convergence. The simple act of putting it into precise language
may reveal the problem.

To prove the continuity of S(x) at x = a, we must show that for any given ε > 0, there is δ
such that as long as x stays within δ of a, S(x) will be within ε of S(a):

|x− a| < δ implies that |S(x)− S(a)| < ε.

Cauchy’s analysis begins with the observation that

|S(x)− S(a)| = |Sn(x) +Rn(x)− Sn(a)−Rn(a)|
≤ |Sn(x)− Sn(a)|+ |Rn(x)|+ |Rn(a)|.(1)

We can divide the allowable error three ways, giving
ε

3
to each of the terms in the last line. The

continuity of Sn(x) guarantees that we can make

|Sn(x)− Sn(a)| <
ε

3
.

The convergence of S(x) at x = a and at all points close to a tells us that the remainders can
each be made arbitrarily small:

|Rn(x)| <
ε

3
and |Rn(a)| <

ε

3
.

If you still do not see what is wrong with this proof, you should not be discouraged. It took
mathematicians over a quarter of a century to find the error.

An Example

It is easiest to see where Cauchy went wrong by analyzing an example of an infinite series of
continuous functions that is itself discontinuous. Fourier series are rather complicated. We shall
use a simpler example:

(2) S(x) =
∞∑

k=1

x2

(1 + kx2)(1 + (k − 1)x2)
.

Each of the summands is a continuous function of x. The partial sums are particularly easy to
work with. We observe that

x2

(1 + kx2)(1 + (k − 1)x2)
=

1

1 + (k − 1)x2
− 1

1 + kx2
,

and therefore

Sn(x) =
(

1− 1

1 + x2

)

+
( 1

1 + x2
− 1

1 + 2x2

)

+
( 1

1 + 2x2
− 1

1 + 3x2

)

+ · · ·+
( 1

1 + (n− 1)x2
− 1

1 + nx2

)

= 1− 1

1 + nx2

=
nx2

1 + nx2
.(3)
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Figure 1. Graphs of S3(x), S6(x) and S9(x).

We see that Sn(0) = 0 for all values of n, and so S(0) = 0. If x is not zero, then

Sn(x) =
x2

n−1 + x2

which approaches 1 as n gets large,

S(x) = 1, x 6= 0.

The series is definitely discontinuous at x = 0.
We can see what is happening if we look at the graphs of the partial sums (Figure 1). As n

increases, the graphs become steeper near x = 0. In the limit, we get a vertical jump.

Where is the Mistake?

Cauchy must be making some unwarranted assumption in his proof. To see what it might be,
we return to his proof and use our specific example:

(4) S(x) =

{

0, if x = 0,

1, if x 6= 0,

(5) Sn(x) =
nx2

1 + nx2
,

(6) Rn(x) =







0, if x = 0,
1

1 + nx2
, if x 6= 0,
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The critical point at which we want to investigate continuity is a = 0. If x is close to but not
equal to 0, then inequality (1) becomes

|S(x)− S(0)| ≤ |Sn(x)− Sn(0)|+ |Rn(x)|+ |Rn(0)|

=
∣
∣
∣

nx2

1 + nx2
− 0

∣
∣
∣+

∣
∣
∣

1

1 + nx2

∣
∣
∣ + |0|(7)

=
nx2

1 + nx2
+

1

1 + nx2

= 1.(8)

Something is wrong with the assertion that we can make each of the terms in (7) arbitrarily
small.

We make the first piece small by taking x close to 0. How close does it have to be? We want

(9)
nx2

1 + nx2
<

ε

3
.

Multiplying through 1 + nx2 and then solving for x2, we see that

nx2 < (
ε

3
)(1 + nx2),

x2(n− n
ε

3
) <

ε

3
,

x2 <

ε

3

n− n
ε

3

=
ε

n(3− ε)
,

|x| <
√

ε

3n− εn
.(10)

The size of our response δ depends on n. As n gets larger, δ must be smaller. This makes sense
if we think of the graph in Figure xx. If ε = 0.1 so that we want Sn(x) < 0.1, we need to take a
much tighter interval when n = 9 than we do when n = 3.

