MATH4822E FOURIER ANALYSIS AND ITS APPLICATIONS ## 10. Fourier integrals 10.1. **Introduction: Extending to infinite period.** In this section we shall study Fourier integrals as a limiting case of the Fourier series. We first assume that the function f(x) is defined on the x-axis and is piecewise continuous on [-l, l], for each l. Suppose $$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{\pi kx}{l}\right) + b_k \sin\left(\frac{\pi kx}{l}\right),$$ where (10.1) $$a_k = \frac{1}{l} \int_{-l}^{l} f(u) \cos\left(\frac{\pi k u}{l}\right) du, \qquad b_k = \frac{1}{l} \int_{-l}^{l} f(u) \sin\left(\frac{\pi k u}{l}\right) du,$$ for k = 0, 1, 2, ... and $b_0 = 0$. We remark that the above Fourier series equals to the value $$\frac{f(x+0) + f(x-0)}{2}$$ if f has a discontinuity point at x. We now assume, in addition, that f is absolutely integrable on the whole x-axis, that is, the integral $$\int_{-\infty}^{\infty} |f(x)| \ dx$$ exists. We now substitute the expression of a_k and b_k into the Fourier series above and let l tends to infinity: $$\begin{split} f(x) &= \lim_{l \to \infty} f(x) = \lim_{l \to \infty} \left[\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{\pi kx}{l}\right) + b_k \sin\left(\frac{\pi kx}{l}\right) \right] \\ &= \lim_{l \to \infty} \left[\frac{1}{2l} \int_{-l}^{l} f(u) \ du + \sum_{k=1}^{\infty} \frac{1}{l} \left(\int_{-l}^{l} f(u) \cos\left(\frac{\pi ku}{l}\right) \cos\left(\frac{\pi kx}{l}\right) \ du \right) \right] \\ &+ \int_{-l}^{l} f(u) \sin\left(\frac{\pi ku}{l}\right) \sin\left(\frac{\pi kx}{l}\right) \ du \right) \right] \\ &= 0 + \lim_{l \to \infty} \left[\sum_{k=1}^{\infty} \frac{1}{l} \int_{-l}^{l} f(u) \cos\left(\frac{\pi k(u-x)}{l}\right) \ du \right] \\ &= \lim_{l \to \infty} \left[\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\pi}{l} \int_{-l}^{l} f(u) \cos[\lambda_k(u-x)] \ du \right] \\ &= \lim_{l \to \infty} \frac{1}{\pi} \sum_{k=1}^{\infty} \Delta \lambda_k \int_{-l}^{l} f(u) \cos[\lambda_k(u-x)] \ du = \frac{1}{\pi} \int_{0}^{\infty} \ d\lambda \int_{-\infty}^{\infty} f(u) \cos\left(\lambda(u-x)\right) \ du. \end{split}$$ where we have set $$\lambda_k = \frac{k\pi}{l}, \qquad \Delta \lambda_k = \lambda_{k+1} - \lambda_k \quad , k = 1, 2, 3, \dots$$ Although the above reasoning needs further justification, it does indicate what is possible. We further notice that the following possibility $$f(x) = \frac{1}{\pi} \int_0^\infty d\lambda \int_{-\infty}^\infty f(u) \cos \lambda (u - x) du$$ $$= \int_0^\infty d\lambda \ (a(\lambda) \cos \lambda x + b(\lambda) \sin \lambda x),$$ where $$a(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos \lambda u \ du, \qquad b(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin \lambda u \ du$$ which is known as a prototype of Fourier Integral Theorem. We shall later justify that it actually holds for absolutely integrable function f on $(-\infty, +\infty)$. We call the improper integral (10.2) $$F(\lambda) = \int_0^\infty f(u) \cos \lambda (u - x) du$$ the Fourier cosine transform of f. ## 10.2. Preparation for the Fourier cosine integral theorem. **Definition.