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CHAPTER 3 TRIGONOMETRIC FOURIER SERIES

3. Trigonometric Fourier Series

Let us have a closer look at trigonometric Fourier series.

The sine function y = A sin(ωx + φ) is called a harmonic, where |A| is the amplitude, ω is the

frequency, and φ is the initial phase. The period of the above harmonic is T =
2π

ω
. A trigonometric

polynomial of period 2l (l > 0) is given by

(3.1) sn(x) =
a0

2
+

n
∑

k=1

(

ak cos
kπx

l
+ bk sin

kπx

l

)

where ak and bk are some constants.

It is easy to see that the above polynomial is periodic, but it may be difficult to see its shape. An
infinite trigonometric series of period 2l is given by

(3.2) f(x) =
a0

2
+

∞
∑

k=1

(

ak cos
kπx

l
+ bk sin

kπx

l

)

If we make a change of variable in (3.2), we have

(3.3) φ(t) = f(
tl

π
) =

a0

2
+

∞
∑

k=1

(ak cos kt+ bk sin kt)

which has period 2π. So we shall only consider sums of period 2π henceforth.

For each n 6= 0,
∫ π

−π
cosnx dx =

sinnx

n

∣

∣

∣

π

−π
= 0,

∫ π

−π
sinnx dx = −

cosnx

n

∣

∣

∣

π

−π
= 0.

On the other hand,
∫ π

−π
cos2 nx dx =

∫ π

−π
sin2 nx dx = π

so that
∫ π

−π
cosnx cosmxdx =

{

π, n = n

0, m 6= n
=

∫ π

−π
sinnx sinmxdx

and
∫ π

−π
sinnx cosmxdx = 0

1



2 FOURIER ANALYSIS AND APPLICATIONS

for any integers m and n. We multiply cosnx on both sides of (3.1) and integrate the resulting identity
from −π to π.

∫ π

−π
sn(x) cosnx dx =

a0

2

∫ π

−π
cosnx dx+

n
∑

k=1

(

ak

∫ π

−π
cos kx cosnx dx+ bk

∫ π

−π
sin kx cosnx dx

)

= πan.

So

ak =
1

π

∫ π

−π
sn(x) cos n dx,

Similarly, we can multiple sinnx on both sides of (3.1) and integrate from −π to π to obtain

bk =
1

π

∫ π

−π
sn(x) sinnx dx.

Finally, we get

a0 =
1

π

∫ π

−π
sn(x) dx

if we just integrate on both sides of (3.1) directly.

Definition. Let f(x) be a periodic function of period 2π, we write

(3.4) f(x) ∼
a0

2
+

∞
∑

k=1

(

ak cos kx+ bk sin kx
)

if

(3.5)

ak =
1

π

∫ π

−π
f(x) cos kx dx, k = 0, 1, 2, . . . and

bk =
1

π

∫ π

−π
f(x) sin kx dx, k = 0, 1, 2, . . .

The series (3.4) is called the Fourier series of f and the ak, bk (3.5) are called the Fourier coefficients
of f .

Remark. The series (3.4) may not converge to f(x).

Theorem 3.1. Suppose that a 2π periodic function f on [−π, π] can be expanded in a trigonometric
series which converges uniformly on the whole real axis, then this is the Fourier series (period 2π).

Proof. We have

(3.6) f(x) =
a0

2
+

∞
∑

k=1

(

ak cos kx+ bk sin kx
)

which converges uniformly on [−π, π]. Multiply cosnx on both sides yields

(3.7) f(x) cosnx =
a0

2
cosnx+

a0

2
+

n
∑

k=1

(

ak cos kx cosnx+ bk sin kx cosnx
)
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But (3.6) converges uniformly. That is, given ε > 0, there is N such that

∣

∣

∣
f(x)−

[a0

2
+

∞
∑

k=1

(ak cos kx+ bk sin kx)
]
∣

∣

∣
< ε,

where n > N and x ∈ [−π, π]. Hence given ε > 0, we can use the same N to shows that the (3.7) to
have

∣

∣

∣
f(x) cosnx−

[a0

2
cosnx+

n
∑

k=1

(ak cos kx cosnx+ bk sin kx cosnx)
]∣

∣

∣

=
∣

∣

∣
f(x)−

[a0

2
+

n
∑

k=1

(ak cos kx+ bk sin kx)
]∣

∣

∣
| cosnx|

≤
∣

∣

∣
f(x)−

[a0

2
+

n
∑

k=1

(ak cos kx+ bk sin kx)
]∣

∣

∣
< ε

where n > N and x ∈ [−π, π]. Thus the convergence in (3.7) is also uniform on [−π, π]. So according

to Theorem 2.10 that we can integrate (3.7) term by term to get (as in the case of sn(x))

ak =
1

π

∫ π

−π
f(x) cos kx dx, bk =

1

π

∫ π

−π
f(x) sin kx dx.

