MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

6. Further properties of Fourier series

6.1. Fourier Series with decreasing coefficients.

Lemma 6.1 (Abel's Lemma). Let $\{u_n\}$ be a sequence of numbers and σ_n to be the n-th partial sum of

$$\sigma = u_0 + u_1 + u_2 + \dots$$

such that $|\sigma_n| \leq M$ for some M > 0, and for n = 0, 1, 2, ... Suppose $\alpha_0, \alpha_1, \alpha_2, \alpha_3, ...$ are positive, monotone decreasing such that α_n decreases to 0. Then the series

$$\alpha_0 u_0 + \alpha_1 u_1 + \cdots + \alpha_n u_n + \ldots$$

converges to s, and $|s| \leq M\alpha_0$.

Proof. Let

$$s_{n} = \alpha_{0}u_{0} + \alpha_{1}u_{1} + \dots + \alpha_{n}u_{n}$$

$$= \alpha_{0}u_{0} + \sum_{j=0}^{n-1} \alpha_{j+1}(\sigma_{j+1} - \sigma_{j})$$

$$= \alpha_{0}u_{0} + \sum_{j=0}^{n-1} \alpha_{j+1}\sigma_{j+1} - \sum_{j=0}^{n-1} \alpha_{j+1}\sigma_{j}$$

$$= \alpha_{0}u_{0} + \sum_{j=1}^{n} \alpha_{j}\sigma_{j} - \sum_{j=0}^{n-1} \alpha_{j+1}\sigma_{j}$$

$$= \alpha_{0}u_{0} + \sum_{j=1}^{n-1} (\alpha_{j} - \alpha_{j+1})\sigma_{j} + \alpha_{n}\sigma_{n} - \alpha_{1}\sigma_{0}$$

$$|s_{n} - \alpha_{n}\sigma_{n}| = \left| \sum_{j=1}^{n-1} (\alpha_{j} - \alpha_{j+1})\sigma_{j} \right|$$

$$\leq M \sum_{j=1}^{n-1} (\alpha_{j} - \alpha_{j+1})$$

$$= M(\alpha_{0} - \alpha_{n})$$

Notice that the series

$$M\sum_{j=1}^{n-1} (\alpha_j - \alpha_{j+1}) = M(\alpha_0 - \alpha_n)$$

is convergent to $M\alpha_0$. This implies the series

$$\sum_{j=1}^{n-1} (\alpha_j - \alpha_{j+1}) \sigma_j$$

is absolutely convergent. This implies that $s_n - \alpha_n \sigma_n$ also converges

$$\lim_{n \to \infty} (s_n - \alpha_n \sigma_n) = \lim_{n \to \infty} s_n = s$$

since σ_n is bounded and $\alpha_n \to 0$ as $n \to \infty$. Moreover,

$$\lim_{n \to \infty} s_n = s \le M\alpha_0.$$

6.2. Some trigonometric identities and inequalities. Recall that

(6.1)
$$\frac{1}{2} + \cos x + \cos 2x + \cos 3x + \dots + \cos nx = \frac{\sin(n + \frac{1}{2})x}{2\sin(\frac{x}{2})}.$$

We deduce that when $x \neq 2k\pi$ $(k = 0, \pm 1, \pm 2, \cdots)$

$$\left| \frac{1}{2} + \sum_{k=1}^{n} \cos kx \right| \le \frac{1}{2\sin(\frac{x}{2})}$$

(the sum equals $k + \frac{1}{2}$ when $x = 2k\pi$, $k = 0, \pm 1, \pm 2, \ldots$ and so unbounded). Now we consider

$$s = \sum_{k=1}^{n} \sin kx = \sin x + \sin 2x + \dots + \sin nx.$$

We recall the identity:

$$2\sin A\sin B = \cos(A - B) - \cos(A + B).$$

Then

$$2s \sin \frac{x}{2} = \sum_{k=1}^{n} 2 \sin(\frac{x}{2}) \sin kx$$
$$= \sum_{k=1}^{n} \left[\cos(\frac{x}{2} - kx) - \cos(\frac{x}{2} + kx) \right]$$
$$= \cos \frac{x}{2} - \cos(n + \frac{1}{2})x.$$

