MATH4822E FOURIER ANALYSIS AND APPLICATIONS
CHAPTER 3 TRIGONOMETRIC FOURIER SERIES

3. TRIGONOMETRIC FOURIER SERIES

Let us have a closer look at trigonometric Fourier series.

The sine function y = Asin(wz + ¢) is called a harmonic, where |A| is the amplitude, w is the

2
frequency, and ¢ is the initial phase. The period of the above harmonic is T' = oA trigonometric
w

polynomial of period 2 (I > 0) is given by

(3.1) U Z (ak cos — + by, sin k%)

where a; and b are some constants.

It is easy to see that the above polynomial is periodic, but it may be difficult to see its shape. An
infinite trigonometric series of period 2[ is given by

(3.2) flz)= % + ; (ak Ccos lmrTx + by, sin lmrTx)

If we make a change of variable in (3.2), we have

(3.3) o(t) = (L) =

o
0 y
- ) + kg_l(ak cos kt + by, sin kt)

which has period 27. So we shall only consider sums of period 27 henceforth.
For each n # 0,

s 3 ™
sinnz T : cos nx |T
/ cosnx dx = =0, / sinnx dr = — = 0.

— n - —r n —r

T iy
/ cos®> nx dr = / sinnxdr =
—Tr —Tr

iy - ™
T, n=n . .
cosnx cosmr dr = = sinnx sinmx dx
- 0, m#n -

On the other hand,

so that

and

iy
/ sinnx cosmxdr =0

—T
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for any integers m and n. We multiply cos nz on both sides of (3.1) and integrate the resulting identity
from —m to 7.

T s n ™
/ Sp(z) cosnx dx = % cos nx dx + Z (ak / cos kx cosnz dx + by, /
k=1 -

—r -7 — —7

s
sin kx cos nx dac)

= TGy,
So
1 ™
ay = —/ sp(z) cosn dx,

™ —T

Similarly, we can multiple sin nz on both sides of (3.1) and integrate from —7 to 7 to obtain

by = —/ Sp(z) sinnx dz.

—T

Finally, we get

1 ™
ag = —/ Sp(z) dx

m —Tr
if we just integrate on both sides of (3.1) directly.

Definition. Let f(x) be a periodic function of period 27, we write

(3.4) f(z) ~ % + Z (ak cos kx + by, sin kx)
k=1
if
1 ™
ap = — f(x) cos kx dz, k=0,1,2,... and
7T —T
(3.5) e
b = — f(z)sin kz dz, k=0,1,2,...
7T —T

The series (3.4) is called the Fourier series of f and the ay, by (3.5) are called the Fourier coefficients
of f.

Remark. The series (3.4) may not converge to f(x).

Theorem 3.1. Suppose that a 27 periodic function f on [—m, w] can be expanded in a trigonometric
series which converges uniformly on the whole real axis, then this is the Fourier series (period 2 ).

Proof. We have

(3.6) flz) = % + Z (ak cos kx + by, sin k:c)
k=1

which converges uniformly on [—, 7]. Multiply cos nz on both sides yields

ao

n
5 + Z (ak cos kx cos nx + by sin kx cos nx)

k=1

(3.7) f(z)cosnx = % cos nx +
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But (3.6) converges uniformly. That is, given € > 0, there is N such that

‘f(x) — [% + i(ak cos kx + by, sin kx)] ‘ < €,
k=1

where n > N and z € [—m,7|. Hence given € > 0, we can use the same N to shows that the (3.7) to
have
n
‘f(ac) cosnx — [@ cosnx + Z(ak cos kx cos nx + by sin kx cos nx)} ‘
2 k=1
ag

5 + Z(ak cos kx + by sin k‘:c)] ‘| cos n|

k=1

< ‘f(x) - [% —i—kzn:l(akcoskx—i—bksinkx)” <€

= 7@ -]

where n > N and z € [—m,7]. Thus the convergence in (3.7) is also uniform on [—m, 7]. So according

to Theorem 2.10 that we can integrate (3.7) term by term to get (as in the case of s, (z))

1 [7 1 /7
ay = — f(x)cos kx dx, b = — f(x)sinkz dz.

