MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

10. Fourier integrals

10.1. Introduction: Extending to infinite period. In this section we shall study Fourier integrals as a limiting case of the Fourier series.

We first assume that the function f(x) is defined on the x-axis and is piecewise continuous on [-l, l], for each l. Suppose

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{\pi kx}{l}\right) + b_k \sin\left(\frac{\pi kx}{l}\right),$$

where

(10.1)
$$a_k = \frac{1}{l} \int_{-l}^{l} f(u) \cos\left(\frac{\pi ku}{l}\right) du, \qquad b_k = \frac{1}{l} \int_{-l}^{l} f(u) \sin\left(\frac{\pi ku}{l}\right) du,$$

for k = 0, 1, 2, ... and $b_0 = 0$. We remark that the above Fourier series equals to the value

$$\frac{f(x+0) + f(x-0)}{2}$$

if f has a discontinuity point at x. We now assume, in addition, that f is absolutely integrable on the whole x-axis, that is, the integral

$$\int_{-\infty}^{\infty} |f(x)| \ dx$$

exists.

We now substitute the expression of a_k and b_k into the Fourier series above and let l tends to infinity:

$$\begin{split} f(x) &= \lim_{l \to \infty} f(x) = \lim_{l \to \infty} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{\pi kx}{l}\right) + b_k \sin\left(\frac{\pi kx}{l}\right) \right] \\ &= \lim_{l \to \infty} \left[\frac{1}{2l} \int_{-l}^{l} f(u) \, du + \sum_{k=1}^{\infty} \frac{1}{l} \left(\int_{-l}^{l} f(u) \cos\left(\frac{\pi ku}{l}\right) \cos\left(\frac{\pi kx}{l}\right) \, du \right) \\ &+ \int_{-l}^{l} f(u) \sin\left(\frac{\pi ku}{l}\right) \sin\left(\frac{\pi kx}{l}\right) \, du \right) \right] \\ &= \lim_{l \to \infty} \left[\sum_{k=1}^{\infty} \frac{1}{l} \int_{-l}^{l} f(u) \cos\left(\frac{\pi k(u-x)}{l}\right) \, du \right] \\ &= \lim_{l \to \infty} \frac{1}{\pi} \sum_{k=1}^{\infty} \Delta \lambda_k \int_{-l}^{l} f(u) \cos[\lambda_k(u-x)] \, du, \\ &= \frac{1}{\pi} \int_0^{\infty} d\lambda \int_{-\infty}^{\infty} f(u) \cos(\lambda(u-x)) \, du. \end{split}$$

where we have set

$$\lambda_k = \frac{k\pi}{l}, \qquad \Delta \lambda_k = \lambda_{k+1} - \lambda_k \quad , k = 1, 2, 3, \dots$$

Although the above reasoning needs further justification, it does indicate what is possible. We further notice that the following possibility

$$\begin{split} f(x) &= \frac{1}{\pi} \int_0^\infty d\lambda \int_{-\infty}^\infty f(u) \cos \lambda (u-x) du \\ &= \int_0^\infty d\lambda \ \big(a(\lambda) \cos \lambda x + b(\lambda) \sin \lambda x \big), \end{split}$$

where

$$a(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos \lambda u \, du, \qquad b(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin \lambda u \, du$$

which is known as a prototype of *Fourier Integral Theorem*. We shall later justify that it actually holds for absolutely integrable function f on $(-\infty, +\infty)$.

We call the improper integral

(10.2)
$$F(\lambda) = \int_0^\infty f(u) \, \cos \lambda (u-x) \, du$$

the Fourier cosine transform of f.

10.2. Preparation for the Fourier cosine integral theorem.

Definition. Let $F(x, \lambda)$ be a function of two variables, and suppose that the integral

(10.3)
$$\int_{a}^{\infty} F(x,\lambda) \ dx$$

exists for every λ , $\alpha \leq \lambda \leq \beta$. Then we say that the above integral is *uniformly convergent* for λ in $\alpha \leq \lambda \leq \beta$ if for every $\epsilon > 0$, there is L such that

$$\left|\int_{l}^{\infty} F(x,\lambda) dx\right| \leq \epsilon,$$

whenever $l \geq L$ and for all $\lambda, \alpha \leq \lambda \leq \beta$.

