MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS

10. FOURIER INTEGRALS

10.1. Introduction: Extending to infinite period. In this section we shall study Fourier integrals
as a limiting case of the Fourier series.

We first assume that the function f(x) is defined on the x—axis and is piecewise continuous on
[—1, ], for each . Suppose

o0
flx) = % + ;ak CoS (—x> + by, sin (Tx),
where
I k I k
(10.1) a = l/ f(u) cos (WTU> du, by, = l/ f(u)sin (WTU> du,
-1 -l
for k=0,1,2,... and by = 0. We remark that the above Fourier series equals to the value

fl+0)+ f(z-0)
2
if f has a discontinuity point at . We now assume, in addition, that f is absolutely integrable on the

whole z—axis, that is, the integral
o0
| 1@ s

—00

exists.

We now substitute the expression of a; and by into the Fourier series above and let I tends to infinity:

=0 jim [ 7 [ fess () ]

k=1

oo—7r l
= llggo [% kZZI 7 /_l f(u) cos[Ak(u — x)] du}

l—o0

) 1 o l B 1 0o 00 B
= lim W;AA;C /_lf(u) cos[Ag(u — )] du = 77/0 d)\/_oo f(u)cos (Mu — z)) du.

where we have set
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Ak = —, AN =M1 — e Lk=1,2,3,....

Although the above reasoning needs further justification, it does indicate what is possible. We further
notice that the following possibility

flx) = l/oood)\/_z f(u)cos Au — x)du

s

= / dX (a(X) cos Az + b(A) sin Az),
0
where

a(A) = 71r/_00 f(u) cos Au du, b(\) = jr/_oo f(u)sin \u du

which is known as a prototype of Fourier Integral Theorem. We shall later justify that it actually holds
for absolutely integrable function f on (—oo, +00).

We call the improper integral
(10.2) F(\) = / f(u) cos A(u — ) du
0
the Fourier cosine transform of f.

10.2. Preparation for the Fourier cosine integral theorem.

Definition. Let F'(z,\) be a function of two variables, and suppose that the integral

(10.3) /OO F(z,\) dx

exists for every A\, a < A < . Then we say that the above integral is uniformly convergent for A in
a < A < g if for every € > 0, there is L such that

)/looF(x,)\) dz| <,

whenever [ > L and for all A, a < XA < S.
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Lemma 10.1. Let xj, be a sequence such that
(10.4) a=x0<x] <x2< <2y < ...

and that

lim x, = oo.
k—o00

Then a necessary and sufficient condition for the integral to be uniformly convergent over [, (]
1s that the series

$k+1
/F:E)\dZE_Z/ dx

1s uniformly convergent on A\, a < X\ < 3, as a function of A\, and for every sequence xy, defined by

above.

Proof. We first suppose that the integral (10.3)) is uniformly convergent. That is, given any € > 0, there

is L such that
oo
’/ F(z,\) da:‘ <e
l

whenever [ > L, for A in o < A < . Since x; — oo, we can find a N > 0 such that z; > L when
k > N. Thus

)/a F(z, ) dq:—Z/mkH F(z, ) d:c—‘/ dx—/jkp(x,A)dx
| e <

for a < A < 3. Hence the series Z fx’““ (z,A) dx is uniformly convergent over [a, 3.

Let us now suppose that this serles is uniformly convergent over [«, ] and for any sequence {zj} in
(10.4). We suppose on the contrary that the integral (10.3) is not uniformly convergent, that is, one
can find an € > 0, and an infinite sequence {yx}, yr — 00 as k — oo, such that

‘/OOF(QJ,)\) daj‘ > €
Yk

for all k. But this implies that when we choose zp, =y, k=1, 2, ...,

00 Th1 o0
)/ :cAda;—Z/ x)\)da:‘—‘/ F(z,\) dz| > e

o0
for each n, contradicting the uniform convergence of % f;:“ F(z,\) dz. O
k=0
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Lemma 10.2. We suppose F(x,\) is regarded as a continuous function with respect to both of its
variables and if the integral

