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6. Further properties of Fourier series

6.1. Fourier Series with decreasing coefficients.

Lemma 6.1 (Abel’s Lemma). Let {un} be a sequence of numbers and σn to be the n−th partial sum
of

σ = u0 + u1 + u2 + . . .

such that |σn| ≤ M for some M > 0, and for n = 0, 1, 2, . . . Suppose α0, α1, α2, α3, . . . are positive,
monotone decreasing such that αn decreases to 0. Then the series

α0u0 + α1u1 + · · ·+ αnun + . . .

converges to s, and |s| ≤ Mα0.

Proof. Let

sn = α0u0 + α1u1 + · · ·+ αnun

= α0u0 +
n−1
∑

j=0

αj+1(σj+1 − σj)

= α0u0 +
n−1
∑

j=0

αj+1σj+1 −
n−1
∑

j=0

αj+1σj

= α0u0 +
n
∑

j=1

αjσj −
n−1
∑

j=0

αj+1σj

= α0u0 +

n−1
∑

j=1

(αj − αj+1)σj + αnσn − α1σ0

|sn − αnσn| =
∣

∣

∣

n−1
∑

j=1

(αj − αj+1)σj

∣

∣

∣

≤ M

n−1
∑

j=1

(αj − αj+1)

= M(α0 − αn)

Notice that the series

M

n−1
∑

j=1

(αj − αj+1) = M(α0 − αn)

is convergent to Mα0. This implies the series

n−1
∑

j=1

(αj − αj+1)σj

is absolutely convergent. This implies that sn − αnσn also converges
1
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lim
n→∞

(sn − αnσn) = lim
n→∞

sn = s

since σn is bounded and αn → 0 as n → ∞. Moreover,

lim
n→∞

sn = s ≤ Mα0.

�

6.2. Some trigonometric identities and inequalities. Recall that

(6.1)
1

2
+ cos x+ cos 2x+ cos 3x+ · · ·+ cosnx =

sin(n+ 1
2)x

2 sin(x2 )
.

We deduce that when x 6= 2kπ (k = 0, ±1, ±2, · · · )

∣

∣

∣

1

2
+

n
∑

k=1

cos kx
∣

∣

∣
≤

1

2 sin(x2 )

(the sum equals k + 1
2 when x = 2kπ, k = 0, ±1, ±2, . . . and so unbounded). Now we consider

s =

n
∑

k=1

sin kx = sinx+ sin 2x+ · · ·+ sinnx.

We recall the identity:

2 sinA sinB = cos(A−B)− cos(A+B).

Then

2s sin
x

2
=

n
∑

k=1

2 sin(
x

2
) sin kx

=

n
∑

k=1

[

cos(
x

2
− kx)− cos(

x

2
+ kx)

]

= cos
x

2
− cos(n+

1

2
)x.

Thus,
∣

∣

∣

n
∑

k=1

sin kx
∣

∣

∣
≤

| cos x
2 |+ | cos(n+ 1

2)x|

2| sin x
2 |

≤
1

| sin x
2 |
.

provided x 6= 2kπ, k = 0,±1,±2, . . . . In the case when x = 2kπ, k = 0, ±1, ±2, . . . , then both sides
of the sum vanish.
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Theorem 6.2. Let
a0

2
+

∞
∑

n=1

an cosnx,

∞
∑

k=1

bn sinnx

be two trigonometric series. If the coefficients an, bn are positive and decrease monotonically to 0 as
n → ∞, then both series converge uniformly on any interval [a, b] that does not contain the points
x = 2kπ, k = 0, ±1, ±2, . . . .

Proof. Since the two series are very similar, we only consider the cosine series.

Let sn(x) be the partial sum of the cosine series, and let σn(x) be the n−th partial sum of (6.1):

1

2
+ cosx+ cos 2x+ . . .

Let ε > 0 be given, 0 < a ≤ x ≤ b < 2π, and

τm(x) = σn+m(x)− σn(x) =
n+m
∑

k=n+1

cos kx.

We deduce

|τm(x)| ≤ |σn+m(x)| + |σn(x)| ≤ 2 ·
1

2| sin x
2 |

=
1

| sin x
2 |
.

Let

sin
x

2
≥ µ = min

{

sin
a

2
, sin

b

2

}

> 0

and we set

|τm(x)| ≤
1

µ
:= M for all x ∈ [a, b].