To make the second piece small,

(11)
1

1 + nx2
<

ε

3
,

we have to take a large value of n. If we solve this inequality for n, we see that we need

1 < (
ε

3
)(1 + nx2),

3

ε
− 1 < nx2

3− ε

εx2
< n.(12)

The size of n depends of x As |x| gets smaller, n must be taken larger. This also makes sense
when we look at the graph. If we take an x that is very close to 0, then we need a very large
value of n before we are near S(x) = 1.

Here is our difficulty. The size of x depends on n, and the size of n depends on x. We can
make the first piece small by making x small, but that increases the size of the second piece.
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If we increase n to make the second piece small, the first piece increases. We are in a vicious
cycle. We cannot make both pieces small simultaneously.

Example.

fn(x) =

{

xn 0 ≤ x ≤ 1

1 x ≥ 1.

n→∞−→ f(x) =

{

0 0 ≤ x ≤ 1

1 x ≥ 1.

continuous discontinuous

Figure 2

Example.

fn(x) =







−1 x ≤ − 1

n

nx − 1

n
≤ x ≤ 1

n

1 x ≥ 1

n

n→∞−→ f(x) =







−1 x < 0

0 x = 0

1 x > 0

continuous discontinuous

Figure 3

Example.

fn(x) =







−1 x ≤ − 1

n

sin nπx

2
− 1

n
≤ x ≤ 1

n

1 x ≥ 1

n

n→∞−→ f(x) =







−1 x < 0

0 x = 0

1 x > 0

differentiable non-differentiable

Example.

fn(x) =







2n2, x 0 ≤ x ≤ 1

2n
,

2n− 2n2x, 1

2n
≤ x ≤ 1

n

0, 1

n
≤ x ≤ 1.
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Figure 4

Hence lim
n→∞

fn(x) = 0 for all x.

Since for any given x > 0 there is N such that fn(x) = 0 for n > N and so f(0) = 0.

However,
∫

1

0

fn(x)dx =
1

2
6= 0 =

∫
1

0

f(x)dx =

∫
1

0

lim
n→∞

fn(x)dx.

Figure 5
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From the above pictures, fn do not “get close” to f . For each of the above examples, take an
x ∈ A (x 6= 0). Then for any ε > 0,

|fn(x)− f(x)| ≥ 2ε, n > N,

for some N sufficiently large.

Fixing the Problem up with Uniform Convergence

Part of the reason that Cauchy made his mistake is that many infinite series of continuous
functions are continuous. Having found what is wrong with Cauchy’s proof, we can attempt to
find criteria that will identify infinite series that are continuous. If we are going to be able to
break our cycle, then either the size of the first piece does not depend on n or the size of the
second piece does not depend on x.

The usual solution is the second: that is size of |Rn(x)| does not depend on x. When this
happens, we say that the series is uniformly convergent. Specifically, we have the following
definition:

Definition. Let {fn}∞1 be a sequence of functions defined on [a, b]. Then f is called the uniform
limit of {fn} on [a, b] if given ε > 0 there is some N such that for all x ∈ [a, b],

∣
∣
∣f(x)− fn(x)

∣
∣
∣ < ε whenever n > N.

We also say that {fn} converges uniformly to f on [a, b].

Figure 6. The ε around S.

Graphically, this implies that if we put an envelop extending distance ε above and below S
(Figure 6), then there is a response N such that n ≥ N implies that the graph of Sn lies entirely
inside this envelop. Using the example from equation (2) (Figure 7), we see that when ε is

small (less than
1

2
), none of the partial sums stay inside the ε envelop. This example was not

uniformly convergent.

Example. fn(x) = x(1 − x)n, 0 ≤ x ≤ 1, f(x) = 0 on 0 ≤ x ≤ 1. Then fn → f uniformly on
[0, 1].

Proof. Given ε > 0, choose N such that (1− ε)N < ε. Then for n ≤ N we have

|fn(x)− f(x)| = x(1− x)n ≤ x < ε if 0 ≤ x < ε,

and

|fn(x)− f(x)| = x(1 − x)n < ε if ε ≤ x ≤ 1.
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Figure 7. Figure 1 with ε envelop.

So for n > N ,

|fn(x)− f(x)| = x(1− x)n < ε

for all x ∈ [0, 1]. �

Example.

fn(x) = (1− x)n, 0 ≤ x ≤ 1

f(x) =

{

0, 0 ≤ x ≤ 1

1, x = 0.