Lemma 10.1. Let x_k be a sequence such that

(10.4) $a = x_0 < x_1 < x_2 < \dots < x_n < \dots$

and that

$$\lim_{k \to \infty} x_k = \infty.$$

Then a necessary and sufficient condition for the integral (10.3) to be uniformly convergent over $[\alpha, \beta]$ is that the series

$$\int_{a}^{\infty} F(x,\lambda) \ dx = \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \ dx$$

is uniformly convergent on λ , $\alpha \leq \lambda \leq \beta$, as a function of λ , and for every sequence x_k defined by (10.4) above.

Proof. We first suppose that the integral (10.3) is uniformly convergent. That is, given any $\epsilon > 0$, there is L such that

$$\Big|\int_l^\infty F(x,\lambda) \ dx\Big| \le \epsilon$$

whenever $l \ge L$, for λ in $\alpha \le \lambda \le \beta$. Since $x_k \to \infty$, we can find a N > 0 such that $x_k > L$ when k > N. Thus

$$\left| \int_{a}^{\infty} F(x,\lambda) \, dx - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \, dx \right| = \left| \int_{a}^{\infty} F(x,\lambda) \, dx - \int_{a}^{x_{k}} F(x,\lambda) \, dx \right|$$
$$= \left| \int_{x_{k}}^{\infty} F(x,\lambda) \, dx \right| \le \epsilon,$$

for $\alpha \leq \lambda \leq \beta$. Hence the series $\sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} F(x,\lambda) dx$ is uniformly convergent over $[\alpha, \beta]$.

Let us now suppose that this series is uniformly convergent over $[\alpha, \beta]$ and for any sequence $\{x_k\}$ in (10.4). We suppose on the contrary that the integral (10.3) is not uniformly convergent, that is, one can find an $\epsilon > 0$, and an infinite sequence $\{y_k\}, y_k \to \infty$ as $k \to \infty$, such that

$$\Big|\int_{y_k}^{\infty} F(x,\lambda) \, dx\Big| \ge \epsilon$$

for all k. But this implies that when we choose $x_k = y_k, k = 1, 2, ...,$

$$\left|\int_{a}^{\infty} F(x,\lambda)dx - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) dx\right| = \left|\int_{x_{n}}^{\infty} F(x,\lambda) dx\right| \ge \epsilon$$

for each n, contradicting the uniform convergence of $\sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} F(x,\lambda) dx$.

Lemma 10.2. We suppose $F(x, \lambda)$ is regarded as a continuous function with respect to both of its variables and if the integral

(10.5)
$$\int_{a}^{\infty} F(x,\lambda) \ dx$$

is uniformly convergent with respect to λ , $\alpha \leq \lambda \leq \beta$, then the integral (10.5) defines a continuous function with respect to λ . In addition, we have

$$\int_{\alpha}^{\beta} d\lambda \int_{a}^{\infty} F(x,\lambda) dx = \int_{a}^{\infty} dx \int_{\alpha}^{\beta} F(x,\lambda) d\lambda.$$

Proof. Since the integral (10.5) converges uniformly with respect to λ , $\alpha \leq \lambda \leq \beta$, the last Lemma asserts that for any sequence $\{x_k\}, x_k \nearrow \infty$, the series

(10.6)
$$\sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} F(x,\lambda) \ dx$$

of continuous functions of λ , converges uniformly with respect to λ , $\alpha \leq \lambda \leq \beta$. Hence the infinite sum is a continuous function of λ ($\alpha \leq \lambda \leq \beta$). Writing

