
MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

7. Summability methods

7.1. Cesàro summability.

Arithmetic means. The following idea is due to the Italian geometer Ernesto Cesàro (1859 - 1906). He
shows that even if the Fourier series of a given continuous function does not converge, the infinite sum
produced by his average summation method always converge.

Let us consider the infinite series

u0 + u1 + u2 + u3 + . . . ,

and let

sn = u0 + u1 + · · · + un.

Definition. We say the above series is Cesàro summable to the limit σ (or summable by the method
of arithmetic means to σ) if

lim
n→∞

σn = lim
n→∞

s0 + s1 + · · ·+ sn−1

n
= σ.

We note that a series is Cesàro summable does not necessary imply that it is summable in the ordinary
sense. For example, the very simple divergent series given by

1− 1 + 1− 1 + . . .

gives

s0 = 1, s1 = 0, s2 = 1, . . .

Thus,
s0 + s1 + · · ·+ sn−1

n
=

n/2

n
→

1

2
, as n −→ ∞.

Hence although the divergent series is Cesàro summable.

Conversely, we have

Theorem 7.1. If a series is convergent and has a limit σ, then it is Cesàro summable to the same
limit σ.

Proof. Suppose we are given that

lim
n→∞

sn = σ.

For any given ε > 0, there is m > 0 such that

|sn − σ| <
ε

2
,

1
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for all n ≥ m. Consider the difference

σn − σ =
(s0 − σ) + (s1 − σ) + · · · + (sn−1 − σ)

n
=

1

n

n−1
∑

j=0

(sj − σ)

=
1

n

m−1
∑

j=0

(sj − σ) +
1

n

n−1
∑

j=m

(sj − σ),

where we have assumed that n > m. Since m is fixed, so we may choose n so large such that

1

n

m−1
∑

j=0

|sj − σ| <
ε

2
.

Thus,

|σn − σ| ≤
1

n

m−1
∑

j=0

|sj − σ|+
1

n

n−1
∑

j=m

|sj − σ|

<
ε

2
+

n− 1−m

n
·
ε

2
<

ε

2
+

ε

2
= ε,

for n > m, that is, when n is sufficiently large. This proves the theorem. �

Cesàro summable of Fourier series. If

f(x) ∼
a0
2

+
∞
∑

k=1

ak cos kx+ bk sin kx

sn(x) =
a0
2

+
n
∑

k=1

ak cos kx+ bk sin kx,

we define

σn(x) =
s0(x) + s1(x) + . . . sn−1(x)

n
=

1

n

n−1
∑

j=0

sj(x)

=
a0
2

+

n−1
∑

k=1

(n− k

n

)

(ak cos kx+ bk sin kx).
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Thus,

σn(x) =
1

n
s0(x) +

1

n
s1(x) + · · · +

1

n
sn−1(x)

=
1

nπ

∫ π

−π

f(x+ u)
sin(0 + 1

2
)u

2 sin(u
2
)

du

+
1

nπ

∫ π

−π

f(x+ u)
sin(1 + 1

2
)u

2 sin(u
2
)

du

...

+
1

nπ

∫ π

−π

f(x+ u)
sin(n− 1 + 1

2
)u

2 sin(u
2
)

du

=
1

nπ

∫ π

−π

f(x+ u)

2 sin u
2

(

n−1
∑

k=0

sin
(

k +
1

2

)

u
)

du.

But

2 sin
(u

2

)

sin
(

k +
1

2

)

u = cos ku− cos(k + 1)u.

So

n−1
∑

k=0

sin
(

k +
1

2

)

u =
1

2 sin(u
2
)

n−1
∑

k=1

(

cos ku− cos(k + 1)u
)

=
1

2 sin(u
2
)
(1− cosnu) =

2 sin2(nu
2
)

2 sin(u
2
)

=
sin2(nu

2
)

sin(u
2
)
.

We obtain the new representation that

σn(x) =
1

nπ

∫ π

−π

f(x+ u)
sin2(nu

2
)

2 sin2 u
2

du.

We note in the above consideration when f(x) = 1 and hence σn(x) = 1 give

(7.1) 1 =
1

πn

∫ π

−π

sin2(nu
2
)

2 sin2(u
2
)
du =

2

πn

∫ π

0

sin2 nu
2

2 sin2 u
2

du

for each n = 1, 2, 3, . . . .

Definition. Let f be defined on [a, b] with at most a finite number of discontinuities. Then f is said
to be absolutely integrable if |f(x)| is absolutely integrable over [a, b]. That is,

∫ b

a

|f(x)| dx

exists.
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Theorem 7.2. The Fourier series of an absolutely integrable function f(x) of period 2π is Cesàro
summable to the limit f(x) at every point of continuity and to the limit

f(x+ 0) + f(x− 0)

2

at every point of jump discontinuity.

Proof. It will be sufficient to prove

(7.2) lim
n→∞

1

πn

∫ π

0

f(x+ u)
sin2 nu

2

2 sin2 u
2

du =
f(x+ 0)

2

and

(7.3) lim
n→∞

1

πn

∫

0

−∞

f(x+ u)
sin2 nu

2

2 sin2 u
2

du =
f(x− 0)

2

since they imply

lim
n→∞

σn(x) =
f(x+ 0) + f(x− 0)

2

which gives lim
n→∞

σn(x) = f(x) at a continuity point a x.