We can also integrate (3.6) directly to get

a0 =
1

π

∫ π

−π
f(x) dx,

since (3.6) converges uniformly. Hence (3.6) is the Fourier series of f . �

We recall that the left-hand and right-hand limits of a function f at x0 are defined, respectively, by

f(x0 − 0) = lim
x→x0

x<x0

f(x), f(x0 + 0) = lim
x→x0

x>x0

f(x).

Then f has a limit at x0 if an only if f(x0 − 0) = f(x0 + 0). If the two one-sided limits are not equal,
we can measure their difference by

δ = f(x0 + 0)− f(x0 − 0).

We say that f has a jump discontinuity at x0.

Theorem 3.2. Let f be a piecewise continuous periodic function of x. Then the Fourier series of f
converges for all x, and the sum equals to f if f is continuous there, and the sum equals

f(x0 + 0) + f(x0 − 0)

2
,

if f has a jump discontinuity at x0. If f is continuous everywhere, then the Fourier series of f converges
to f uniformly and absolutely.

The proof will be given in due course.
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Example. Expand f(x) = x2, x ∈ [−π, π] in Fourier series.

Figure 1

Since f is continuous over [−π, π] so the Theorem 3.2 asserts that

f(x) = x2 =
a0

2
+

∞
∑

k=1

(

ak cos kx+ bk sin kx
)

for each x ∈ [−π, π]. Moreover, the infinite sum converges uniformly and absolutely. In this case,

an =
1

π

∫ π

−π
x2 cosnxdx =

2

π

∫ π

0

x2 cosnx dx = (−1)n
4

n2
.

bn =
1

π

∫ π

−π
x2 sinnx dx = 0 (because x2 sinnx is odd with respect to the y − axis.)

a0 =
1

π

∫ π

−π
x2dx =

2π2

3
.

So

x2 =
π2

3
− 4 cos x+

4

22
cos 2x−

4

32
cos 3x+ · · ·

=
π2

3
− 4 cos x+ cos 2x−

4

9
cos 3x+ · · ·

Figure 2. Extension of x2 beyond [−π, π].

In fact, the Fourier series of f converges absolutely and uniformly to the periodic extension of f for
all x.
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Figure 3. Extension of x2 beyond [−π, π].

Let us put x = π on both sides of the above series. Then we obtain

π2 =
π2

3
+ 4

∞
∑

k=1

1

k2
,

from which one deduces
∞
∑

k=1

1

k2
=

π2

6
.

Example. Expand f(x) = x, (−π < x < π).

The Theorem 3.2 implies that we have equality

x = f(x) =
a0

2
+

∞
∑

k=1

(

ak cos kx+ bk sin kx
)

on −π < x < π.

Clearly,

an =
1

π

∫ π

−π
x cosnx dx = 0,

since x cosnx is an odd function. Besides,

bn =
1

π

∫ π

−π
x sinnx dx =

2

π

∫ π

0

x sinnx dx =
2

nπ

∫ π

0

−x d(cos nx)

=
−2

nπ
x cosnx

∣

∣

∣

π

0
+

∫ π

0

2

nπ
cosnx dx

=
−2

n
(−1)n +

2

n2π
sinnx

∣

∣

∣

π

0

= (−1)n+1 2

n
.
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So

x =

∞
∑

n=1

(−1)n+1 2 sinnx

n

=
2 sinx

1
−

2 sin 2x

2
+

2 sin 3x

3
−

2 sin 4x

4
+ · · ·

= 2
[

sinx−
1

2
sin 2x+

1

3
sin 3x−

1

4
sin 4x+ · · ·

]

for x in (−π, π). However, we note that the Fourier series

a0

2
+

∞
∑

k=1

(

ak cos kx+ bk sin kx
)

is invariant under a shift of 2jπ where j is an integer. That is, the series converges uniformly and
absolutely on intervals

(

(2j − 1)π, (2j + 1)π
)

despite that f(x) = x is defined only on (−π, π). Thus
we can extend f periodically as f(x + 2jπ) = f(x) for all integers j, for x in (−π < x < π). This
extended function has discontinuities at x = ±π, ±2π, · · · . Now the Theorem 3.2 guarantees that

sn(π) →
f(π − 0) + f(π + 0)

2
=

π + (−π)

2
= 0,

as n → ∞, since f has a discontinuity at x = π, and similar limit holds at other discontinuities of f .

Example. Expand f(x) = x2 on 0 < x < 2π in Fourier series.