Thus,

$$\Big| \sum_{k=1}^{n} \sin kx \Big| \le \frac{|\cos \frac{x}{2}| + |\cos (n + \frac{1}{2})x|}{2|\sin \frac{x}{2}|} \le \frac{1}{|\sin \frac{x}{2}|}.$$

provided $x \neq 2k\pi$, $k = 0, \pm 1, \pm 2, \ldots$ In the case when $x = 2k\pi$, $k = 0, \pm 1, \pm 2, \ldots$, then both sides of the sum vanish.

Theorem 6.2. Let

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx, \qquad \sum_{k=1}^{\infty} b_n \sin nx$$

be two trigonometric series. If the coefficients a_n , b_n are positive and decrease monotonically to 0 as $n \to \infty$, then both series converge uniformly on any interval [a, b] that does not contain the points $x = 2k\pi$, $k = 0, \pm 1, \pm 2, \ldots$

Proof. Since the two series are very similar, we only consider the cosine series.

Let $s_n(x)$ be the partial sum of the cosine series, and let $\sigma_n(x)$ be the n-th partial sum of (6.1):

$$\frac{1}{2} + \cos x + \cos 2x + \dots$$

Let $\epsilon > 0$ be given, $0 < a \le x \le b < 2\pi$, and

$$\tau_m(x) = \sigma_{n+m}(x) - \sigma_n(x) = \sum_{k=n+1}^{n+m} \cos kx.$$

We deduce

$$|\tau_m(x)| \le |\sigma_{n+m}(x)| + |\sigma_n(x)| \le 2 \cdot \frac{1}{2|\sin\frac{x}{2}|} = \frac{1}{|\sin\frac{x}{2}|}.$$

Let

$$\sin\frac{x}{2} \ge \mu = \min\left\{\sin\frac{a}{2}, \sin\frac{b}{2}\right\} > 0$$

and we set

$$|\tau_m(x)| \le \frac{1}{\mu} := M$$
 for all $x \in [a, b]$.

Let

$$s_n(x) = \sum_{k=1}^{n} a_k \cos kx$$

and we write formally

$$s = \sum_{k=1}^{\infty} a_k \cos kx.$$

Then,

$$s - s_n(x) = a_{n+1}\cos(n+1)x + a_{n+2}\cos(n+2)x + \dots$$

Since $|\tau_m(x)| \leq M$ for $m \geq 1$, and $a_k > 0$ with a_k decreases to 0. So by Abel's lemma,

$$|s(x) - s_n(x)| \le a_{n+1}M < \epsilon$$
 for $x \in [a, b]$,

provided that n is chosen to be sufficiently large. This also implies that the convergence of s_n to s is uniform on [a, b].

6.3. Complex Function Method on Fourier Series. Let F(z) be analytic on $\{z:|z|\leq 1\}$. Then

$$f(x) = \sum_{j=1}^{\infty} c_j z^j, \qquad |z| \le 1.$$

If c_j , $j = 0, 1, 2, \ldots$ are all real, then

$$F(e^{i\theta}) = \sum_{j=0}^{\infty} c_j e^{ji\theta} = \sum_{j=0}^{\infty} c_j (\cos j\theta + i \sin j\theta)$$
$$= \sum_{j=0}^{\infty} c_j \cos(j\theta) + i \sum_{j=0}^{\infty} c_j \sin(j\theta).$$

If $F(e^{i\theta}) = f(\theta) + ig(\theta)$, where f, g are real functions of x, then

$$f(\theta) = \sum_{j=0}^{\infty} c_j \cos(j\theta), \qquad g(\theta) = \sum_{j=0}^{\infty} c_j \sin(j\theta).$$

Example. $F(z) = e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots$

Then

$$F(e^{i\theta}) = e^{e^{i\theta}} = \left(1 + \cos\theta + \frac{\cos 2\theta}{2!} + \frac{\cos 3\theta}{3!} + \cdots\right) + i\left(\sin\theta + \frac{\sin 2\theta}{2!} + \frac{\sin 3\theta}{3!} + \cdots\right)$$