Let

sn(x) =
n
∑

k=1

ak cos kx

and we write formally

s =

∞
∑

k=1

ak cos kx.

Then,

s− sn(x) = an+1 cos(n+ 1)x+ an+2 cos(n+ 2)x+ . . .

Since |τm(x)| ≤ M for m ≥ 1, and ak > 0 with ak decreases to 0. So by Abel’s lemma,

|s(x)− sn(x)| ≤ an+1M < ε for x ∈ [a, b],

provided that n is chosen to be sufficiently large. This also implies that the convergence of sn to s is
uniform on [a, b]. �
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6.3. Complex Function Method on Fourier Series. Let F (z) be analytic on {z : |z| ≤ 1}. Then

f(z) =

∞
∑

j=0

cjz
j, |z| ≤ 1.

If cj , j = 0, 1, 2, . . . are all real, then

F (eiθ) =
∞
∑

j=0

cje
jiθ =

∞
∑

j=0

cj(cos jθ + i sin jθ)

=

∞
∑

j=0

cj cos(jθ) + i

∞
∑

j=0

cj sin(jθ).

If F (eiθ) = f(θ) + ig(θ), where f , g are real functions of x, then

f(θ) =

∞
∑

j=0

cj cos(jθ), g(θ) =

∞
∑

j=0

cj sin(jθ).

Example. F (z) = ez = 1 + z + z2

2! +
z3

3! + · · · .

Then

F (eiθ) = ee
iθ

=
(

1 + cos θ +
cos 2θ

2!
+

cos 3θ

3!
+ · · ·

)

+ i
(

sin θ +
sin 2θ

2!
+

sin 3θ

3!
+ · · ·

)

But

ee
iθ

= ecos θ+i sin θ = ecos θ
(

cos(sin θ) + i sin(sin θ)
)

.

So

ecos θ cos(sin θ) = 1 + cos θ +
cos 2θ

2!
+

cos 3θ

3!
+ · · ·

ecos θ sin(sin θ) = sin θ +
sin 2θ

2!
+

sin 3θ

3!
+ · · ·

Example. Find the sums of the series

1 +
cos x

p
+

cos 2x

p2
+ · · ·+

cosnx

pn
+ · · ·

and

sinx

p
+

sin 2x

p2
+ · · ·+

sinnx

pn
+ · · ·

where p is a real constant such that |p| > 1. Thus the two series converge for all x.
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It is easy to see that

(

1 +
cos x

p
+

cos 2x

p2
+ · · ·+

cosnx

pn
+ · · ·

)

+ i
(sinx

p
+

sin 2x

p2
+ · · ·+

sinnx

pn
+ · · ·

)

= 1 +
eix

p
+

e2ix

p2
+ · · ·+

enix

pn
+ · · ·

= 1 +
eix

p
+

(eix

p

)2
+ · · · +

(eix

p

)n

+ · · ·

=
1

1− (e
ix

p
)
=

p

p− eix
=

p

p− cosx− i sin x

=
p(p− cos x+ i sinx)

(p− cos x)2 + sinx2
=

p(p− cos x)

(p− cos x)2 + sin2 x
+ i

p sinx

(p − cos x)2 + sin2 x

That is,

p(p− cos x)

p2 − 2p cos x+ 1
= 1 +

cos x

p
+

cos 2x

p2
+ · · ·

and
p sinx

p2 − 2p cos x+ 1
=

sinx

p
+

sin 2x

p2
+ · · ·

Exercise

Q1 Let a0 + a1 + a2 + · · · be a convergent series. Use Abel’s convergence test to determine the
convergence of the following power series. Please discuss the region of convergence.
(1)

∑∞
k=0 akx

k.

(2)
∑∞

k=0 akk
−x.

Q2 For which values of x do the following series converge:
(1)

∑∞
k=1

cos kx√
k

,

(2)
∑∞

k=1
sinkx√

k
,

(3)
∑∞

k=1
cos kx+sinkx√

k
.

For which values of x are the sums of the series continuous. Which of the series are square
integrable functions?

Q3 Find the sums of the series
(1) cos x− cos 3x

3! + cos 5x
5! − · · · . (F (x) = sinx).

(2) sin 2x
2! − sin 4x

4! + sin 6x
6! − · · · . (F (x) = cosx).

You may assume sin(α + iβ) = sinα cosh β + i cosα sinhβ, and cos(α + iβ) = cosα cosh β −
i sinα sinhβ.
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6.4. Addition and Subtraction on Fourier series.

