
MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

10. Fourier integrals

10.1. Introduction: Extending to infinite period. In this section we shall study Fourier integrals
as a limiting case of the Fourier series.

We first assume that the function f(x) is defined on the x−axis and is piecewise continuous on
[−l, l], for each l. Suppose

f(x) =
a0
2

+
∞∑
k=1

ak cos
(πkx

l

)
+ bk sin

(πkx
l

)
,

where

(10.1) ak =
1

l

∫ l

−l
f(u) cos

(πku
l

)
du, bk =

1

l

∫ l

−l
f(u) sin

(πku
l

)
du,

for k = 0, 1, 2, . . . and b0 = 0. We remark that the above Fourier series equals to the value

f(x+ 0) + f(x− 0)

2
if f has a discontinuity point at x. We now assume, in addition, that f is absolutely integrable on the
whole x−axis, that is, the integral ∫ ∞

−∞
|f(x)| dx

exists.

We now substitute the expression of ak and bk into the Fourier series above and let l tends to infinity:

f(x) = lim
l→∞

f(x) = lim
l→∞

[a0
2

+
∞∑
k=1

ak cos
(πkx

l

)
+ bk sin

(πkx
l

)]
= lim

l→∞

[
1

2l

∫ l

−l
f(u) du+

∞∑
k=1

1

l

(∫ l

−l
f(u) cos

(πku
l

)
cos
(πkx

l

)
du

+

∫ l

−l
f(u) sin

(πku
l

)
sin
(πkx

l

)
du

)]

= lim
l→∞

[ ∞∑
k=1

1

l

∫ l

−l
f(u) cos

(πk(u− x)

l

)
du
]

= lim
l→∞

1

π

∞∑
k=1

∆λk

∫ l

−l
f(u) cos[λk(u− x)] du,

=
1

π

∫ ∞
0

dλ

∫ ∞
−∞

f(u) cos
(
λ(u− x)

)
du.

where we have set
1
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λk =
kπ

l
, ∆λk = λk+1 − λk , k = 1, 2, 3, . . . .

Although the above reasoning needs further justification, it does indicate what is possible. We further
notice that the following possibility

f(x) =
1

π

∫ ∞
0

dλ

∫ ∞
−∞

f(u) cosλ(u− x)du

=

∫ ∞
0

dλ
(
a(λ) cosλx+ b(λ) sinλx

)
,

where

a(λ) =
1

π

∫ ∞
−∞

f(u) cosλu du, b(λ) =
1

π

∫ ∞
−∞

f(u) sinλu du

which is known as a prototype of Fourier Integral Theorem. We shall later justify that it actually holds
for absolutely integrable function f on (−∞, +∞).

We call the improper integral

(10.2) F (λ) =

∫ ∞
0

f(u) cosλ(u− x) du

the Fourier cosine transform of f .

10.2. Preparation for the Fourier cosine integral theorem.

Definition. Let F (x, λ) be a function of two variables, and suppose that the integral

(10.3)

∫ ∞
a

F (x, λ) dx

exists for every λ, α ≤ λ ≤ β. Then we say that the above integral is uniformly convergent for λ in
α ≤ λ ≤ β if for every ε > 0, there is L such that

∣∣∣ ∫ ∞
l

F (x, λ) dx
∣∣∣ ≤ ε,

whenever l ≥ L and for all λ, α ≤ λ ≤ β.
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Lemma 10.1. Let xk be a sequence such that

(10.4) a = x0 < x1 < x2 < · · · < xn < . . .

and that

lim
k→∞

xk =∞.

Then a necessary and sufficient condition for the integral (10.3) to be uniformly convergent over [α, β]
is that the series

∫ ∞
a

F (x, λ) dx =
∞∑
k=0

∫ xk+1

xk

F (x, λ) dx

is uniformly convergent on λ, α ≤ λ ≤ β, as a function of λ, and for every sequence xk defined by
(10.4) above.

Proof. We first suppose that the integral (10.3) is uniformly convergent. That is, given any ε > 0, there
is L such that

∣∣∣ ∫ ∞
l

F (x, λ) dx
∣∣∣ ≤ ε

whenever l ≥ L, for λ in α ≤ λ ≤ β. Since xk → ∞, we can find a N > 0 such that xk > L when
k > N . Thus∣∣∣ ∫ ∞

a
F (x, λ) dx−

n−1∑
k=0

∫ xk+1

xk

F (x, λ) dx
∣∣∣ =

∣∣∣ ∫ ∞
a

F (x, λ) dx−
∫ xk

a
F (x, λ) dx

∣∣∣
=
∣∣∣ ∫ ∞

xk

F (x, λ) dx
∣∣∣ ≤ ε,

for α ≤ λ ≤ β. Hence the series
∞∑
k=0

∫ xk+1

xk
F (x, λ) dx is uniformly convergent over [α, β].