™ J)_x T J—n

We can also integrate (3.6) directly to get
1 ™
== d
aw=21 f(x) da,

since (3.6) converges uniformly. Hence (3.6) is the Fourier series of f. O

We recall that the left-hand and right-hand limits of a function f at xy are defined, respectively, by

flxo—0)= lim f(z),  f(zo+0)= lim f(z).

T—T0 T—T0
x<xo x>x0

Then f has a limit at zg if an only if f(xg —0) = f(xg+ 0). If the two one-sided limits are not equal,
we can measure their difference by

d=f(xog+0)— f(xo—0).

We say that f has a jump discontinuity at xg.

Theorem 3.2. Let f be a piecewise continuous periodic function of x. Then the Fourier series of f
converges for all x, and the sum equals to f if f is continuous there, and the sum equals
f(xo+0) + f(zo — 0)
2 )
if f has a jump discontinuity at xo. If f is continuous everywhere, then the Fourier series of f converges
to f uniformly and absolutely.

The proof will be given in due course.
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Example. Expand f(z) = 22, x € [—7, 7] in Fourier series.

P

FIGURE 1

Since f is continuous over [—m, 7] so the Theorem 3.2 asserts that

f(z) = z? = % + Z (akcoskx + bksinkx)
k=1

for each x € [—m, w|. Moreover, the infinite sum converges uniformly and absolutely. In this case,
1 /7 2 [T 4
ap = —/ 2% cosnzdx = —/ 22 cosnx dr = (-1)"—.
T T Jo n
1 ™
by, = — / 2% sinnz dr = 0 (because 2% sin nx is odd with respect to the y — axis.)
™ —T
I 2m?
aoz—/ xde:i.
L - 3
So
5 T 4 4
¥ = 3 —4COS$+?COSQ$— ?00831'4-"'
72 4
= — —4cosz+cos2x — —cos3x + - --
3 9
A
I ] I :
| i i i
I ] ] I
|
I
I } : |
] I ] ]
i i l i
i | i —>
T 0 T 2n 3m

FIGURE 2. Extension of 22 beyond |-, 7].

In fact, the Fourier series of f converges absolutely and uniformly to the periodic extension of f for
all z.
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A

-

A 37

i
i
n 0 s
FIGURE 3. Extension of 22 beyond [~ 7].

Let us put x = 7w on both sides of the above series. Then we obtain
o
2 1
=37 4y 52
k=1

from which one deduces

<1 2
23~

Example. Expand f(z) =z, (-7 <z < 7).

The Theorem 3.2 implies that we have equality

o
x=f :70+kz_1(akcoskx+bksinkx)

on — 1T <x<T.

Clearly,

1 ™
an:—/ x cosnxdr =0,
T

—T

since x cos nx is an odd function. Besides,

1 (™ 2 [T 2 [T
b, = — zsinnrdr = — [ zsinnrxdr=— | —xd(cosnx)
s ™ Jo nm Jo
—2
= — xcosnx
nm

—2 2
= —(=1)" + —=sinnz
n n2mw

—T

T ™ 9
+/ — cosnx dx
0 0

nm

™

0

2
(-1



6 FOURIER ANALYSIS AND APPLICATIONS

So
x_i( 1)n+12sinnaz
n=1 n
_ 2sinz  2sin2x  2sin3z  2sindx
A s S S

1 1 1
:Q[Sinx— §sin2x+§sin3x— Zsin4x+---

for x in (—m, 7). However, we note that the Fourier series

o0
% + ; (ak cos kx + by sin kx)

is invariant under a shift of 2jm where j is an integer. That is, the series converges uniformly and
absolutely on intervals ((2j — 1)m, (2j + 1)7) despite that f(z) = z is defined only on (—m, 7). Thus
we can extend f periodically as f(x + 2j7) = f(z) for all integers j, for z in (—7 < = < 7). This
extended function has discontinuities at x = +m, 427, ---. Now the Theorem 3.2 guarantees that

() 5 LEZOHIOH0 _rrm)

as n — oo, since f has a discontinuity at x = 7, and similar limit holds at other discontinuities of f.