But

$$e^{e^{i\theta}} = e^{\cos\theta + i\sin\theta} = e^{\cos\theta} \Big(\cos(\sin\theta) + i\sin(\sin\theta)\Big).$$

So

$$e^{\cos \theta} \cos(\sin \theta) = 1 + \cos \theta + \frac{\cos 2\theta}{2!} + \frac{\cos 3\theta}{3!} + \cdots$$
$$e^{\cos \theta} \sin(\sin \theta) = \sin \theta + \frac{\sin 2\theta}{2!} + \frac{\sin 3\theta}{3!} + \cdots$$

Example. Find the sums of the series

$$1 + \frac{\cos x}{p} + \frac{\cos 2x}{p^2} + \dots + \frac{\cos nx}{p^n} + \dots$$

and

$$\frac{\sin x}{p} + \frac{\sin 2x}{p^2} + \dots + \frac{\sin nx}{p^n} + \dots$$

where p is a real constant such that |p| > 1. Thus the two series converge for all x.

It is easy to see that

$$\left(1 + \frac{\cos x}{p} + \frac{\cos 2x}{p^2} + \dots + \frac{\cos nx}{p^n} + \dots\right) + i\left(\frac{\sin x}{p} + \frac{\sin 2x}{p^2} + \dots + \frac{\sin nx}{p^n} + \dots\right) \\
= 1 + \frac{e^{ix}}{p} + \frac{e^{2ix}}{p^2} + \dots + \frac{e^{nix}}{p^n} + \dots \\
= 1 + \frac{e^{ix}}{p} + \left(\frac{e^{ix}}{p}\right)^2 + \dots + \left(\frac{e^{ix}}{p}\right)^n + \dots \\
= \frac{1}{1 - \left(\frac{e^{ix}}{p}\right)} = \frac{p}{p - e^{ix}} = \frac{p}{p - \cos x - i \sin x} \\
= \frac{p(p - \cos x + i \sin x)}{(p - \cos x)^2 + \sin x^2} = \frac{p(p - \cos x)}{(p - \cos x)^2 + \sin^2 x} + i\frac{p \sin x}{(p - \cos x)^2 + \sin^2 x}$$

That is,

$$\frac{p(p - \cos x)}{p^2 - 2p\cos x + 1} = 1 + \frac{\cos x}{p} + \frac{\cos 2x}{p^2} + \cdots$$

and

$$\frac{p\sin x}{p^2 - 2p\cos x + 1} = \frac{\sin x}{p} + \frac{\sin 2x}{p^2} + \cdots$$

EXERCISE

- Q1 Let $a_0 + a_1 + a_2 + \cdots$ be a convergent series. Use Abel's convergence test to determine the convergence of the following power series. Please discuss the region of convergence. (1) $\sum_{k=0}^{\infty} a_k x^k$.

 - (2) $\sum_{k=0}^{\infty} a_k k^{-x}$.
- Q2 For which values of x do the following series converge:
 - $(1) \ \sum_{k=1}^{\infty} \frac{\cos kx}{\sqrt{k}},$
 - (2) $\sum_{k=1}^{\infty} \frac{\sin kx}{\sqrt{k}}$
 - (3) $\sum_{k=1}^{\infty} \frac{\cos kx + \sin kx}{\sqrt{k}}.$

For which values of x are the sums of the series continuous. Which of the series are square integrable functions?

- Q3 Find the sums of the series (1) $\cos x \frac{\cos 3x}{3!} + \frac{\cos 5x}{5!} \cdots$ ($F(x) = \sin x$).

(2) $\frac{\sin 2x}{2!} - \frac{\sin 4x}{4!} + \frac{\sin 6x}{6!} - \cdots$ $(F(x) = \cos x)$. You may assume $\sin(\alpha + i\beta) = \sin \alpha \cosh \beta + i \cos \alpha \sinh \beta$, and $\cos(\alpha + i\beta) = \cos \alpha \cosh \beta - \sin \alpha \sin \beta$ $i \sin \alpha \sinh \beta$.

To be continued ...