** Let $F(x,\lambda)$ be a function of two variables, and suppose that the integral (10.3) $$\int_{a}^{\infty} F(x,\lambda) \ dx$$ exists for every λ , $\alpha \leq \lambda \leq \beta$. Then we say that the above integral is *uniformly convergent* for λ in $\alpha \leq \lambda \leq \beta$ if for every $\epsilon > 0$, there is L such that $$\left| \int_{l}^{\infty} F(x,\lambda) \ dx \right| \le \epsilon,$$ whenever $l \geq L$ and for all λ , $\alpha \leq \lambda \leq \beta$. **Lemma 10.1.** Let x_k be a sequence such that $$(10.4) a = x_0 < x_1 < x_2 < \dots < x_n < \dots$$ and that $$\lim_{k \to \infty} x_k = \infty.$$ Then a necessary and sufficient condition for the integral (10.3) to be uniformly convergent over $[\alpha, \beta]$ is that the series $$\int_{a}^{\infty} F(x,\lambda) \ dx = \sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} F(x,\lambda) \ dx$$ is uniformly convergent on λ , $\alpha \leq \lambda \leq \beta$, as a function of λ , and for every sequence x_k defined by (10.4) above. *Proof.* We first suppose that the integral (10.3) is uniformly convergent. That is, given any $\epsilon > 0$, there is L such that $$\left| \int_{1}^{\infty} F(x,\lambda) \ dx \right| \le \epsilon$$ whenever $l \geq L$, for λ in $\alpha \leq \lambda \leq \beta$. Since $x_k \to \infty$, we can find a N > 0 such that $x_k > L$ when k > N. Thus $$\left| \int_{a}^{\infty} F(x,\lambda) \ dx - \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \ dx \right| = \left| \int_{a}^{\infty} F(x,\lambda) \ dx - \int_{a}^{x_{k}} F(x,\lambda) \ dx \right|$$ $$= \left| \int_{x_{k}}^{\infty} F(x,\lambda) \ dx \right| \le \epsilon,$$ for $\alpha \leq \lambda \leq \beta$. Hence the series $\sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} F(x,\lambda) \ dx$ is uniformly convergent over $[\alpha, \beta]$. Let us now suppose that this series is uniformly convergent over $[\alpha, \beta]$ and for any sequence $\{x_k\}$ in (10.4). We suppose on the contrary that the integral (10.3) is not uniformly convergent, that is, one can find an $\epsilon > 0$, and an infinite sequence $\{y_k\}$, $y_k \to \infty$ as $k \to \infty$, such that $$\left| \int_{y_k}^{\infty} F(x,\lambda) \ dx \right| \ge \epsilon$$ for all k. But this implies that when we choose $x_k = y_k$, $k = 1, 2, \ldots$, $$\left| \int_{a}^{\infty} F(x,\lambda) dx - \sum_{k=0}^{n-1} \int_{x_k}^{x_{k+1}} F(x,\lambda) dx \right| = \left| \int_{x_n}^{\infty} F(x,\lambda) dx \right| \ge \epsilon$$ for each n, contradicting the uniform convergence of $\sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} F(x,\lambda) dx$. **Lemma 10.2.** We suppose $F(x,\lambda)$ is regarded as a continuous function with respect to both of its variables and if the integral (10.5) $$\int_{a}^{\infty} F(x,\lambda) \ dx$$ is uniformly convergent with respect to λ , $\alpha \leq \lambda \leq \beta$, then the integral (10.5) defines a continuous function with respect to λ . In addition, we have $$\int_{\alpha}^{\beta} d\lambda \int_{a}^{\infty} F(x,\lambda) dx = \int_{a}^{\infty} dx \int_{\alpha}^{\beta} F(x,\lambda) d\lambda.$$ *Proof.