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CHAPTER 4 ORTHOGONAL FAMILIES

4. Orthogonal Families

We shall adopt the following understanding in this course unless we stated otherwise. We always
assume that our f is a piece-wise continuous function defined on [a, b] (i.e., continuous except for at
most a finite number of discontinuities). When we say the integral exists, then we understand it exists
in the Riemann sense.

An infinite sequence of real functions {φj}∞j=0 defined on [a, b] is said to be orthogonal on [a, b] if

∫ b

a
φn(x)φm(x) dx =

{

0, if m 6= n

6= 0 if m = n

for all m, n, where m, n = 0, 1, 2, . . .

In fact, we have encountered many such examples in previous chapters already.

Example. The family {1, cos πx
l
, sin

πx

l
, . . . , cos

nπx

l
, sin

nπx

l
, . . . } is orthogonal on [−l, l].

Example. The family {1, cosx, . . . , cosnx, . . . } is orthogonal on [0, π].

Example. The family {sinx, . . . , sinnx, . . . } is orthogonal on [0, π].

Example. The family {sinx, sin 3x, . . . , cos(2n + 1)x, . . . } is orthogonal on [0, π/2].

If our orthogonal family {φj}∞j=0 satisfies

∫ b

a
φn(x)

2 dx = 1

for n = 0, 1, 2, . . . , then {φj} is said to be orthonormal with respect to [a, b]. Any orthogonal family

can be made into an orthonormal family by dividing
∫ b
a φ

2
n dx:

Let

‖φn‖ =
(

∫ b

a
φ2n(x) dx

)
1

2

to be the norm of φn, then the family
{ φ0
‖φ0‖

,
φ1
‖φ1‖

, · · · , φn
‖φn‖

, · · ·
}

is clearly orthonormal.
1
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Example. Consider {1, cos πx
l
, sin

πx

l
, . . . , cos

nπx

l
, sin

nπx

l
, . . . } on [−π, π]. Then

∫ π

−π
cos2 nx dx = π,

∫ π

−π
sin2 nx dx = π

‖ cosnx‖ = ‖ sinnx‖ =
√
π.

∫ π

−π
12 · dx = 2π, ‖1‖ =

√
2π.

So
{ 1√

2π
,
cos x√
π
,
sinx√
π
, · · · , cosnx√

π
,
sinnx√

π
, · · ·

}

is orthogonal with respect to [−π, π].

Example. Consider {sinx, . . . , sinnx, . . . } is orthogonal on [0, π]. Then
∫ π

0
(sinnx)2 dx =

π

2
,

∫ π

0
sinnx sinmxdx = 0 for n 6= m.

So ‖ sin nx‖ =
√

2
π . Therefore

{

√

2

π
sinx,

√

2

π
sin 2x, · · · ,

√

2

π
sinnx, · · ·

}

is orthonormal.

Fourier Series with respect to an Orthogonal Family

Let f be defined on [a, b]. Suppose that {φj}∞j=0 which is orthogonal over [a, b]. Then we say that the

series is
∞
∑

j=0
cjφj is the Fourier series of f , written

f ∼ c0φ0 + c1φ1 + · · ·+ cnφn + . . . ,

if

cj =
1

‖φj‖2
∫ b

a
f(x)φj(x) dx, j = 0, 1, 2, . . .

The coefficients {cj} are called Fourier coefficients of f with respect to {φj}. The above definition
does not require the Fourier series to converge to f .

Theorem 4.1. Let {φn}∞0 be an orthogonal family of continuous functions defined on [a, b]. If f(x) =
∑∞

j=0 cjφj converges uniformly on [a, b], then the above sum is the Fourier series of f with respect to

{φn} and

ck =
1

‖φk‖2
∫ b

a
f(x)φk(x) dx, k = 0, 1, 2, . . .

The above theorem asserts that if f(x) =
∑∞

k=0 ckφk and the convergence is uniform over [a, b], then

the series
∞
∑

k=0

ckφk must be the Fourier series of f with respect to the system {φj}∞0 .
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Proof. We multiply the series
∑∞

k=0 ckφk on both sides by φk before integrate the resulted equation
over [a, b]. Since each φk is continuous on [a, b] and the convergence of

∑∞
k=0 ckφk is uniform, so one

can one can mimic the proof of Theorem 3.1 to interchange the summation and integration arrive at
the conclusion. �

Theorem 4.2 (Bessel’s Inequality). Let f be a square integrable function on [a, b] and
∞
∑

k=0

ckφk be the

Fourier series of f . Then the inequality

∫ b

a
f(x)2 dx ≥

n
∑

k=0

c2k ‖φk‖2

holds for each n, and in particular, we have

∫ b

a
f(x)2 dx ≥

∞
∑

k=0

c2k ‖φk‖2.

holds.

