MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

7. Summability methods

7.1. Cesàro summability.

Arithmetic means. The following idea is due to the Italian geometer Ernesto Cesàro (1859 - 1906). He shows that even if the Fourier series of a given continuous function does not converge, the infinite sum produced by his average summation method always converge.

Let us consider the infinite series

$$u_0 + u_1 + u_2 + u_3 + \ldots,$$

and let

$$s_n = u_0 + u_1 + \dots + u_n.$$

Definition. We say the above series is *Cesàro summable to the limit* σ (or summable by the method of arithmetic means to σ) if

$$\lim_{n \to \infty} \sigma_n = \lim_{n \to \infty} \frac{s_0 + s_1 + \dots + s_{n-1}}{n} = \sigma.$$

We note that a series is *Cesàro* summable does not necessary imply that it is summable in the ordinary sense. For example, the very simple divergent series given by

$$1 - 1 + 1 - 1 + \dots$$

gives

$$s_0 = 1, \qquad s_1 = 0, \qquad s_2 = 1, \dots$$

Thus,

$$\frac{s_0 + s_1 + \dots + s_{n-1}}{n} = \frac{n/2}{n} \to \frac{1}{2}, \qquad \text{as } n \to \infty.$$

Hence although the divergent series is Cesàro summable.

Conversely, we have

Theorem 7.1. If a series is convergent and has a limit σ , then it is Cesàro summable to the same limit σ .

Proof. Suppose we are given that

$$\lim_{n \to \infty} s_n = \sigma.$$

For any given $\epsilon > 0$, there is m > 0 such that

$$|s_n - \sigma| < \frac{\epsilon}{2},$$

for all $n \ge m$. Consider the difference

$$\sigma_n - \sigma = \frac{(s_0 - \sigma) + (s_1 - \sigma) + \dots + (s_{n-1} - \sigma)}{n} = \frac{1}{n} \sum_{j=0}^{n-1} (s_j - \sigma)$$
$$= \frac{1}{n} \sum_{j=0}^{m-1} (s_j - \sigma) + \frac{1}{n} \sum_{j=m}^{n-1} (s_j - \sigma),$$

where we have assumed that n > m. Since m is fixed, so we may choose n so large such that

$$\frac{1}{n}\sum_{j=0}^{m-1}|s_j-\sigma|<\frac{\epsilon}{2}.$$

Thus,

$$\begin{aligned} |\sigma_n - \sigma| &\leq \frac{1}{n} \sum_{j=0}^{m-1} |s_j - \sigma| + \frac{1}{n} \sum_{j=m}^{n-1} |s_j - \sigma| \\ &< \frac{\epsilon}{2} + \frac{n-1-m}{n} \cdot \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon, \end{aligned}$$

for n > m, that is, when n is sufficiently large. This proves the theorem.

Cesàro summable of Fourier series. If

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

 $s_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + b_k \sin kx,$

we define

$$\sigma_n(x) = \frac{s_0(x) + s_1(x) + \dots + s_{n-1}(x)}{n} = \frac{1}{n} \sum_{j=0}^{n-1} s_j(x)$$
$$= \frac{a_0}{2} + \sum_{k=1}^{n-1} \left(\frac{n-k}{n}\right) (a_k \cos kx + b_k \sin kx).$$

Thus,

$$\sigma_n(x) = \frac{1}{n} s_0(x) + \frac{1}{n} s_1(x) + \dots + \frac{1}{n} s_{n-1}(x)$$

$$= \frac{1}{n\pi} \int_{-\pi}^{\pi} f(x+u) \frac{\sin(0+\frac{1}{2})u}{2\sin(\frac{u}{2})} du$$

$$+ \frac{1}{n\pi} \int_{-\pi}^{\pi} f(x+u) \frac{\sin(1+\frac{1}{2})u}{2\sin(\frac{u}{2})} du$$

$$\vdots$$

$$+ \frac{1}{n\pi} \int_{-\pi}^{\pi} f(x+u) \frac{\sin(n-1+\frac{1}{2})u}{2\sin(\frac{u}{2})} du$$

$$= \frac{1}{n\pi} \int_{-\pi}^{\pi} \frac{f(x+u)}{2\sin\frac{u}{2}} \left(\sum_{k=0}^{n-1} \sin\left(k+\frac{1}{2}\right)u\right) du.$$