Figure 8

Choose ε =
1

2e
, we choose xn → 0 say

1

n
.

|fn
(1

n

)

− f
(1

n

)

| =
∣
∣
∣

(

1− 1

n

)n

− 0
∣
∣
∣ → 1

e
>

1

2e
.

So

|fn
(1

n

)

− f
(1

n

)

| > 1

2e
for n sufficiently large.
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Hence we cannot choose N such that

|fn
(1

n

)

− f
(1

n

)

| < 1

2e

for n > N and x ∈ [0, 1].

Definition. {fn} is said to converge to f pointwise on [a, b] if

f(x) = lim
n→∞

fn(x)

for each x in [a, b].

Except fn(x) = x(1 − x)n, all the above examples have pointwise limits only.

Theorem 2.6. Suppose that {fn} is a sequence of functions which are integrable on [a, b], and
that {fn} converges uniformly on [a, b] to a function f which is integrable on [a, b]. Then

∫
b

a

lim
n→∞

fn dx =

∫
b

a

fdx = lim
n→∞

∫
b

a

fn dx.

Proof. Given ε > 0, there is N > 0 such that

|fn(x)− f(x)| < ε

if n > N and for all x ∈ [a, b]. Then if n > N we have

∣
∣
∣

∫
b

a

f(x)dx−
∫

b

a

fn(x)dx
∣
∣
∣ =

∣
∣
∣

∫
b

a

(

f(x)dx− fn(x)
)

dx
∣
∣
∣

≤
∫

b

a

∣
∣
∣f(x)dx− fn(x)

∣
∣
∣dx < ε

∫
b

a

1dx = (b− a)ε.

Since this is true for all ε > 0, hence
∫

b

a

f = lim
n→∞

∫
b

a

fn

�

Theorem 2.7. Suppose that {fn} is a sequence of continuous functions on [a, b], and that {fn}
converges uniformly on [a, b] to f . Then f is also continuous on [a, b].

Proof. By the “
ε

3
” method. For each x ∈ [a, b], we deal only with x ∈ (a, b) with usual justifi-

cation, for x = a or b.

Given ε > 0, we may choose N so large such that
∣
∣
∣f(y)− fn(y)

∣
∣
∣ <

ε

3

whenever n > N and all y ∈ [a, b]. Let x ∈ (a, b) and h so small such that x+ h ∈ [a, b]. Since
fn is continuous on [a, b], there is δ > 0 such that

∣
∣
∣fn(x+ h)− fn(x)

∣
∣
∣ <

ε

3
if |h| < δ.
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Hence
∣
∣
∣f(x+ h)− f(x)

∣
∣
∣ =

∣
∣
∣f(x+ h)− fn(x+ h) + fn(x+ h)− fn(x) + fn(x)− f(x)

∣
∣
∣

≤
∣
∣
∣f(x+ h)− fn(x+ h)

∣
∣
∣+

∣
∣
∣fn(x+ h)− fn(x)

∣
∣
∣ +

∣
∣
∣fn(x)− f(x)

∣
∣
∣

<
ε

3
+

ε

3
+

ε

3
= ε.

Hence f is continuous on [a, b]. �

Remark. In this way, we can fix Cauchy’s mistake up with uniform convergence. We repeat
Cauchy’s proof, being careful to choose n first. We choose any a ∈ (α, β) and use inequality

(1):
|S(x)− S(a)| ≤ |Sn(x)− Sn(a)|+ |Rn(x)|+ |Rn(a)|.

As before, we assign a third of our error bound to each of these terms. Using the uniform

convergence, we can find an n for which both |Rn(x)| and |Rn(a)| are less than
ε

3
, regardless of

our choice of x. Once n is chosen, we turn to the first piece and use the continuity of Sn(x) to
find a δ for which

|x− a| < δ implies that |S(x)− S(a)| < ε

3
+

ε

3
+

ε

3
= ε.

Theorem 2.8. Let {fn} be a sequence of continuous functions on [a, b] and converges uniformly
to f . Then

lim
n→∞

∫
b

a

fn(x)dx =

∫
b

a

lim
n→∞

fn(x)dx =

∫
b

a

fdx.