Suppose

f(x) ∼
a0

2
+

∞
∑

n=1

an cosnx+ bn sinnx,

F (x) ∼
A0

2
+

∞
∑

n=1

An cosnx+Bn sinnx.

Then

αn =
1

π

∫ π

−π

(

f(x)± F (x)
)

cosnx dx

=
1

π

∫ π

−π

f(x) cosnx dx±
1

π

∫ π

−π

F (x) cos nx dx

= an ±An,

and similarly,

βn = bn ±Bn,

even though the Fourier series of f and F might not necessary be convergent at x (so is f ± F ).

6.5. Integration of Fourier series.

Theorem 6.3. Let f(x)be an absolutely integrable function of period 2π. Then the Fourier series can
be integrated term by term, whether or not the series converges, that is,

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos kx+ bk sin kx,

then
∫ b

a

f(x) dx =

∫ b

a

a0

2
dx+

∞
∑

k=1

∫ b

a

(ak cos kx+ bk sin kx) dx

=
a0

2
(b− a) +

∞
∑

k=1

ak(sin kb− sin ka)− bk(cos kb− cos ka)

k

Remark. Since {cos kx, sin kx} is a complete orthogonal system, and if f is square integrable, then the
above theorem holds automatically from the Theorem 4.9.

Proof. Let

F (x) =

∫ x

0

(

f(x)−
a0

2

)

dx
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F is clearly continuous and has an absolutely integrable derivative (so it may not exist for a finite
number of points). Observe that

F (x+ 2π) =

∫ x

0

(

f(x)−
a0

2

)

dx+

∫ x+2π

x

(

f(x)−
a0

2

)

dx

= F (x) +

∫ π

−π

(

f(x)−
a0

2

)

dx

= F (x) +

∫ π

−π

f(x) dx− πa0

= F (x) + 0 = F (x).

Hence F (x) is a continuous periodic function with period 2π, which F has an absolutely integrable de-
rivative. Theorem 5.10 asserts that F can be expanded by its Fourier series which converges uniformly.
Let

F (x) =
A0

2
+

∞
∑

k=1

Ak cos kx+Bk sin kx,

say. Integrating-by-parts yields

Ak =
1

π

∫ π

−π

F (x) cos kx dx

=
1

π

[F (x) sin kx

k

]π

−π
−

1

kπ

∫ π

−π

(

f(x)−
a0

2

)

sin kx dx

= 0 +
(

−
bk

k

)

= −
bk

k
.

Similarly, we obtain

Bn =
an

n
.

Thus,

F (x) =
A0

2
+

∞
∑

k=1

ak sin kx− bk cos kx

k
.

Hence

(6.2)

∫ x

0
f(x) dx =

a0x

2
+

A0

2
+

∞
∑

k=1

ak sin kx− bk cos kx

k

and we obtain the desired series by considering

(

∫ b

0
−

∫ a

0

)

f(x) dx.

�

Theorem 6.4. Let f be an absolutely integrable function, with

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos kx+ bk sin kx,

whether or not the series converges. Then we can integrate the series term by term, that is,
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(6.3)

∫ x

0
f(x) dx =

∞
∑

k=1

bk

k
+

∞
∑

k=1

−bk cos kx+
(

ak + (−1)k+1a0
)

sin kx

k
,

x ∈ (−π, π). In particular, if a0 = 0, then

(6.4)

∫ x

0
f(x) dx =

∞
∑

k=1

bk

k
+

∞
∑

k=1

−bk cos kx+ ak sin kx

k

for all x.

Proof. Setting x = 0 in the formula (6.2) gives

A0

2
=

∞
∑

k=1

bk

k
.

On the other hand, recall that the Fourier series of an absolutely integrable function of x on (−π, π)
is given by

x

2
=

∞
∑

k=1

(−1)k+1 sin kx

k
,

thus the (6.2) becomes

∫ x

0
f(x) dx =

∞
∑

k=1

bk

k
+ a0

(

∞
∑

k=1

(−1)k+1 sin kx

k

)

+
∞
∑

k=1

ak sin kx− bk cos kx

k

This gives the (6.3). It remains to check that (6.4) holds for all x. This follows from the fact that
∫ x

0 f dx is of period 2π:

∫ x+2π

0
f(x) dx =

∫ x

0
f(x) dx+

∫ x+2π

x

f(x) dx

=

∫ x

0
f(x) dx+

a0

2
(x+ 2π − x)

=

∫ x

0
f(x) dx.