Example. Expand f(z) = 22 on 0 < x < 27 in Fourier series.

I
1
i
!
m

FIGURE 4

Clearly z2 is continuous over 0 < x < 27 so its Fourier series converges absolutely and uniformly over
(0, 27) (Theorem 3.2). It is routine to check that

1 2m 1 3271 82
aoz—/ 2de=-2|" =2
T Jo m 3 lo 3

and
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o 1 2 )
S — 2x sinnx dr
0 nm Jo

1 /2 1

_ 2 N 2 .

Ay = — z°cosnrdr = —zx°sinnx
m™Jo nm

o ) 2

- == cosnz dx
0 nem Jo

2
:0—|—Taccosnx
n

2 9 2 27
= — .27 — ——sinnx
n2mw n3m
4

Similarly, we have

2 4
m
b, = / z?sinnxdr = ——,
0

3|

n
form=1,2,---.

The Fourier series of f(x) = 22 is therefore given by

47?2 >
= 4 Z (an cos nx + by, sin nw)

3 n=1
42 /4 4
:%—I—Z(mcosn:c—%smn:c)
n=1
472 >
:T—I—Zl;—cosn:c—@rz-smn:c

where we have re-arranged the terms in the infinite sums above because that both

o0 o0
1 1 .
E —5 COSNT and E —sinnzx
n n
n=1 n=1

converge absolutely and uniformly.
We extend f periodically to other interviews of 27 as shown in the figure. Then Theorem 3.2 again
implies that the partial sum of the Fourier series

f@r+0)+ f(2mr—0) 0%+ (2m)* _ o2
2 2 '

Sm(2m) —

4r? 1 2nm
Sm(2m) = — —|—4Z—cos2n7r — 47TZ

3 = 1n2
4Zn2
A 2 2 6 2
Sm(27r)—>7+4( 6) T = op?

as m — o0
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Let us substitute x = 7 in the above Fourier series:

, 4 X4

[oe)
1
T T—i—zmcosmr—élﬂzﬁsinmr
n=1 n=1
472 = (=1)"
= A e 0
n=1
That is,
11 1 1 472 5 w2
1 — 4+ — = o2 Z
i g 13T
Example. Expand
T
cosz, 0<z< 5
T
f(z) 0, T g
2
in Fourier cosine series.
A
1
/1IN .
-t -T2 0 mn/2 T
FIGURE 5

Since the extension makes the graph continuous everywhere, so its Fourier series converges uniformly
everywhere. We have

7r 1 2 2 2 2
apg = — f(x)dx:—/ Cosxdl“:—/ coszdr = —.
) . T ) 0

s s

(VB

and

2 (7 2 [™/2 1
alz—/ cos2:cd:c:—/ cos2z + 1)dx = —.
T ) T Jo 2
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When n > 2, we have

1 s
an = —/ f(z)cosnz dx
7T —Tr
1 [2
= —/ cosx cosnx dx
T =
2
2 [2
= —/ cosx cosnx dx
T Jo
1 [2
= — / [cos(n + 1)z + cos(n — 1)z] dz
T Jo
1 1 1 3
:;(n+1sin(n+1)x—l—n_lsin(n—l)x); (n>2)
1|:S n(n+1)5 sin(n—l)%}
m n+1 n—1
0, n is odd
= _1 5
(-1) ((712 221)7r, n is even
1 s
by, = — f(z)sinnz dx
7T —Tr
I . 1 (3 .
= — f(:v)smn:cd:c:—/ coszsinnzdr =0 (n>1)
o )

(NE]

T
because cos z sin nz is an odd function on [—§ 5] Therefore,

n+1
flx ):—+—cosx+z#

cos 2nT.
n?— 1)

Even and odd extensions. In general, when we are given a function on [0, (], we can extend it to
[, 0] by (i) an odd extension, or by (ii) an even extension.