But

$$2\sin\left(\frac{u}{2}\right)\sin\left(k+\frac{1}{2}\right)u = \cos ku - \cos(k+1)u.$$

 So

$$\sum_{k=0}^{n-1} \sin\left(k + \frac{1}{2}\right) u = \frac{1}{2\sin\left(\frac{u}{2}\right)} \sum_{k=1}^{n-1} \left(\cos ku - \cos(k+1)u\right)$$
$$= \frac{1}{2\sin\left(\frac{u}{2}\right)} (1 - \cos nu) = \frac{2\sin^2\left(\frac{nu}{2}\right)}{2\sin\left(\frac{u}{2}\right)}$$
$$= \frac{\sin^2\left(\frac{nu}{2}\right)}{\sin\left(\frac{u}{2}\right)}.$$

We obtain the new representation that

$$\sigma_n(x) = \frac{1}{n\pi} \int_{-\pi}^{\pi} f(x+u) \; \frac{\sin^2(\frac{nu}{2})}{2\sin^2\frac{u}{2}} \; du$$

We note in the above consideration when f(x) = 1 and hence $\sigma_n(x) = 1$ give

(7.1)
$$1 = \frac{1}{\pi n} \int_{-\pi}^{\pi} \frac{\sin^2(\frac{nu}{2})}{2\sin^2(\frac{u}{2})} \, du = \frac{2}{\pi n} \int_{0}^{\pi} \frac{\sin^2\frac{nu}{2}}{2\sin^2\frac{u}{2}} \, du$$

for each $n = 1, 2, 3, \ldots$

Definition. Let f be defined on [a, b] with at most a finite number of discontinuities. Then f is said to be *absolutely integrable* if |f(x)| is absolutely integrable over [a, b]. That is,

$$\int_{a}^{b} |f(x)| \, dx$$

exists.

Theorem 7.2. The Fourier series of an absolutely integrable function f(x) of period 2π is Cesàro summable to the limit f(x) at every point of continuity and to the limit

$$\frac{f(x+0) + f(x-0)}{2}$$

at every point of jump discontinuity.

Proof. It will be sufficient to prove

(7.2)
$$\lim_{n \to \infty} \frac{1}{\pi n} \int_0^\pi f(x+u) \; \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \; du = \frac{f(x+0)}{2}$$

and

(7.3)
$$\lim_{n \to \infty} \frac{1}{\pi n} \int_{-\infty}^{0} f(x+u) \; \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \; du = \frac{f(x-0)}{2}$$

since they imply

$$\lim_{n \to \infty} \sigma_n(x) = \frac{f(x+0) + f(x-0)}{2}$$

which gives $\lim_{n\to\infty} \sigma_n(x) = f(x)$ at a continuity point a x. We will only prove the limit (7.2) above. This is equivalent to the statement

$$\lim_{n \to \infty} \frac{1}{\pi n} \int_0^\pi \left(f(x+u) - f(x+0) \right) \, \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \, du = 0.$$

Given $\epsilon > 0$, there is $\delta > 0$ such that for $0 < u \leq \delta$,

$$|f(x+u) - f(x+0)| < \epsilon.$$

Writing the above integral in the form of the sum of two integrals $\int_0^{\delta} \cdots$ and $\int_{\delta}^{\pi} \cdots$ which we denote by I_1 and I_2 respectively.

Thus,

$$|I_1| = \left|\frac{1}{\pi n} \int_0^\delta \left(f(x+u) - f(x+0)\right) \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \, du$$

$$\leq \frac{\epsilon}{\pi n} \int_0^\delta \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \, du$$

$$< \frac{\epsilon}{\pi n} \int_0^\pi \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \, du = \frac{\epsilon}{2}.$$

Also,

$$|I_2| = \left|\frac{1}{\pi n} \int_{\delta}^{\pi} \left(f(x+u) - f(x+0)\right) \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \, du\right|$$
$$\leq \frac{1}{2\pi n} \frac{1}{\sin^2 \frac{\delta}{2}} \int_{\delta}^{\pi} \left|f(x+u) - f(x+0)\right| \, du,$$

since $\sin \frac{\delta}{2} \leq \sin \frac{u}{2}$ for $u \in [\delta, \pi]$. It follows that $|I_2| < \frac{\epsilon}{2}$ when we choose *n* to be sufficiently large (*f* is absolutely integrable). This proves that $|I_1| + |I_2|$ can be made arbitrary small when *n* tends to infinity. This establishes (7.2). The remaining integral from $-\pi$ to 0 follows similarly. This completes the proof of the Theorem.