Remark. For the Bessel inequality, we have not assumed that the series necessarily converges to f .

Proof. Let σn(x) =
n
∑

k=0

γk φk(x) be an arbitrary sum of {φ0, φ1, . . . , φn, . . . } (that is, γ0, γ1, . . . , γn

are arbitrary constants). Consider the error term

δn =

∫ b

a

(

f(x)− σn(x)
)2
dx.

δn =

∫ b

a
[f(x)2 − 2f(x)σn(x) + σ2n(x)] dx

=

∫ b

a
f(x)2 dx− 2

∫ b

a
f(x)σn(x) dx+

∫ b

a
σ2n(x) dx.

Notice that

∫ b

a
f(x)σn(x) dx =

n
∑

k=0

∫ b

a
f(x) γkφk(x) dx

=

n
∑

k=0

γk

∫ b

a
f(x)φk(x) dx

=

n
∑

k=0

γkck‖φk‖2.
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Moreover,
∫ b

a
σ2n(x) dx =

∫ b

a

(

n
∑

k=0

γkφk(x)
)2
dx

=

n
∑

k=0

γ2k

∫ b

a
φ2k(x) dx+

n
∑

k=1
k=p+q
p 6=q

γpγq

∫ b

a
φp(x)φq(x) dx

=
n
∑

k=0

γ2k ‖φk‖2 + 0

=
n
∑

k=0

γ2k ‖φk‖2.

Hence,

δn =

∫ b

a
f(x)2 dx− 2

n
∑

k=0

γkck‖φk‖2 +
n
∑

k=0

γ2k ‖φk‖2

=

∫ b

a
f(x)2 dx+

n
∑

k=0

(ck − γk)
2‖φk‖2 −

n
∑

k=0

c2k ‖φk‖2

which can be minimized to be

∆n = δn =

∫ b

a
f(x)2 dx−

n
∑

k=0

c2k‖φk‖2

if we choose γk = ck, k = 0, 1, 2, . . . , n. (δn = δn(γ0, . . . , γn) = δn(c0, . . . , cn) = ∆n). Thus ∆n ≥ 0 if
and only if

∫ b

a
f(x)2 dx ≥

n
∑

k=0

c2k ‖φk‖2.

�

Remark. The quantity

δn =

∫ b

a

(

f(x)− σn(x)
)2
dx

is called the mean square error of f being approximated by the system {φ0, . . . , φn}.

Corollary 4.3. Let
∑

ckφk be the Fourier series of a square integrable function f on [a, b]. Then

lim
k→∞

ck‖φk‖ = 0.

Moreover, if {φk} are orthogonal, then
lim
k→∞

ck = 0.

Definition. The orthogonal system {φk}∞0 is said to be complete if
∫ b

a
f(x)2 dx =

∞
∑

k=0

c2k‖φk‖2

for every square integrable function f (∆n → 0 as n→ ∞).



FOURIER ANALYSIS AND APPLICATIONS 5

Definition. The Fourier series
n
∑

k=0

ckφk of f is said to converge to f in the mean or (mean square

convergence) if

lim
n→∞

∫ b

a

(

f(x)−
∞
∑

k=0

ckφk

)2
dx = 0.

We clearly can deduce

Corollary 4.4. A necessary and sufficient condition for an orthogonal family to be complete is that
the Fourier series of f converges to f in the mean for each square integrable function f .

Remark. Convergence in the mean is thought of as a generalised convergence.

Theorem 4.5. Suppose the orthogonal family {φk}∞0 converges to f in the mean, that is,

lim
n→∞

∫ b

a

(

f(x)−
n
∑

k=0

ckφk

)2
dx = 0,

where {ck} are the Fourier series of f . If

lim
n→∞

∫ b

a

(

F (x)−
n
∑

k=0

ckφk

)2
dx = 0,

then F (x) = f(x) except at at most a finite number of points in [a, b].

Proof.

0 ≤
∫ b

a

(

F (x)− f(x)
)2
dx

=

∫ b

a

(

F (x)−
n
∑

k=0

ckφk +
n
∑

k=0

ckφk − f(x)
)2
dx

≤ 2

∫ b

a

(

F (x)−
n
∑

k=0

ckφk

)2
dx+ 2

∫ b

a

(

f(x)−
n
∑

k=0

ckφk

)2
dx

(

(a+ b)2 ≤ 2a2 + 2b2
)

→ 0.

as n→ ∞. �

Theorem 4.6. If the orthogonal family {φk} is complete, then every square integrable function is
completely determined by its Fourier series (except perhaps at a finite number of points), whether or
not the series converges.