(10.5) /OO F(z,\) dzx

is uniformly convergent with respect to X\, a < X\ < 3, then the integral defines a continuous
function with respect to X. In addition, we have

B o o0 B
/ d)\/ F(m,)\)dl‘:/ dx/ F(x,\) d\

Proof. Since the integral (10.5)) converges uniformly with respect to A, @ < A < 3, the last Lemma
asserts that for any sequence {x}, ) oo, the series

(10.6) Z/xk“ Fla,\)

of continuous functions of A, converges uniformly with respect to A, a < A < . Hence the infinite sum
is a continuous function of A (a < A < f3). Writing

Te+1
Fr(\) = / F(x,\) dx,
T

/jd)\/a F(z,\) d:L'—/a d)\Z/ka

= / dAZFk()\)
@ k=0

k=0"¢%

e B8 Tht1
= Z/ d)\/ F(z,\) dz
« T

Tkl B
22/ dx/ F(z,\) dA

:/a dm/jF(x,)\) dA

where the ! holds because the (10.6)) says the convergence is uniform. Moreover, the 2 holds because
the finite integral of continuous function. This completes the proof. O

then

Remark. Note that we can allow f to be piecewise continuous with respect to x.

Theorem 10.3. Suppose that F(x, \) is continuous function of two variables, and that g—f 18 contin-

wous. If both the integrals
0 © OF(x,\)
F(x, \) d —1 2 d
[ e [T 6
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exist and that the second integral is uniformly convergent for a < X\ < 3, then we have

o [ ™ 0F(2,\)

Proof. Since the second integral in the statement of the Theorem is uniformly convergent, so the sum

/ 8Fa:/\ /mk+18Fx)\
Z dx

is uniformly convergent as a function of A, @« < A < 3. Theorem 2.10 (iii) shows that

d [ d Tht1
— F = — F
. (z, ) dx o Z/x (x, A) dz
k=0 "%k
> d Thi1
= d)\/ F(z, \) dzx
k=0 Lk
Tkt OF (x, N)
= [
k=0 "%k
© OF(x, \)
= ———= dz.
/a o
Theorem 10.4. Suppose for \, a < A\ < 3,
[F(z, A)| < f()]
where F' is continuous with respect to both variables, and that
/ 1£(2)] dz < 0.
Then -
/ F(z, \) dx
is uniformly convergent for X\, a < \ < f3.
Proof. The uniform convergence of the integral follows easily from the Weierstrass M-test. g

We now extend the usual Riemann-Lebesgue lemma.

Lemma 10.5. If f(a) is absolutely integrable on [a, c0), then

lim / f(u)sinlu du = 0.

=0 J,
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Proof. Since f is absolutely integrable on [a, c0), so given € > 0, there is b > 0, b > a, such that

‘/ f(u smludu‘</ (u)] du g%.

But the usual Riemann-Lebesgue Lemma implies that

’/ab F(b) f () sinlu du‘ < g

when [ is chosen to be sufficiently large. Combining the above considerations gives the desired result. [J

Remark. The above result obviously works for “coslu”, as well as for the integration in the range ffoo
or [
Lemma 10.6. If f(x) is absolutely integrable on the whole x—axis, and if f(x 4+ 0) and f(x — 0) both

exist at x, then
lim L / fa smlu u:f(a:+0)—;-f(:c—0)'

l—o0 T

Remark. We compare the above formula with the previous formula:

(10.7) lim 7r/ fo su;(gnﬂ;)) gy 1 @+0) —QF flz—0)

Proof. We first divide the interval (—oo, +00) into (—oo, —d), (=6, ), (J, +00) where J is some positive
flx+u

0 < u < 00. Thus, the Riemann-Lebesgue Lemma (and the following remark) implies that

number. It is easy to see that the function is absolutely integrable on —oco < u < § and

-5 .
lim / f(z sm L du=0= lim flz+ )sn;lu du.