* Since the integral (10.5) converges uniformly with respect to λ , $\alpha \leq \lambda \leq \beta$, the last Lemma asserts that for any sequence $\{x_k\}$, $x_k \nearrow \infty$, the series (10.6) $$\sum_{k=0}^{\infty} \int_{x_k}^{x_{k+1}} F(x,\lambda) \ dx$$ of continuous functions of λ , converges uniformly with respect to λ , $\alpha \leq \lambda \leq \beta$. Hence the infinite sum is a continuous function of λ ($\alpha \leq \lambda \leq \beta$). Writing $$F_k(\lambda) = \int_{x_k}^{x_{k+1}} F(x, \lambda) \ dx,$$ then $$\int_{\alpha}^{\beta} d\lambda \int_{a}^{\infty} F(x,\lambda) \ dx = \int_{\alpha}^{\beta} d\lambda \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \ dx$$ $$= \int_{\alpha}^{\beta} d\lambda \sum_{k=0}^{\infty} F_{k}(\lambda)$$ $$= \sum_{k=0}^{\infty} \int_{\alpha}^{\beta} F_{k}(\lambda) \ d\lambda$$ $$= \sum_{k=0}^{\infty} \int_{\alpha}^{\beta} d\lambda \int_{x_{k}}^{x_{k+1}} F(x,\lambda) \ dx$$ $$= \sum_{k=0}^{\infty} \int_{x_{k}}^{\beta} d\lambda \int_{\alpha}^{x_{k+1}} F(x,\lambda) \ d\lambda$$ $$= \int_{a}^{\infty} dx \int_{\alpha}^{\beta} F(x,\lambda) \ d\lambda,$$ where the 1 holds because the (10.6) says the convergence is uniform. Moreover, the 2 holds because the finite integral of continuous function. This completes the proof. Remark. Note that we can allow f to be piecewise continuous with respect to x. **Theorem 10.3.** Suppose that $F(x, \lambda)$ is continuous function of two variables, and that $\frac{\partial F}{\partial \lambda}$ is continuous. If both the integrals $$\int_{a}^{\infty} F(x, \lambda) \ dx, \qquad \int_{a}^{\infty} \frac{\partial F(x, \lambda)}{\partial \lambda} \ dx$$ exist and that the second integral is uniformly convergent for $\alpha \leq \lambda \leq \beta$, then we have $$\frac{\partial}{\partial \lambda} \int_a^\infty F(x, \lambda) \ dx = \int_a^\infty \frac{\partial F(x, \lambda)}{\partial \lambda} \ dx, \qquad \alpha \le \lambda \le \beta.$$ *Proof.* Since the second integral in the statement of the Theorem is uniformly convergent, so the sum $$\int_{a}^{\infty} \frac{\partial F(x,\lambda)}{\partial \lambda} \ dx = \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} \frac{\partial F(x,\lambda)}{\partial \lambda} \ dx$$ is uniformly convergent as a function of λ , $\alpha \leq \lambda \leq \beta$. Theorem 2.10 (iii) shows that $$\frac{d}{d\lambda} \int_{a}^{\infty} F(x,\lambda) dx = \frac{d}{d\lambda} \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) dx$$ $$= \sum_{k=0}^{\infty} \frac{d}{d\lambda} \int_{x_{k}}^{x_{k+1}} F(x,\lambda) dx$$ $$= \sum_{k=0}^{\infty} \int_{x_{k}}^{x_{k+1}} \frac{\partial F(x,\lambda)}{\partial \lambda} dx$$ $$= \int_{a}^{\infty} \frac{\partial F(x,\lambda)}{\partial \lambda} dx.$$ **Theorem 10.4.** Suppose for λ , $\alpha \leq \lambda \leq \beta$, $$|F(x, \lambda)| \le f(x)|$$ where F is continuous with respect to both variables, and that $$\int_{a}^{\infty} |f(x)| \ dx < \infty.$$ Then $$\int_{a}^{\infty} F(x, \lambda) \ dx$$ is uniformly convergent for λ , $\alpha \leq \lambda \leq \beta$. *Proof.* The uniform convergence of the integral follows easily from the Weierstrass M-test. \Box We now extend the usual Riemann-Lebesgue lemma. **Lemma 10.5.** If f(a) is absolutely integrable on $[a, \infty)$, then $$\lim_{l \to \infty} \int_{a}^{\infty} f(u) \sin lu \ du = 0.$$ *Proof.* Since f is absolutely integrable on $[a, \infty)$, so given $\epsilon > 0$, there is b > 0, b > a, such that $$\left| \int_{b}^{\infty} f(u) \sin lu \ du \right| \le \int_{b}^{\infty} |f(u)| \ du \le \frac{\epsilon}{2}.