Proof. trivial. �

Question. Is it true that if fn → f uniformly and fn differentiable on [a, b], then f is also
differentiable on [a, b]?

Answer. No.

Figure 9

Even if f is differentiable, it may not be true that

f ′(x) = lim
n→∞

f ′

n
(x).

Example. Take fn(x) =
1

n
sin(n2x). fn(x) =

1

n
sin(n2x) → f(x) = 0 uniformly, as n → ∞.

But f ′

n
(x) = n cos(n2x) and lim

n→∞

n cos(n2x) does not exist, say, at x = 0.



FOURIER ANALYSIS AND APPLICATIONS 17

Figure 10

Theorem 2.9. Suppose that {fn} is a sequence of functions which are differentiable on [a, b],
and that {fn} converges uniformly to f . Suppose, moreover, that {f ′

n
} converges uniformly to

some continuous function g. Then f is differentiable, and

f ′(x) = lim
n→∞

f ′

n
(x).

Proof. Applying Theorem 2.6 to [a, x], we see that for each x we have
∫

x

a

gdx = lim
n→∞

∫
x

a

f ′

n
dx

= lim
n→a

(

fn(x)− fn(a)
)

= f(x)− f(a).

Since g is continuous,
d

dx

∫
x

a

gdx = f ′(x).

That is,

f ′(x) = g(x) = lim
n→∞

f ′

n
(x) for all x ∈ [a, b].

�

Definition. We say the series
∞∑

n=1

fn converges uniformly to f on A if the sequence

f1, f1 + f2, f1 + f2 + f3, . . .

converges uniformly to f on A.

Theorem 2.10. Let
∞∑

n=1

fn converges uniformly to f on [a, b].

If each fn is continuous on [a, b], then f is continuous on [a, b].(i)

If f and each fn is integrable on [a, b], then(ii)

∫
b

a

fdx =

∞∑

n=1

∫
b

a

fn dx.
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If
∞∑

n=1

fn converges (even pointwise) to f on [a, b], and
∞∑

n=1

f ′

n
(iii)

converges uniformly on [a, b] to some continuous function, then

f ′(x) =
∞∑

n=1

f ′

n
(x),

for all x in [a, b].

Proof. (i) Since each fn is continuous, then so is each

f1 + · · ·+ fn n = 1, 2, 3, . . .

But then f is the uniform limit of continuous functions (the partial sum) on [a, b] and hence
continuous on [a, b].

(ii) Since f1, f1 + f2, f1 + f2 + f3, . . . converges uniformly to f , hence
∫

b

a

fdx =

∫
b

a

lim
N→∞

(

Nth partial sum
)

dx

= lim
N→∞

∫
b

a

(

Nth partial sum
)

dx (Theorem 2.6)

= lim
N→∞

N∑

n=1

∫
b

a

fndx =
∞∑

n=1

∫
b

a

fndx.

(iii) f ′

1, f
′

1 + f ′

2, f
′

1 + f ′

2 + f ′

3, . . . converges uniformly to some continuous function. Hence f is
differentiable and

f ′ = lim
N→∞

(

f ′

1 + · · ·+ f ′

N
︸ ︷︷ ︸

s′
N

)

=
∞∑

n=1

f ′

n
(Theorem 2.9)

�

Theorem 2.11. (Weierstrass M−test) Let {fn} be a sequence of functions defined on A, and
suppose that {Mn} is a sequence of numbers such that

|fn(x)| ≤ Mn

for all x in A. Suppose moreover that
∞∑

n=1

Mn converges. Then for each x in A the series
∞∑

n=1

fn

converges (absolutely) and
∞∑

n=1

fn converges uniformly on A to the function

f(x) =

∞∑

n=1

fn(x).
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Proof. For each x in A the series
∞∑

n=1

|fn| converges (absolutely) by the comparison test. Given

ε > 0 choose N so large such that
∞∑

N+1

Mn < ε For all x in A

∣
∣
∣f(x)− (f1 + f2 + · · ·+ fN )

∣
∣
∣ =

∣
∣
∣

∞∑

N+1

fn

∣
∣
∣ ≤

∞∑

N+1

Mn < ε

for all x ∈ A. �

Theorem 2.12. Suppose that the series

f(x0) =

∞∑

n=0

anx
n

0

converges, and let a be any number with 0 < a < |x0|. Then on [−a, a] the series

f(x) =

∞∑

n=0

anx
n

converges uniformly. Moreover, the same is true for the series

g(x) =

∞∑

n=1

nanx
n−1.