Remark. We note that the estimation of I_2 depends on x. So the convergence of $\sigma_n(x)$ is pointwise.

Definition. The series $\sigma_n(x) = u_0(x) + u_1(x) + \dots$ is said to be uniformly (Cesàro) summable on [a, b] to f, if given $\epsilon > 0$, there is N such that

$$\left|\sum_{k=0}^{\infty}\sigma_n(x) - f(x)\right| < \epsilon$$

for n > N and for all $x \in [a, b]$.

We can prove

Theorem 7.3. The Fourier series of an absolutely integrable function f of period 2π is uniformly Cesàro summable to f on every $[\alpha, \beta] \subset [a, b]$ where f is continuous.

Proof. Let $x \in [\alpha, \beta]$. We choose $\delta > 0$ so small such that x + u lying within $[\alpha, \beta]$. We apply the (7.1) and to write

$$\sigma_n(x) - f(x) = \frac{1}{\pi n} \int_0^\pi \left(f(x+u) - f(x) \right) \frac{\sin^2 \frac{nu}{2}}{2\sin^2 \frac{u}{2}} \, du = J_1 + J_2.$$

where J_1 and J_2 stand for the integrals $\int_{-\pi}^{0} \cdots$ and $\int_{0}^{\pi} \cdots$ respectively. We split the J_1 into the integrals as the sum of $\int_{0}^{\delta} \cdots$ and $\int_{\delta}^{\pi} \cdots$ as it the proof of the last theorem.

Since f is continuous over $[\alpha, \beta]$, so given $\epsilon > 0$, we choose $\delta > 0$ such that

$$|f(x+u) - f(x)| < \epsilon/2.$$

holds for all $x \in [\alpha, \beta]$ provided $|u| < \delta$. Moreover, we can define $M = \max_{\alpha \le x \le \beta} |f(x)|$. It is easy to see that

$$|I_1| < \frac{\epsilon}{2}, \qquad x \in [\alpha, \beta],$$

On the other hand,

$$|I_{2}| = \left|\frac{1}{\pi n} \int_{\delta}^{\pi} \left(f(x+u) - f(x)\right) \frac{\sin^{2} \frac{nu}{2}}{2\sin^{2} \frac{u}{2}} \, du\right|$$

$$\leq \frac{1}{2\pi n} \frac{1}{\sin^{2} \delta/2} \int_{\delta}^{\pi} \left|f(x+u) - f(x)\right| \, du$$

$$\leq \frac{1}{2\pi n} \frac{1}{\sin^{2} \delta/2} \int_{-\pi}^{\pi} \left|f(x+u)\right| \, du + M\pi$$

$$\leq \frac{1}{2\pi n} \frac{M'}{\sin^{2} \delta/2}$$

for some constant M' since f is absolutely integrable. Hence we can choose N > 0 large enough so that

$$|I_2| < \frac{\epsilon}{2}, \qquad x \in [\alpha, \beta].$$

It follows that $|J_1| < \epsilon$. Similarly, we can show $|J_2| < \epsilon$, so that $|J_1| + |J_2| < 2\epsilon$ for all $x \in [\alpha, \beta]$. \Box

Previous consideration about convergence of Fourier series requires the f to be piecewise continuous and absolutely integrable.

If, however, f is merely continuous, the Fourier series may diverge at certain points. But we obtain

Theorem 7.4. The Fourier series of a continuous function f(x) of period 2π is uniformly Cesàro summable to f(x).

Thus, Cesàro summable is both superior and surprising.

It follows from our study of Cesàro summability that

Theorem 7.5. If the Fourier series of an absolutely integrable function f converges at a point x of continuity (respectively a jump discontinuity), then the Fourier series must converge to f(x) (respectively $\frac{1}{2}(f(x+0) + f(x-0))$).

We recall from an earlier theorem that a square integrable function f is completely defined by its trigonometric Fourier series. Theorem 7.1 implies that

Theorem 7.6. Any absolutely integrable function is completely determined (except for its values at a finite number of points) by its trigonometric Fourier series, whether or not the series converges.

To be continued ...