l—o00 =00 J_ o

Now we write 1’ with m =n + %

f(a:—f—())—;—f(;r— hﬁm / fa smmu du
/ f:z:+u smmu / Flo+u Slnmu du
sin g 2sin 5
_O—i—h_)m/ f(x smmud +0
(10.8) "
_ hjﬂ 1 / f@ s1nmu du
n—oo

1 1
+hm/ f:c+u)( ——)smmudu

n—oo T 2 sin 2 U

= lim / f(x
n—oo T
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1 1 1
- —— ~ 0as u — 0 making f(x + u)(z—— — —) absolutely integrable over
sing  w 2sing  w

[—d, 0] (and so the Riemann-Lebesgue Lemma implies again).

since the factor

It remains to extend l) to arbitrary number [ instead of m = n+ %, n integer. But we may write
l=m+0, m<Il<m+1,0<60<1. Applying the mean value theorem yields

sinlu —sinmu  sinlu — sinmu

(I—mu Ou

= cos hu

for some h, m < h < l. Thus,

‘1/5 o+ ) Slnludu_/ f@ blnmu du
T J-s

1 )
:‘/ f(m+u)-9-coshudu‘
) s

9
<1/ (a4 )| du <

™ J_§ 2

for any | when we choose § to be sufficiently small. Thus for all [ to sufficiently large,

fl@+0)+ fz-0) / fa smlu du’
2
<‘fm+0) (x—=0 _/ fla smmudu‘
in !
+)/ f@ Slnmu du—/ f(a:—i—u)sm U du‘
U T J_s u
sin lu 1 [ sin lu
—i—)— f(x—i—u) du’—i—)— flz+u) du’
T J_ oo u T Js u
— 0.
as [ or m — oo. This completes the proof. O

We are ready to consider

Theorem 10.7. Let f be an absolutely integrable function on the x—axis R. Then

1
/ d)\/ F(u) cos A(u — ) du = 5 , X 1S a jump discontinuity for f
™ Jo —o0 f(x), f is continuous at x.

Remark. Note that we may rewrite the integral in the form
/ (a(X) cos Az + b(A) sin Az) dA,
0

where

- 71T/OO f(u) cos \u du, b(A) = 71T/OO f(u) sin \u du.
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Proof. Since f(u) is absolutely integrable over R and

[/ (w) cos A(u — 2)| < [f(u)]
over R, Theorem asserts that

/OO f(u)cos Au — z)du

is uniformly convergent with respect to A\, —oo < A < +00. Then Lemma [10.2] implies, for a fixed =z,
the above integral is continuous with respect to A. Moreover,

/Ol d)\/Zf(U)cos)\(u—a:) du:/oo du/lf(u)cos)\(u—x) d\
[

/ o sm lu du,

after a change of variable. The result now follows from letting [ — oo and Lemma O

Remark. (1) If f(u) is absolutely integrable on R, then the inequality
|f (u)sin AMu — z)| < |f(u)]
implies that the integral
/_OO flu)sin A(u — z) du

converges uniformly for —oco < A < 400, and hence represents a continuous function of A which

is odd. Hence
/ d)\/ fuw)sin A(u — z) du =

Thus, we may write

1 o0 oo
—/ d/\/ f(u)cosMu—2z) du+0
21 ) o —o0 S——

even in A

/ d)\/ (cosAM(u — ) +isin A(u — z)) du

= / d/\/ f(u) e gy,
T J 00 —00

which is known as the complex form of the Fourier Integral Theorem.
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(2) Recall that

f(z) = /000 a(X) cos Az + b(\) sin Az dA

where

a(A) = 71r/_00 f(u) cos \u du, b(\) = 71T/_00 f(u)sin Au du.

If f(u) is even, then b(A) = 0. If f is odd, then a(\) = 0. Thus, if f is defined on [0, c0),
then we may get either an odd or even extension of f onto the R corresponding to the two
representations of f above.

To be continued ...
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