We will only prove the limit (7.2) above. This is equivalent to the statement

lim
n→∞

1

πn

∫ π

0

(

f(x+ u)− f(x+ 0)
) sin2 nu

2

2 sin2 u
2

du = 0.

Given ε > 0, there is δ > 0 such that for 0 < u ≤ δ,

|f(x+ u)− f(x+ 0)| < ε.

Writing the above integral in the form of the sum of two integrals
∫ δ

0
· · · and

∫ π

δ
· · · which we denote

by I1 and I2 respectively.

Thus,

|I1| =
∣

∣

1

πn

∫ δ

0

(

f(x+ u)− f(x+ 0)
) sin2 nu

2

2 sin2 u
2

du
∣

∣

∣

≤
ε

πn

∫ δ

0

sin2 nu
2

2 sin2 u
2

du

<
ε

πn

∫ π

0

sin2 nu
2

2 sin2 u
2

du =
ε

2
.

Also,

|I2| =
∣

∣

∣

1

πn

∫ π

δ

(

f(x+ u)− f(x+ 0)
) sin2 nu

2

2 sin2 u
2

du
∣

∣

∣

≤
1

2πn

1

sin2 δ
2

∫ π

δ

∣

∣f(x+ u)− f(x+ 0)
∣

∣ du,
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since sin
δ

2
≤ sin

u

2
for u ∈ [δ, π]. It follows that |I2| <

ε

2
when we choose n to be sufficiently large

(f is absolutely integrable). This proves that |I1| + |I2| can be made arbitrary small when n tends to
infinity. This establishes (7.2). The remaining integral from −π to 0 follows similarly. This completes
the proof of the Theorem. �

Remark. We note that the estimation of I2 depends on x. So the convergence of σn(x) is pointwise.

Definition. The series σn(x) = u0(x)+u1(x)+ . . . is said to be uniformly (Cesàro) summable on [a, b]
to f , if given ε > 0, there is N such that

∣

∣

∞
∑

k=0

σn(x)− f(x)
∣

∣ < ε

for n > N and for all x ∈ [a, b].

We can prove

Theorem 7.3. The Fourier series of an absolutely integrable function f of period 2π is uniformly
Cesàro summable to f on every [α, β] ⊂ [a, b] where f is continuous.

Proof. Let x ∈ [α, β]. We choose δ > 0 so small such that x+u lying within [α, β]. We apply the (7.1)
and to write

σn(x)− f(x) =
1

πn

∫ π

0

(

f(x+ u)− f(x)
) sin2 nu

2

2 sin2 u
2

du = J1 + J2.

where J1 and J2 stand for the integrals
∫

0

−π
· · · and

∫ π

0
· · · respectively. We split the J1 into the

integrals as the sum of
∫ δ

0
· · · and

∫ π

δ
· · · as it the proof of the last theorem.

Since f is continuous over [α, β], so given ε > 0, we choose δ > 0 such that

|f(x+ u)− f(x)| < ε/2.

holds for all x ∈ [α, β] provided |u| < δ. Moreover, we can define M = maxα≤x≤β |f(x)|. It is easy to
see that

|I1| <
ε

2
, x ∈ [α, β],

On the other hand,

|I2| =
∣

∣

∣

1

πn

∫ π

δ

(

f(x+ u)− f(x)
) sin2 nu

2

2 sin2 u
2

du
∣

∣

∣

≤
1

2πn

1

sin2 δ/2

∫ π

δ

∣

∣f(x+ u)− f(x)
∣

∣ du

≤
1

2πn

1

sin2 δ/2

∫ π

−π

∣

∣f(x+ u)
∣

∣ du+Mπ

≤
1

2πn

M ′

sin2 δ/2
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for some constant M ′ since f is absolutely integrable. Hence we can choose N > 0 large enough so
that

|I2| <
ε

2
, x ∈ [α, β].

It follows that |J1| < ε. Similarly, we can show |J2| < ε, so that |J1|+ |J2| < 2ε for all x ∈ [α, β]. �

Previous consideration about convergence of Fourier series requires the f to be piecewise continuous
and absolutely integrable.

If, however, f is merely continuous, the Fourier series may diverge at certain points. But we obtain

Theorem 7.4. The Fourier series of a continuous function f(x) of period 2π is uniformly Cesàro
summable to f(x).

Thus, Cesàro summable is both superior and surprising.

It follows from our study of Cesàro summability that

Theorem 7.5. If the Fourier series of an absolutely integrable function f converges at a point x of con-
tinuity (respectively a jump discontinuity), then the Fourier series must converge to f(x) (respectively
1

2

(

f(x+ 0) + f(x− 0)
)

).

We recall from an earlier theorem that a square integrable function f is completely defined by its
trigonometric Fourier series. Theorem 7.1 implies that

Theorem 7.6. Any absolutely integrable function is completely determined (except for its values at a
finite number of points) by its trigonometric Fourier series, whether or not the series converges.

To be continued ...