�
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Remark. As a by-product, we have established that for an absolutely integrable function f , its Fourier
series satisfies

∞
∑

k=1

bk

k

being convergent. Thus although the series
∞
∑

k=1

sin kx

ln k
is convergent,

∞
∑

k=1

1

k ln k
is divergent, so it is not

the Fourier series of an absolutely integrable function.

Example. Since the Fourier series of an absolutely integrable function of x on (−π, π) is given by

x

2
=

∞
∑

k=1

(−1)k+1 sin kx

k
,

Theorem 6.4 gives

x2

4
=

∫ x

0

x

2
dx =

∞
∑

k=1

bk

k
+

∞
∑

k=1

−bk cos kx

k

=
∞
∑

k=1

(−1)k+1

k2
−

∞
∑

k=1

(−1)k+1

k2
cos kx

= K −
∞
∑

k=1

(−1)k+1

k2
cos kx.

So it remains to determine the constant K. Since the right-hand side converges uniformly, we may
integrate term-by-term over (−π, π) to obtain

π3

6
=

∫ π

−π

x2

4
dx = 2πK −

∞
∑

k=1

(−1)k+1

k2

∫ π

−π

cos kxdx

= 2πK −

∞
∑

k=1

(−1)k+1

k2
sin kx

k

∣

∣

∣

π

−π

= 2πK + 0.

Hence K =
π2

12
. Thus,

−
x2

4
+

π3

12
=

∞
∑

k=1

(−1)k+1

k2
cos kx,

a formula that we have obtained in Chapter 2. Integrating this formula on both sides again from 0 to
x yields

−
x3

12
+

π2x

12
=

∞
∑

k=1

(−1)k+1

k3
sin kx.

This is another Fourier series.
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Theorem 6.5. Let f be a continuous function of period 2π, which has m − 1 continuous derivatives
and the m−th derivative is absolutely integrable (That is, f (m)(x) may not exist for a finite number of
points). Then, the Fourier series of all m derivatives can be obtained by term-by-term differentiation of
the Fourier series of f(x), where all the series, except possibly the last one, converge to the corresponding
derivatives. Moreover, the Fourier series coefficients of f(x) satisfy

lim
n→∞

nman = 0 = lim
n→∞

nmbn.

Proof. Let

f(x) ∼
a0

2
+

∞
∑

k=1

ak cos kx+ bk sin kx

and suppose a′n, b
′
n are the Fourier coefficients of f ′(x). Then

a′n =
1

π

∫ π

−π

f ′(x) cos nx dx =
1

π
f(x) cosnx

∣

∣

∣

π

−π
+

n

π

∫ π

−π

f(x) sinnx dx

= 0 + nbn.

Similarly, b′n = −nan. Thus,

f ′(x) ∼

∞
∑

k=1

k(bk cos kx− ak sin kx).

Since f has continuous derivatives, Theorem 5.10 gives

f ′(x) =

∞
∑

k=1

k (bk cos kx− ak sin kx).

We may repeat the above argument to get

an = −
b′n
n

= −
a′′n
n2

=
b′′′n
n3

= · · · =
αn

nm
,

bn =
a′n
n

= −
b′′n
n2

= −
a′′′n
n3

= · · · =
βn

nm
,

where a′n, a
′′
n, . . . , b

′
n, b

′′
n, . . . are the Fourier coefficients of f ′(x), f ′′(x), . . . , and αn and βn are the

Fourier coefficients of f (m)(x). Since f (m) is absolutely integrable, the Riemann-Lebesgue Lemma
implies that

0 = lim
n→∞

βn = lim
n→∞

nmbn,

0 = lim
n→∞

αn = lim
n→∞

nman.

�
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Theorem 6.6. Suppose that the coefficients of

(6.5)
a0

2
+

∞
∑

k=1

ak cos kx+ bk sin kx

satisfy

(6.6) |nman| ≤ M, |nmbn| ≤ M (M ≥ 2)

for some positive constant M , then the series (6.5) has (m − 2) continuous derivatives, which can be
obtained by term-by-term differentiation of the series (6.5).