Corollary 4.7. If the orthogonal family {φj} is complete, then any square integrable function f which
is orthogonal to each φj (for j = 0, 1, 2, . . . ) must satisfy f(x) = 0 except perhaps at a finite number of
points.



6 FOURIER ANALYSIS AND APPLICATIONS

Proof. Since {φj} is complete, that is,

(4.1) lim
n→∞

∫ b

a

(

f(x)−
n
∑

k=0

ckφk

)2
dx = 0,

ck =
1

‖φk‖2
∫ b

a
f(x)φk(x) dx = 0

for k = 0, 1, 2, . . . . Then (4.1) becomes
∫ b

a
f(x)2 dx = 0.

We deduce f(x) = 0 except at a finite number of points (if any). �

Theorem 4.8. If the system {φj} is complete and if all the members of {φj} are continuous, and if
the Fourier series of the continuous f converges uniformly, then the sum of the Fourier series of f at
x equals f(x).

Proof. Suppose

f(x) ∼
∞
∑

k=0

ckφk(x)

is the Fourier series of f , and that

s(x) =

∞
∑

k=0

ckφk(x)

converges uniformly. Since φk, k = 0, 1, 2, . . . are continuous, so the s(x) is continuous. Thus the

Theorem 4.1 asserts that
∞
∑

k=0

ckφk is the Fourier series of s(x). Thus

f(x) = s(x) =

∞
∑

k=0

ckφk(x)

for all x (since f is continuous) by Theorem 4.6. �

Theorem 4.9. If the orthogonal system {φj} on [a, b] is complete, then the Fourier series of a square
integrable function f(x) can be integrated term by term, whether or not the series converges. Moreover,

∫ b

a
f(x) dx =

∞
∑

k=0

ck

∫ b

a
φk(x) dx.

Proof. Since {φj} is complete, then Cauchy-Schwarz’s inequality gives

∣

∣

∣

∫ b

a
f(x) dx−

n
∑

k=0

ck

∫ b

a
φk(x) dx

∣

∣

∣
≤

∫ b

a

∣

∣

∣
f(x)−

n
∑

k=0

ckφk(x)
∣

∣

∣
dx

≤
[

∫ b

a

(

f(x)−
n
∑

k=0

ckφk(x)dx
)2

·
∫ b

a
12dx

]
1

2

((

∫

fg
)2

≤
∫

f2 ·
∫

g2
)

→ 0,
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as n→ ∞. Hence,
∫ b

a
f(x) dx =

∞
∑

k=0

ck

∫ b

a
φk(x) dx.

�

A criterion for the Completeness of an Orthogonal Family {φj}.

Theorem 4.10. Let {φj} be a family of functions on [a, b]. If for every continuous function F (x) on
[a, b] and any ε > 0, there exists a linear combination

σn(x) = γ0φ0(x) + γ1φ1(x) + · · ·+ γnφn(x)

for which
∫ b

a
[F (x)− σn(x)]

2 dx ≤ ε,

then the system {φj} is complete. (Note that we assume {φj} is orthogonal in this theorem)

Proof. Let ε > 0 be given. We first show that for any square integrable function f(x), there is continuous
function F (x) on [a, b] such that

∫ b

a

(

f(x)− F (x)
)2
dx < ε.

Since f is square integrable, so it may have at most a finite number of discontinuities. We cover the
discontinuities by some open intervals (ai, bi), i = 1, 2, . . . , m, say, such that

m
∑

i=1

∫ bi

ai

f(x)2 dx <
ε

4
.

Let

Φ(x) =

{

f(x), x /∈ (ai, bi)

0, otherwise.

Then
∫ b

a

(

f(x)− Φ(x)
)2
dx =

∫

(a, b)\∪i(ai, bi)

(

f(x)− Φ(x)
)2
dx+

∫

∪i(ai, bi)

(

f(x)− Φ(x)
)2
dx

≤ 0 + ε/4.

Let M = maxa≤x≤b |Φ(x))|. We choose (ai, bi) so small such that

m
∑

i=1

(bi − ai) <
ε

4M2
.

We now construct a continuous function F (x) by joining the left and right pieces of Φ at each discon-
tinuity within each (ai, bi). The value of F being the same as f (also the Φ) outside ∪i(ai, bi). Thus
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∫ b

a

(

f(x)− F (x)
)2
dx ≤ 2

∫ b

a

(

f(x)− Φ(x)
)2
dx+ 2

∫ b

a

(

F (x)− Φ(x)
)2
dx

≤ 2(
ε

4
) + 2M2

m
∑

i=1

(bi − ai)

<
ε

2
+ 2M2 · ε

4M2
= ε,

It follows from this inequality and the assumption that the existence of the linear combination σn
that approximates F :

∫ b

a

(

f(x)− σn(x)
)2
dx ≤ 2

∫ b

a

(

f(x)− F (x)
)2
dx+ 2

∫ b

a

(

F (x)− σn(x)
)2
dx

≤ 2ε+ 2ε = 4ε.