$$ But the usual Riemann-Lebesgue Lemma implies that $$\left| \int_{a}^{b} f(b)f(u)\sin lu \ du \right| < \frac{\epsilon}{2}$$ when l is chosen to be sufficiently large. Combining the above considerations gives the desired result. \square Remark. The above result obviously works for "cos lu", as well as for the integration in the range $\int_{-\infty}^{a}$ or $\int_{-\infty}^{\infty}$. **Lemma 10.6.** If f(x) is absolutely integrable on the whole x-axis, and if f(x+0) and f(x-0) both exist at x, then $$\lim_{l \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} f(x+u) \frac{\sin lu}{u} du = \frac{f(x+0) + f(x-0)}{2}.$$ Remark. We compare the above formula with the previous formula: (10.7) $$\lim_{n \to \infty} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+u) \frac{\sin(n+\frac{1}{2})u}{2\sin(\frac{u}{2})} du = \frac{f(x+0) + f(x-0)}{2}.$$ *Proof.* We first divide the interval $(-\infty, +\infty)$ into $(-\infty, -\delta)$, $(-\delta, \delta)$, $(\delta, +\infty)$ where δ is some positive number. It is easy to see that the function $\frac{f(x+u)}{u}$ is absolutely integrable on $-\infty < u < \delta$ and $\delta \le u < \infty$. Thus, the Riemann-Lebesgue Lemma 10.5 (and the following remark) implies that $$\lim_{l \to \infty} \int_{\delta}^{\infty} f(x+u) \frac{\sin lu}{u} \ du = 0 = \lim_{l \to \infty} \int_{-\infty}^{-\delta} f(x+u) \frac{\sin lu}{u} \ du.$$ Now we write (10.7) with $m = n + \frac{1}{2}$ $$\frac{f(x+0) + f(x-0)}{2} = \lim_{n \to \infty} \left[\frac{1}{\pi} \int_{-\pi}^{-\delta} f(x+u) \frac{\sin mu}{2 \sin \frac{u}{2}} du \right] \\ + \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin mu}{2 \sin \frac{u}{2}} du + \frac{1}{\pi} \int_{\delta}^{\pi} f(x+u) \frac{\sin mu}{2 \sin \frac{u}{2}} du \right] \\ = 0 + \lim_{n \to \infty} \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin mu}{2 \sin \frac{u}{2}} du + 0 \\ = \lim_{n \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} f(x+u) \frac{\sin mu}{u} du \\ + \lim_{n \to \infty} \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \left(\frac{1}{2 \sin \frac{u}{2}} - \frac{1}{u} \right) \sin mu du \\ = \lim_{n \to \infty} \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin mu}{u} du + 0$$ since the factor $\frac{1}{2\sin\frac{u}{2}} - \frac{1}{u} \sim 0$ as $u \to 0$ making $f(x+u)(\frac{1}{2\sin\frac{u}{2}} - \frac{1}{u})$ absolutely integrable over $[-\delta, \delta]$ (and so the Riemann-Lebesgue Lemma implies again). It remains to extend (10.8) to arbitrary number l instead of $m = n + \frac{1}{2}$, n integer. But we may write $l = m + \theta$, $m \le l < m + 1$, $0 \le \theta < 1$. Applying the mean value theorem yields $$\frac{\sin lu - \sin mu}{(l-m)u} = \frac{\sin lu - \sin mu}{\theta u} = \cos hu$$ for some h, m < h < l. Thus, $$\left| \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin u}{u} du - \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin mu}{u} du \right|$$ $$= \frac{1}{\pi} \left| \int_{-\delta}^{\delta} f(x+u) \cdot \theta \cdot \cos hu du \right|$$ $$< \frac{1}{\pi} \int_{-\delta}^{\delta} |f(x+u)| du < \frac{\epsilon}{2}$$ for any l when we choose δ to be sufficiently small. Thus for all l to sufficiently large, $$\left| \frac{f(x+0) + f(x-0)}{2} - \frac{1}{\pi} \int_{-\infty}^{\infty} f(x+u) \frac{\sin lu}{u} du \right|$$ $$\leq \left| \frac{f(x+0) + f(x-0)}{2} - \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin mu}{u} du \right|$$ $$+ \left| \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin mu}{u} du - \frac{1}{\pi} \int_{-\delta}^{\delta} f(x+u) \frac{\sin lu}{u} du \right|$$ $$+ \left| \frac{1}{\pi} \int_{-\infty}^{-\delta} f(x+u) \frac{\sin lu}{u} du \right| + \left| \frac{1}{\pi} \int_{\delta}^{\infty} f(x+u) \frac{\sin lu}{u} du \right|$$ $$\Rightarrow 0$$ as l or $m \to \infty$. This completes the proof. We are ready to consider **Theorem 10.7.