(i) odd extension:
f=2)==[f(x), wel-l1]
Then

l
anzl/ f(:c)cos@dx
= / f(z)cos —dw—i—/ f(z cos@dx}

= /f cos—dx—/ f(= COS
:7 /Of(:c)cosTd:c—/Of(x)cosde}

=0, n>0

(ii) even extension:
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Then we can similarly show that

1 l
by, = 7/ f(:v)sin#dm =0
1

forn =1,2,3,... We obtain respectively

oo
flx) ~ Z by sin kzx, which is known as the sine series of f, and
k=1
o
agp N . .
f(z) ~ 5 + Z ay, cos kx, which is known as the cosine series of f.
k=1

Remark. All previous results on Fourier series apply to the sine and cosine series.
Example. Expand f(z) =z (0 < x <) in sine series.

A

FIGURE 6

We need to construct an odd extension of f to [—I, [] as shown in the figure. Thus all a,, = 0.

1 l
by, = —/ f(x)sin(@)dx
1) l
9 l
:—/ xsin(@)dx
A l

—9 i
= — xd(cos @>

nm Jo l
—2 L2 !
:—xcos(@)‘ —/ cos(@)dx
nm 0o nmjy l
-2 n l nrx. |l
= —[(~1)"1) + = sin(“T0)]|
21

Hence,
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for x € (—m, 7). One needs to check the convergence of the series at the end points.

Example. Expand f(z) =z (0 < x <) in cosine series.

A
|
-31 -21 -1 0 1 21 31
FIGURE 7
We know all b,, = 0. On the other hand,
1 /! 2 [ 1,
aoz—/ xdac:—/ rdr = =2%| =1.
L) I Jo I o
1 l
an = —/ xcos@dx
L) l
9 l
= —/ T Ccos nre dx
I Jo l
2 . nmx|! 2 /l . nTT
= —zxsin—| — — [ sin——dx
nm [ lo nm )
_ o0+ 2l o8 mmc‘l
N n2m2 I lo
21 n
= n2m2 [(_1) - 1]
0, if n is even
= 41 .
— e if n is odd.
Therefore
R — 41 cos(2k — 1)mx
v 5_;(214:—1)772 €08 l
for all x.
Complex Forms of Fourier Series
Suppose f(x) is integrable on [—m, 7] and
fx) ~ % + Z (ak cos kx + by, sin k::c)
k=1
1 [7 1 (7 .
a = — f(x) cos kxdx b = — f(x)sin kzdz.
T

—T —T
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If we write e = cos@ 4 isin 6, then

0 | —if 0 —i0
cosf = i, sinf = ¢ .e
2 21
So
a . sap —ib ar + b
fNEO+Z<k2 kezk9+ k2 kelew)
k=1
m .
~ co + Z Ckezk;m
k=—o00

where ¢ are generally complex numbers.

Note that the above complex Fourier series is to be understood as the limit of the following partial
sum:

n
Sp(x) =co + Z cpette,
k=—n

EXERCISE

Q1 Expand the f(x) = cosax, where a is not an integer, by Fourier series on —7 < z < 7.
Q2 Expand the function
0, for —m<x<0,
flz) =
x, for0<ax<m

in Fourier series.
Q3 Expand the function

1—Z f <x<?2
fz) = ap» for 0 <x < 2h,
0, for2h<z<nm

in (i) Fourier sine series (i.e., f has an odd extension) and (ii) in Fourier cosine series (i.e., f
has an even extension).

Q4 Let
Ar+ B, if —m<x2<0,
f(z) = .
cos , Hfo<z<m.

For what values of A and B does the Fourier series of f converge uniformly to f on [—m, 7|?

Q5 Let f have period 27 and let
[f (@) = f(y)] < clz —y|*

for all x and y, for some positive constants ¢ and a. That is, f satisfies the Holder (also known
as Lipschitz) condition of order a. Prove that

cm®

(0%
lan] < =, Jba] < =,
ne« ne«

for each n, where a,,, b, are the Fourier coefficients of f.

Q6 Expand f(x) = x in (—m, 7) in complex Fourier series. Verify that the series is the same as
the ordinary Fourier series worked out earlier in the lectures.