$$F_k(\lambda) = \int_{x_k}^{x_{k+1}} F(x,\lambda) \ dx,$$

then

$$\begin{split} \int_{\alpha}^{\beta} d\lambda \int_{a}^{\infty} F(x,\lambda) \ dx &= \int_{\alpha}^{\beta} d\lambda \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \ dx \\ &= \int_{\alpha}^{\beta} d\lambda \sum_{k=0}^{\infty} F_{k}(\lambda) \\ &=^{1} \sum_{k=0}^{\infty} \int_{\alpha}^{\beta} F_{k}(\lambda) \ d\lambda \\ &= \sum_{k=0}^{\infty} \int_{\alpha}^{\beta} d\lambda \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \ dx \\ &= 2 \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} dx \int_{\alpha}^{\beta} F(x,\lambda) \ d\lambda \\ &= \int_{a}^{\infty} dx \int_{\alpha}^{\beta} F(x,\lambda) \ d\lambda, \end{split}$$

where the ¹ holds because the (10.6) says the convergence is uniform. Moreover, the ² holds because the finite integral of continuous function. This completes the proof. \Box

Remark. Note that we can allow f to be piecewise continuous with respect to x.

Theorem 10.3. Suppose that $F(x, \lambda)$ is continuous function of two variables, and that $\frac{\partial F}{\partial \lambda}$ is continuous. If both the integrals

$$\int_{a}^{\infty} F(x, \lambda) \, dx, \qquad \int_{a}^{\infty} \frac{\partial F(x, \lambda)}{\partial \lambda} \, dx$$

exist and that the second integral is uniformly convergent for $\alpha \leq \lambda \leq \beta$, then we have

$$\frac{\partial}{\partial\lambda} \int_{a}^{\infty} F(x, \lambda) \, dx = \int_{a}^{\infty} \frac{\partial F(x, \lambda)}{\partial\lambda} \, dx, \qquad \alpha \le \lambda \le \beta.$$

Proof. Since the second integral in the statement of the Theorem is uniformly convergent, so the sum

$$\int_{a}^{\infty} \frac{\partial F(x,\lambda)}{\partial \lambda} \, dx = \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} \frac{\partial F(x,\lambda)}{\partial \lambda} \, dx$$

is uniformly convergent as a function of λ , $\alpha \leq \lambda \leq \beta$. Theorem 2.10 (iii) shows that

$$\frac{d}{d\lambda} \int_{a}^{\infty} F(x,\lambda) \, dx = \frac{d}{d\lambda} \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \, dx$$
$$= \sum_{k=0}^{\infty} \frac{d}{d\lambda} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \, dx$$
$$= \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} \frac{\partial F(x,\lambda)}{\partial \lambda} \, dx$$
$$= \int_{a}^{\infty} \frac{\partial F(x,\lambda)}{\partial \lambda} \, dx.$$

Theorem 10.4.	Suppose	for λ ,	$\alpha \le \lambda \le \beta_s$
---------------	---------	-----------------	----------------------------------

$$F(x,\lambda) \le f(x)|$$

where F is continuous with respect to both variables, and that

$$\int_{a}^{\infty} |f(x)| \, dx < \infty.$$

Then

$$\int_a^\infty F(x,\,\lambda)\,\,dx$$

is uniformly convergent for λ , $\alpha \leq \lambda \leq \beta$.

Proof. The uniform convergence of the integral follows easily from the Weierstrass M-test. \Box

We now extend the usual Riemann-Lebesgue lemma.

Lemma 10.5. If f(a) is absolutely integrable on $[a, \infty)$, then

$$\lim_{l \to \infty} \int_{a}^{\infty} f(u) \sin lu \, du = 0.$$

Proof. Since f is absolutely integrable on $[a, \infty)$, so given $\epsilon > 0$, there is b > 0, b > a, such that

$$\left|\int_{b}^{\infty} f(u) \sin lu \, du\right| \leq \int_{b}^{\infty} |f(u)| \, du \leq \frac{\epsilon}{2}.$$

But the usual Riemann-Lebesgue Lemma implies that

$$\left|\int_{a}^{b} f(b)f(u)\sin lu \, du\right| < \frac{\epsilon}{2}$$

when l is chosen to be sufficiently large. Combining the above considerations gives the desired result. *Remark.* The above result obviously works for "cos lu", as well as for the integration in the range $\int_{-\infty}^{a}$ or $\int_{-\infty}^{\infty}$.

To be continued ...