Proof. Let us write

f(x) =
a0

2
+

∞
∑

k=1

ak cos kx+ bk sin kx

=
a0

2
+

∞
∑

k=1

akk
m

km
cos kx+

bkk
m

km
sin kx

=
a0

2
+

∞
∑

k=1

αk

km
cos kx+

βk

km
sin kx(6.7)

where the hypothesis (6.6) indicates that

|αk| = |kmak| ≤ M and |βk| = |kmbk| ≤ M

for all k. We now differentiate the series (6.7) n times (n ≤ m− 2). It is clear that the absolute values
of the coefficients of the differentiated series is bounded above by

M

km−n
.

It follows that the sum of the absolute values of these coefficients converge for each n = 1, . . . , m− 2.
A simple application of the Weierstrass M-test (Theorem 2.11) shows that (6.7) converges uniformly
for each n = 1, 2, . . . , m− 2. Theorem 2.10 implies that term-by-term differentiation of the series for
n = 1, 2, . . . , m− 2 is valid. �

Theorem 6.7. Let f be a continuous function defined on [−π, π] with an absolutely integrable derivative
(so it may not exist at certain points). Then

f ′(x) ∼
c

2
+

∞
∑

k=1

[

(kbk + (−1)kc) cos kx− kak sin kx
]

,

where ak and bk are the Fourier coefficients of f(x) and c is given by

c =
1

π

[

f(π)− f(−π)
]

.
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Proof. Set

f ′(x) ∼
a′0
2

+

∞
∑

k=1

(

a′k cos kx+ b′′ sin kx
)

.

This gives

a′0 =
1

π

∫ π

−π

f ′(x) dx =
1

π

(

f(π)− f(−π)
)

.

It is not difficult (why?) to see that

(6.8) f ′(x)−
a0

2
∼

∞
∑

k=1

(

ak cos kx+ bk sin kx
)

.

The Fourier series of the function (according to Theorem 6.4)

(6.9) F (x) =

∫ x

0

(

f ′(x)−
a′0
2

)

dx = f(x)− f(0)−
a′0
2
x (F (0) = 0; f continuous)

can be obtained from (6.8) by term-by-term integration. This implies, therefore that the Fourier series
of (6.8) can be obtained from (6.9) by term-by-term differentiation. On the other hand, since f has an
absolutely integrable derivative, so we know from the Theorem 5.10 that that the Fourier series of f
converges uniformly:

f(x) =
a0

2
+

∞
∑

k=1

ak cos kx+ bk sin kx

and
x

2
=

∞
∑

k=1

(−1)k+1

k
sin kx.

We deduce from the Theorem 6.4 that

f(x)− f(0)−
a′0x

2
=

a0

2
− f(0) +

∞
∑

k=1

ak cos kx+
(

bk +
(−1)ka′0

k

)

sin kx

and hence

f ′(x)−
a′0
2

∼

∞
∑

k=1

(

− kak sin kx+
(

kbk + (−1)ka′0
)

cos kx
)

,

which is the desired result after setting a′0 = c. �

The following theorem is important to know the analytic nature of f(x) if we are only given the
Fourier series of f .

Corollary 6.8. If f(π) = f(−π), that is, c = 0, then the Fourier series of f ′ can be obtained directly
from the Theorem 6.7 via term-by-term differentiation

f ′(x) ∼

∞
∑

k=1

k (bk cos kx− ak sin kx).

Remark. We note that this also follows from the Theorem 6.5 since we can extend f to the x−axis
with period 2π.
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Improving the Convergence of Fourier Series.

Example. Consider

f(x) =

∞
∑

k=2

(−1)k
k3

k4 − 1
sin kx.

Since
k3

k4 − 1
∼

1

k
as k → ∞, we consider

k3

k4 − 1
−

1

k
=

1

k5 − k
∼

1

k5
.

Recall that
∞
∑

k=1

(−1)k+1 sin kx

k
=

x

2

on (−π, π). Hence

f(x) =

∞
∑

k=2

(−1)kk3

k4 − 1
sin kx+ sinx− sinx

=

∞
∑

k=2

(−1)k
[ k3

k4 − 1
−

1

k

]

sin kx+ (−1)

∞
∑

k=2

(−1)k+1

k
sin kx+ sinx− sinx

= −
x

2
+ sinx+

∞
∑

k=2

(−1)k

k5 − k
sin kx, x ∈ (−π, π).

This improves the convergence from
1

k
to

1

k5
.

Example. Consider

f(x) =

∞
∑

k=1

k4 − k2 + 1

k2(k4 + 1)
cosnx.