Let us now suppose that this series is uniformly convergent over [α, β] and for any sequence {xk} in
(10.4). We suppose on the contrary that the integral (10.3) is not uniformly convergent, that is, one
can find an ε > 0, and an infinite sequence {yk}, yk →∞ as k →∞, such that

∣∣∣ ∫ ∞
yk

F (x, λ) dx
∣∣∣ ≥ ε

for all k. But this implies that when we choose xk = yk, k = 1, 2, . . . ,

∣∣∣ ∫ ∞
a

F (x, λ)dx−
n−1∑
k=0

∫ xk+1

xk

F (x, λ) dx
∣∣∣ =

∣∣∣ ∫ ∞
xn

F (x, λ) dx
∣∣∣ ≥ ε

for each n, contradicting the uniform convergence of
∞∑
k=0

∫ xk+1

xk
F (x, λ) dx. �
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Lemma 10.2. We suppose F (x, λ) is regarded as a continuous function with respect to both of its
variables and if the integral

(10.5)

∫ ∞
a

F (x, λ) dx

is uniformly convergent with respect to λ, α ≤ λ ≤ β, then the integral (10.5) defines a continuous
function with respect to λ. In addition, we have∫ β

α
dλ

∫ ∞
a

F (x, λ)dx =

∫ ∞
a

dx

∫ β

α
F (x, λ) dλ.

Proof. Since the integral (10.5) converges uniformly with respect to λ, α ≤ λ ≤ β, the last Lemma
asserts that for any sequence {xk}, xk ↗∞, the series

(10.6)
∞∑
k=0

∫ xk+1

xk

F (x, λ) dx

of continuous functions of λ, converges uniformly with respect to λ, α ≤ λ ≤ β. Hence the infinite sum
is a continuous function of λ (α ≤ λ ≤ β). Writing

Fk(λ) =

∫ xk+1

xk

F (x, λ) dx,

then ∫ β

α
dλ

∫ ∞
a

F (x, λ) dx =

∫ β

α
dλ

∞∑
k=0

∫ xk+1

xk

F (x, λ) dx

=

∫ β

α
dλ

∞∑
k=0

Fk(λ)

=1
∞∑
k=0

∫ β

α
Fk(λ) dλ

=
∞∑
k=0

∫ β

α
dλ

∫ xk+1

xk

F (x, λ) dx

=2
∞∑
k=0

∫ xk+1

xk

dx

∫ β

α
F (x, λ) dλ

=

∫ ∞
a

dx

∫ β

α
F (x, λ) dλ,

where the 1 holds because the (10.6) says the convergence is uniform. Moreover, the 2 holds because
the finite integral of continuous function. This completes the proof. �

Remark. Note that we can allow f to be piecewise continuous with respect to x.

Theorem 10.3. Suppose that F (x, λ) is continuous function of two variables, and that ∂F
∂λ is contin-

uous. If both the integrals ∫ ∞
a

F (x, λ) dx,

∫ ∞
a

∂F (x, λ)

∂λ
dx



FOURIER ANALYSIS AND APPLICATIONS 5

exist and that the second integral is uniformly convergent for α ≤ λ ≤ β, then we have

∂

∂λ

∫ ∞
a

F (x, λ) dx =

∫ ∞
a

∂F (x, λ)

∂λ
dx, α ≤ λ ≤ β.

Proof. Since the second integral in the statement of the Theorem is uniformly convergent, so the sum

∫ ∞
a

∂F (x, λ)

∂λ
dx =

∞∑
k=0

∫ xk+1

xk

∂F (x, λ)

∂λ
dx

is uniformly convergent as a function of λ, α ≤ λ ≤ β. Theorem 2.10 (iii) shows that

d

dλ

∫ ∞
a

F (x, λ) dx =
d

dλ

∞∑
k=0

∫ xk+1

xk

F (x, λ) dx

=
∞∑
k=0

d

dλ

∫ xk+1

xk

F (x, λ) dx

=
∞∑
k=0

∫ xk+1

xk

∂F (x, λ)

∂λ
dx

=

∫ ∞
a

∂F (x, λ)

∂λ
dx.

�

Theorem 10.4. Suppose for λ, α ≤ λ ≤ β,

|F (x, λ) ≤ f(x)|
where F is continuous with respect to both variables, and that

∫ ∞
a
|f(x)| dx <∞.

Then ∫ ∞
a

F (x, λ) dx

is uniformly convergent for λ, α ≤ λ ≤ β.

Proof. The uniform convergence of the integral follows easily from the Weierstrass M-test. �

We now extend the usual Riemann-Lebesgue lemma.

Lemma 10.5. If f(a) is absolutely integrable on [a,∞), then

lim
l→∞

∫ ∞
a

f(u) sin lu du = 0.
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Proof. Since f is absolutely integrable on [a,∞), so given ε > 0, there is b > 0, b > a, such that

∣∣∣ ∫ ∞
b

f(u) sin lu du
∣∣∣ ≤ ∫ ∞

b
|f(u)| du ≤ ε

2
.

But the usual Riemann-Lebesgue Lemma implies that

∣∣∣ ∫ b

a
f(b)f(u) sin lu du

∣∣∣ < ε

2

when l is chosen to be sufficiently large. Combining the above considerations gives the desired result. �

Remark. The above result obviously works for “cos lu”, as well as for the integration in the range
∫ a
−∞

or
∫∞
−∞.

To be continued ...
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