But we know that the Fourier coefficient of f gives the minimum mean square error. So
∫ b

a

(

f(x)−
n
∑

k=0

ckφk
)2
dx ≤

∫ b

a

(

f(x)− σn(x)
)2
dx < 4ε

and

0 ≤
∫ b

a
f(x)2 dx−

n
∑

k=0

c2k ‖φk‖2 < 4ε

for each n.

Thus,

0 ≤
∫ b

a
f(x)2 dx−

∞
∑

k=0

c2k‖φk‖2 < 4ε

and
∫ b

a
f(x)2 dx =

∞
∑

k=0

c2k‖φk‖2,

since ε > 0 is arbitrary. This proves that {φk} is complete. �

Remark. (1) A real-valued function f is called smooth on [a, b] if it has a continuous derivative on
[a, b].

(2) A real-valued function f is called a piecewise continuous (or piecewise smooth) on [a, b] if either
f and f ′ are both continuous on [a, b] or they have only a finite number of jump discontinuities
on [a, b].

(3) The family of “piecewise continuous” functions is not a good model to study space of functions
when regarded as an infinite dimensional vector space. This is because the limit of an infinite
sequence of piecewise smooth functions is not piecewise continuous.

(4) In modern literature, a square integrable real-valued functions on [a, b] have a special name
denoted by L2(a, b). That is,

L2(a, b) =
{

f :

∫ b

a
|f(x)|2 dx <∞

}

.
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Note that we replace f(x)2 by |f(x)| because the notation can be flexible enough to include
complex valued functions in other context. The L2(a, b) certainly has a vector space structure.

(5) One can define a norm on L2(a, b) by

‖f‖2 =
(

∫ b

a
|f(x)|2 dx

)1/2

which satisfies
(a) ‖x‖2 = 0 if and only if x = 0,
(b) ‖cx‖2 = |c|‖x‖2 for any scalar c,
(c) ‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.
Hence the L2(a, b) is a normed space.

(6) It is clear that the notion of “convergence in the mean” can be phrased as convergence in the
L2(a, b) sense.

(7) When null (or zero) function f in L2(a, b) has

‖f‖2 =
(

∫ b

a
|f(x)|2 dx

)1/2
= 0.

It is known that a null function does not imply f(x) = 0 in [a, b]. Instead one can show that
given ε > 0, there exists a subset E of [a, b] which can be covered by a ∪∞

j=1Ij , where Ij is

an interval with the total length less than ε. That is.
∑∞

j=1 |Ij | < ε. We say f = 0 a.e.

which stands for almost everywhere. We also call E has (Lebesgue) measure zero. The L2(a, b)
certainly contains Riemann integrable functions and piecewise continuous functions. But it is
much bigger.

(8) When a space S has a norm ‖·‖ defined on it, one can define ametric d on S by d(x, y) := ‖x−y‖.
(9) A metric space S is called complete if every Cauchy sequence converges to a member in S.
(10) A space S becomes a Banach space if which is a complete metric space with respect to the

metric induced by its norm. The L2(a, b) is a Banach space.
(11) One can often define an inner product (·, ·) on a normed space S by, for example L2(a, b):

(f, g) :=

∫ b

a
f(x) g(x) dx

So ‖f‖ = (f, f)1/2. The S is called an Hilbert space if S is an inner product space which is a
complete metric space with respect to the metric induced by the inner product. The L2(a, b)
is an Hilbert space. Here the completeness is equivalent to that mentioned in the definition 4.

Exercise

Q1 A system of {ψj}∞0 defined on [a, b] which is not necessary orthogonal is said to be complete
if every square integrable function g can be approximated in the mean by a linear combination
of the ψjs. This means that for any g on [a, b], and any given ε > 0, we can find numbers
γ0, · · · , γn such that

∫ b

a
(g(x)− (γ0ψ0(x) + · · ·+ γnψn(x))

2 dx < ε.

Prove that if the system {ψj}∞0 is complete, then any continuous function which is orthogonal
to all the functions of the system must be zero.
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Q2 Explain why the system {sinx, sin 3x, · · · , sin(2n+1)x, · · · } can approximate any function on
[0, π/2]. (Hint: there is no need to use completeness idea. Please read pp. 45-49 of Tolstov).

Q3 (optional) The Legendre polynomial of degree n is defined by

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n.

Show that
∫ 1

−1
Pn(x)Pm(x) dx =







0 if n 6= m,
2

2n+ 1
if n = m.

Q4 (optional) Expand f(x) = |x| in (−1, 1) as a series in terms of the Legendre polynimials.