Notice that
k4 − k2 + 1

k2(k4 + 1)
∼

1

k2
.

We consider
k4 − k2 + 1

k2(k4 + 1)
−

1

k2
=

−1

k4 + 1
.

Recall that (see Chapter 2)
∞
∑

k=1

cos kx

k2
=

3x2 − 6xπ + 2π2

12
, x ∈ [0, 2π].

Hence

f(x) =

∞
∑

k=1

1

k2
cos kx−

∞
∑

k=1

1

k4 + 1
cos kx

=
2x2 − 6xπ + 2π2

12
−

∞
∑

k=1

cos kx

k4 + 1
, x ∈ [0, 2π].

This improves the convergence from
1

k2
to

1

k4
.
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Example. Consider

f(x) =

∞
∑

k=1

sin kx

k + a
, 0 < a < 1.

We write

1

k + a
=

1

k

1

1 + a
k

=
1

k

(

1−
a

k
+

a2

k2
−

a3

k4
+ · · ·

)

=
1

k

(

1−
a

k
+

a2

k2
−

a2

k2

[a

k
−

a2

k2
+ · · ·

])

=
1

k

[

1−
a

k
+

a2

k2
−

a2

k2

( a
k

1 + a
k

)]

=
1

k

[

1−
a

k
+

a2

k2
−

a3

k3 + ak2

]

=
1

k
−

a

k2
+

a2

k3
−

a3

k3(k + a)
.

We again recall that
∞
∑

k=1

sin kx

k
=

π − x

2
(0 < x < 2π)

and
∞
∑

k=1

cos kx

k
= − ln(2 sin

x

2
), (0 < x < 2π);

and
∞
∑

k=1

cos kx

k2
=

3x2 − 6πx+ 2π2

12
0 ≤ x ≤ 2π.

Integrating the second and third series gives
∞
∑

k=1

sin kx

k2
= −

∫ x

0
ln(2 sin

x

2
) dx,

and
∞
∑

k=1

sin kx

k3
=

∫ x

0

3x2 − 6πx+ 2π2

12
dx =

x3 − 3πx2 + 2π2x

12
.

Thus, we obtain

f(x) =

∞
∑

k=1

sin kx

k
− a

∞
∑

k=1

sin kx

k2
+ a2

∞
∑

k=1

sin kx

k3
− a3

∞
∑

k=1

sin kx

k3(k + a)

=
π − x

2
+ a

∫ x

0
ln(2 sin

x

2
) dx+ a2(

x3 − 3πx2 + 2π2x

12
)− a3

∞
∑

k=1

sin kx

k3(k + a)
.

This improves the convergence from
1

k
to

1

k4
.
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Remark. We now offer a “theory” concerning the understanding behind the method that improves the
convergence of the Fourier series. Suppose a function defined on [−π, π] with f(−π) 6= f(π) is to be

extended onto the whole real axis. Since the the Fourier series of f converges to the value f(π+0)+f(π−0)
2 ,

and hence the approximations to f cannot be too good, that is, one needs more terms to get a good
approximation (small error). If, however, we adjust the function by adding a new function φ such that
f(π)+φ(π) = f(−π)+φ(−π), then the Fourier series of f+φ will converge better (smaller error term).
This can usually be done by φ(x) = ax+ b for some suitably chosen constants a and b.

Exercises

Q1 Using the list of identities in section 12, Chapter 5 of Tolstov’s book and the Parseval theorem
to calculate the sums

(a)
∞
∑

k=1

1

k4
.

(b)

∞
∑

k=1

(−1)k+1

k4
.

Q2 Using the list of identities in section 12, Chapter 5 of Tolstov’s book and the Parseval theorem
to calculate

∫ π

0
ln2

(

2 sin
x

2

)

dx.

Q3 Find the Fourier series of the derivative of

f(x) =

∞
∑

k=1

(

cos kx

k3
+ (−1)k

sin kx

k + 1

)

.

Q4 Improve the convergence of the following series:

(a)
∞
∑

k=1

k3 + k + 1

k(k3 + 1)
sin kx.

(b)

∞
∑

k=1

cos kx

k + 1

Q5 Show that if f(x) is square integrable and if ak, and bk are the Fourier coefficients of f , then

1

2h

∫ x+h

x−h

f(u) du =
a0

2
+

∞
∑

k=1

(ak cos kx+ bk sin kx)
sin kh

kh
,

where |h| ≤ π.