Finally, f is differentiable and

f ′(x) =

∞∑

n=1

nanx
n−1

for all x with |x| < |x0|.

Proof. (second proof) Since
∞∑

n=0

anx
n

0 converges and hence {anxn

0} is bounded. That is,

|anxn

0 | ≤ M

for all n. If x ∈ [−a, a], then |x| ≤ a, so

|anxn| = |an||xn| ≤ |an||an|

= |anxn

0 |
∣
∣
∣
an

xn
0

∣
∣
∣

≤ M
∣
∣
∣
an

xn

0

∣
∣
∣.

Hence
∞∑

n=0

anx
n converges absolutely for x ∈ [−a, a] by comparison test since

∣
∣
∣
a

x0

∣
∣
∣ < 1.

Choose Mn = M
∣
∣
∣
a

x0

∣
∣
∣

n

in the M−test, it follows that
∞∑

n=0

anx
n converges uniformly on [−a, a].
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For g(x) =
∞∑

n=1

nanx
n−1, notice that

|nanxn−1| = nan|xn−1| ≤ n|an||an−1|

=
∣
∣
∣
an
a

∣
∣
∣|xn

0 | · n ·
∣
∣
∣
a

x0

∣
∣
∣

n

≤ M

|a|n
∣
∣
∣
a

x0

∣
∣
∣

n

.

since
∣
∣
∣
a

x0

∣
∣
∣ < 1, the series

∞∑

n=1

M

|a|n
∣
∣
∣
a

x0

∣
∣
∣

n

=
M

|a|

∞∑

n=1

n
∣
∣
∣
a

x0

∣
∣
∣

n

converges, applying the M−test again proves that
∞∑

n=1

nanx
n−1 converges uniformly on [−a, a].

From Theorem 2.7, g is continuous and hence

f ′(x) = g(x) =
∞∑

n=1

nanx
n−1

for x ∈ [−a, a]. (Theorem 2.9) �

Some examples:

(a) s(x) =
∞∑

n=1

xn

n2
is uniformly convergent on [0, 1].

Proof. Given ε > 0 choose N such that
∞∑

N+1

1

n2
< ε.

Then

|s(x)− sn(x)| =
∞∑

r=n+1

xr

r2
≤

∞∑

r=n+1

1

r2
< ε

for all n ≥ N and x ∈ [a, b]. So sn(x) → s(x) uniformly on [0, 1]. That is,
∞∑

n=1

xn

n2
is uniformly

convergent on [0, 1].

�

(b) (Weierstrass M−test) We consider the above example again. Since
∣
∣
∣
xn

n2

∣
∣
∣ ≤ 1

n2
= Mn
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if 0 ≤ x ≤ 1, n = 1, 2, . . . and
∞∑

n=1

Mn =

∞∑

n=1

1

n2

is convergent. So by the M−test, the
∞∑

n=1

xn

n2
is uniformly convergent on [0, 1].

(c) Show that

tan−1 x =

∞∑

n=1

(−1)nx2n+1

2n+ 1

for |x| < 1.

Proof. Since

tan−1 x =

∫
x

0

1

1 + y2
dy

=

∫
x

0

( ∞∑

n=0

(−1)ny2n
)

dy.

Consider
∞∑

n=0

(−1)ny2n on [−|x|, |x|]. Since |(−1)ny2n| ≤ |x|2n and
∞∑

n=0

|x|2n is convergent. Hence

we may apply to M−test with Mn = |x|2n.
So by Theorem 2.11,

∞∑

n=0

(−1)ny2n converges uniformly on [−|x|, |x|]. Clearly each (−1)ny2n

is integrable on [0, x], Theorem 2.10 implies

tan−1 x =

∫
x

0

∞∑

n=0

(−1)ny2ndy

=
∞∑

n=0

∫
x

0

(−1)ny2ndy

=
∞∑

n=0

(−1)n
x2n+1

2n+ 1
.