Figure 4

Clearly x2 is continuous over 0 < x < 2π so its Fourier series converges absolutely and uniformly over
(0, 2π) (Theorem 3.2). It is routine to check that

a0 =
1

π

∫ 2π

0

x2 dx =
1

π

x3

3

∣

∣

∣

2π

0
=

8π2

3

and
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an =
1

π

∫ 2π

0

x2 cosnx dx =
1

nπ
x2 sinnx

∣

∣

∣

2π

0
−

1

nπ

∫ 2π

0

2x sin nx dx

= 0 +
2

n2π
x cosnx

∣

∣

∣

2π

0
−

2

n2π

∫ 2π

0

cosnx dx

=
2

n2π
· 2π −

2

n3π
sinnx

∣

∣

∣

2π

0

=
4

n2
, n ≥ 1.

Similarly, we have

bn =
1

π

∫ 2π

0

x2 sinnx dx = −
4π

n
,

for n = 1, 2, · · · .

The Fourier series of f(x) = x2 is therefore given by

x2 =
4π2

3
+

∞
∑

n=1

(

an cosnx+ bn sinnx
)

=
4π2

3
+

∞
∑

n=1

( 4

n2
cosnx−

4π

n
sinnx

)

=
4π2

3
+ 4

∞
∑

n=1

1

n2
cosnx− 4π

∞
∑

n=1

1

n
sinnx

where we have re-arranged the terms in the infinite sums above because that both

∞
∑

n=1

1

n2
cosnx and

∞
∑

n=1

1

n
sinnx

converge absolutely and uniformly.
We extend f periodically to other interviews of 2π as shown in the figure. Then Theorem 3.2 again

implies that the partial sum of the Fourier series

sm(2π) →
f(2π + 0) + f(2π − 0)

2
=

02 + (2π)2

2
= 2π2.

sm(2π) =
4π2

3
+ 4

m
∑

n=1

1

n2
cos 2nπ − 4π

m
∑

n=1

2nπ

n

=
4π2

3
+ 4

m
∑

n=1

1

n2
.

sm(2π) →
4π2

3
+ 4(

π2

6
) =

6π2

3
= 2π2

as m → ∞.
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Let us substitute x = π in the above Fourier series:

π2 =
4π2

3
+

∞
∑

n=1

4

n2
cosnπ − 4π

∞
∑

n=1

1

n
sinnπ

=
4π2

3
+ 4

∞
∑

n=1

(−1)n

n2
− 0

That is,

1−
1

22
+

1

32
−

1

42
+ · · · =

1

4
(
4π2

3
− π2) =

π2

12
.

Example. Expand

f(x) =







cos x, 0 ≤ x ≤
π

2
0,

π

2
≤ x ≤ π

in Fourier cosine series.

Figure 5

Since the extension makes the graph continuous everywhere, so its Fourier series converges uniformly
everywhere. We have

a0 =
1

π

∫ π

−π
f(x) dx =

1

π

∫ π

2

−
π

2

cos x dx =
2

π

∫ π

2

0

cos x dx =
2

π
.

and

a1 =
2

π

∫ π

−π
cos2 x dx =

2

π

∫ π/2

0

cos 2x+ 1) dx =
1

2
.
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When n ≥ 2, we have

an =
1

π

∫ π

−π
f(x) cosnx dx

=
1

π

∫ π

2

−
π

2

cos x cosnx dx

=
2

π

∫ π

2

0

cosx cosnx dx

=
1

π

∫ π

2

0

[cos(n + 1)x+ cos(n− 1)x] dx

=
1

π

( 1

n+ 1
sin(n + 1)x+

1

n− 1
sin(n− 1)x

)∣

∣

∣

π

2

0
(n ≥ 2)

=
1

π

[sin(n+ 1)π
2

n+ 1
+

sin(n− 1)π
2

n− 1

]

=







0, n is odd

(−1) ·
(−1)

n

2 · 2

(n2 − 1)π,
n is even

bn =
1

π

∫ π

−π
f(x) sinnx dx

=
1

π

∫ π

−π
f(x) sinnx dx =

1

π

∫ π

2

−
π

2

cos x sinnx dx = 0 (n ≥ 1)

because cos x sinnx is an odd function on [−
π

2
,
π

2
]. Therefore,

f(x) =
1

π
+

1

2
cos x+

∞
∑

n=1

(−1)n+1 · 2

(4n2 − 1)π
cos 2nπ.

Even and odd extensions. In general, when we are given a function on [0, l], we can extend it to
[−l, 0] by (i) an odd extension, or by (ii) an even extension.

(i) odd extension:

f(−x) = −f(x), x ∈ [−l, l].