** Let f be an absolutely integrable function on the x-axis \mathbb{R} . Then $$\frac{1}{\pi} \int_0^\infty d\lambda \int_{-\infty}^\infty f(u) \cos \lambda (u-x) \ du = \begin{cases} \frac{f(x+0) + f(x-0)}{2}, & x \text{ is a jump discontinuity for } f \\ f(x), & f \text{ is continuous at } x. \end{cases}$$ Remark. Note that we may rewrite the integral in the form $$\int_0^\infty \left(a(\lambda)\cos\lambda x + b(\lambda)\sin\lambda x \right) d\lambda,$$ where $$a(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos \lambda u \ du, \qquad b(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin \lambda u \ du.$$ *Proof.* Since f(u) is absolutely integrable over \mathbb{R} and $$|f(u)\cos\lambda(u-x)| \le |f(u)|$$ over \mathbb{R} , Theorem 10.4 asserts that $$\int_{-\infty}^{\infty} f(u) \cos \lambda (u - x) du$$ is uniformly convergent with respect to λ , $-\infty < \lambda < +\infty$. Then Lemma 10.2 implies, for a fixed x, the above integral is continuous with respect to λ . Moreover, $$\int_0^l d\lambda \int_{-\infty}^\infty f(u) \cos \lambda (u - x) \ du = \int_{-\infty}^\infty du \int_0^l f(u) \cos \lambda (u - x) \ d\lambda$$ $$= \int_{-\infty}^\infty f(u) \frac{\sin l(u - x)}{u - x} \ du$$ $$= \int_{-\infty}^\infty f(x + u) \frac{\sin lu}{u} \ du,$$ after a change of variable. The result now follows from letting $l \to \infty$ and Lemma 10.7. Remark. (1) If f(u) is absolutely integrable on \mathbb{R} , then the inequality $$|f(u)\sin\lambda(u-x)| \le |f(u)|$$ implies that the integral $$\int_{-\infty}^{\infty} f(u) \sin \lambda (u - x) \ du$$ converges uniformly for $-\infty < \lambda < +\infty$, and hence represents a continuous function of λ which is odd. Hence $$\int_{-\infty}^{\infty} d\lambda \int_{-\infty}^{\infty} f(u) \sin \lambda (u - x) \ du = 0.$$ Thus, we may write $$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\lambda \int_{-\infty}^{\infty} f(u) \underbrace{\cos \lambda (u - x)}_{\text{even in } \lambda} du + 0$$ $$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\lambda \int_{-\infty}^{\infty} f(u) \Big(\cos \lambda (u - x) + i \sin \lambda (u - x)\Big) du$$ $$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\lambda \int_{-\infty}^{\infty} f(u) e^{i\lambda(u - x)} du$$ which is known as the *complex form* of the Fourier Integral Theorem. (2) Recall that $$f(x) = \int_0^\infty a(\lambda) \cos \lambda x + b(\lambda) \sin \lambda x \ d\lambda$$ where $$a(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \cos \lambda u \ du, \qquad b(\lambda) = \frac{1}{\pi} \int_{-\infty}^{\infty} f(u) \sin \lambda u \ du.$$ If f(u) is even, then $b(\lambda) = 0$. If f is odd, then $a(\lambda) = 0$. Thus, if f is defined on $[0, \infty)$, then we may get either an odd or even extension of f onto the \mathbb{R} corresponding to the two representations of f above. To be continued ...