�

Definition. We define f(x) = {x} to be the distance from x to the nearest integer.

Example. f(x) = {x} looks like

We consider

fn(x) =
1

10n
{10nx}

then clearly

|fn(x)| ≤
1

10n
for all x,

and
∞∑

n=1

1

10n
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Figure 11

converges. Hence the function defined by

f(x) =

∞∑

n=1

fn(x) =

∞∑

n=1

1

10n
{10nx}

is uniformly convergent series.

Theorem 2.13. The function

f(x) =

∞∑

n=1

1

10n
{10nx}

is continuous everywhere and differentiable nowhere.

Proof. By the M−test and Theorem 1.7 that f is continuous. We will prove that f is not
differentiable at a, for any a. It suffices to show that for a sequence hm → 0 the limit

lim
m→∞

f(a+ hm)− f(a)

hm

does not exist. It obviously suffice to consider only a such that 0 < a ≤ 1.

Suppose a has the decimal representation

a = 0.a1a2a3 . . .

Let

hm =

{

10−m if am 6= 4 or 9

−10−m if am = 4 or 9
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Then

f(a+ hm)− f(a)

hm

=

∞∑

n=1

1

10n
{10n(a + hm)} − {10na}

±10−m

=

∞∑

n=1

±10m−n

(

{10n(a+ hm)} − {10na}.
)

If n ≥ m, then 10nhm ∈ Z so

{10n(a+ hm)} − {10na} = 0.

Hence it becomes a finite sum.

If however n < m we can write

10na = integer + 0.an+1an+2an+3 . . . am . . .

and 10n(a+ hm) = integer + 0.an+1an+2an+3 . . . (am ± 1) . . .

(by the choice of hm).

Now suppose

0.an+1an+2an+3 . . . am · · · ≤ 1

2
,

then we also have

0.an+1an+2an+3 . . . (am ± 1) · · · ≤ 1

2

(by the choice of hm, hm = 10−m if am = 4).

This implies that

(

{10n(a + hm)} − {10na}
)

= ±10n−m

Exactly for the same reasoning for

0.an+1an+2an+3 · · · >
1

2
.

Thus, for n < m,

10m−n

(

{10n(a + hm)} − {10na}
)

= ±1.
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That is,
f(a+ hm − f(a))

hm

is the sum of m − 1 numbers, each of which is ±1. Hence it equals

an even integer if m is odd; and equals an odd integer if m is even. (Note that we always write
0.1240=0.123999. . . ; another example will be 0.5=0.4999. . . ). �

To show
∞∑

n=1

1

2n
{2nx}

Figure 12
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Exercise

Q1. Show that | sin x| ≤ 1 and | cosx| ≤ 1 for all x ∈ R.

Q2 Show that | sin x| ≤ |x| for all x ∈ R and | sin x− x| ≤ |x|3/6 for all x ∈ R.

Q3 Show that if x > 0 then

1− x2

2
+

x4

24
− x6

720
≤ cosx ≤ 1− x2

2
+

x4

24
.

Use this inequality to establish a lower bound for π.

Q4 Show that the convergence of lim
n→∞

xn

1 + xn
, x ≥ 0 is uniform on [0, b] whenever b < 1,

but is not uniform on [0, 1].

Q5 Show that the convergence of lim
n→∞

sin nx

1 + nx
, x ≥ 0 is uniform on [a, +∞) whenever a > 0,

but is not uniform on [0, +∞).

Q6 Show that the sequence {x2e−nx} converges uniformly on [0, +∞).

Q7 Let fn = nx/(1+nx2) for x ∈ A := [0, ∞). Show that each fn is bounded on A, but the
pointwise limit f of the sequence is not bounded on A. Does {fn} converge uniformly
to f on A?

Q8 Let fn(x) =
1

(1 + x)n
, x ∈ [0, 1]. Find the pointwise limit f of the sequence {fn} on

[0, 1]. Does {fn} converge uniformly on [0, 1] to f ?

Q9 Discuss the convergence and the uniform convergence of the series Σfn, where fn is
given by (i)1/(x2 + n2), (ii) sin(x/n2), (iii) xn/(xn + 1).

Q10 If Σan is absolutely convergent series, then the series Σan sin(nx) is absolutely and
uniformly convergent.