Then

an =
1

l

∫ l

−l
f(x) cos

nπx

l
dx

=
1

l

{

∫ l

0

f(x) cos
nπx

l
dx+

∫ 0

−l
f(x) cos

nπx

l
dx

}

=
1

l

{

∫ l

0

f(x) cos
nπx

l
dx−

∫ 0

l
f(−x) cos

−nπx

l
dx

}

=
1

l

{

∫ l

0

f(x) cos
nπx

l
dx−

∫ l

0

f(x) cos
nπx

l
dx

}

= 0, n ≥ 0

(ii) even extension:

f(−x) = f(x), x ∈ [−l, l].
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Then we can similarly show that

bn =
1

l

∫ l

−l
f(x) sin

nπx

l
dx = 0

for n = 1, 2, 3, . . . We obtain respectively

f(x) ∼

∞
∑

k=1

bk sin kx, which is known as the sine series of f, and

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos kx, which is known as the cosine series of f.

Remark. All previous results on Fourier series apply to the sine and cosine series.

Example. Expand f(x) = x (0 < x < l) in sine series.

Figure 6

We need to construct an odd extension of f to [−l, l] as shown in the figure. Thus all an = 0.

bn =
1

l

∫ l

−l
f(x) sin(

nπx

l
) dx

=
2

l

∫ l

0

x sin(
nπx

l
) dx

=
−2

nπ

∫ l

0

xd
(

cos
nπx

l

)

=
−2

nπ
x cos(

nπx

l
)
∣

∣

∣

l

0
+

2

nπ

∫ l

0

cos(
nπx

l
) dx

=
−2

nπ
[(−1)nl] +

2l

n2π2
sin(

nπx

l
)
∣

∣

∣

l

0

=
2l

nπ
(−1)n+1 + 0, n = 1, 2, 3 . . .

Hence,

x =
2l

π

∞
∑

k=1

(−1)k+1

k
sin(

kπx

l
)
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for x ∈ (−π, π). One needs to check the convergence of the series at the end points.

Example. Expand f(x) = x (0 < x < l) in cosine series.

Figure 7

We know all bn = 0. On the other hand,

a0 =
1

l

∫ l

−l
x dx =

2

l

∫ l

0

x dx =
1

l
x2

∣

∣

∣

l

0
= l.

an =
1

l

∫ l

−l
x cos

nπx

l
dx

=
2

l

∫ l

0

x cos
nπx

l
dx

=
2

nπ
x sin

nπx

l

∣

∣

∣

l

0
−

2

nπ

∫ l

0

sin
nπx

l
dx

= 0 +
2l

n2π2
cos

nπx

l

∣

∣

∣

l

0

=
2l

n2π2
[(−1)n − 1]

=







0, if n is even

−
4l

n2π2
, if n is odd.

Therefore

x =
l

2
−

∞
∑

k=1

4l

(2k − 1)π2
cos

cos(2k − 1)πx

l

for all x.

Complex Forms of Fourier Series

Suppose f(x) is integrable on [−π, π] and

f(x) ∼
a0

2
+

∞
∑

k=1

(

ak cos kx+ bk sin kx
)

ak =
1

π

∫ π

−π
f(x) cos kxdx bk =

1

π

∫ π

−π
f(x) sin kxdx.
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If we write eiθ = cos θ + i sin θ, then

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

So

f ∼
a0

2
+

∞
∑

k=1

(ak − ibk

2
eikθ +

ak + ibk

2
e−ikθ

)

∼ c0 +
∞
∑

k=−∞

cke
ikx

where ck are generally complex numbers.

Note that the above complex Fourier series is to be understood as the limit of the following partial
sum:

sn(x) = c0 +

n
∑

k=−n

cke
ikx.

Exercise

Q1 Expand the f(x) = cos ax, where a is not an integer, by Fourier series on −π ≤ x ≤ π.

Q2 Expand the function

f(x) =

{

0, for − π < x < 0,

x, for 0 < x < π

in Fourier series.

Q3 Expand the function

f(x) =

{

1− x
2h , for 0 ≤ x ≤ 2h,

0, for 2h ≤ x ≤ π

in (i) Fourier sine series (i.e., f has an odd extension) and (ii) in Fourier cosine series (i.e., f
has an even extension).

Q4 Let

f(x) =

{

Ax+B, if − π ≤ x < 0,

cos x, if 0 ≤ x ≤ π.

For what values of A and B does the Fourier series of f converge uniformly to f on [−π, π]?

Q5 Let f have period 2π and let

|f(x)− f(y)| ≤ c|x− y|α

for all x and y, for some positive constants c and α. That is, f satisfies the Hölder (also known
as Lipschitz) condition of order α. Prove that

|an| ≤
cπα

nα
, |bn| ≤

cπα

nα
,

for each n, where an, bn are the Fourier coefficients of f .

Q6 Expand f(x) = x in (−π, π) in complex Fourier series. Verify that the series is the same as
the ordinary Fourier series worked out earlier in the lectures.


