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Chapter 1

Analytic Functions
We shall give a brief review of the basic results in complex functions
centred around Cauchy’s integral formula in its general form and its
immediate consequences.

1.1 Notations
C = {z = x+ iy : |x| <∞, |y| <∞, i2 = −1}:= complex plane;
Ĉ = C ∪ {∞}:= extended complex plane or Riemann sphere;
B(z0, r) = {z : |z − z0| < r}:= open disk;
B(z0, r) = {z : |z − z0| ≤ r}:= closed disk;
<(z):= real part of z;
=(z):= imaginary part of z.

Definition 1.1.1. 1. A set S ∈ C is connected if for any two points
lying in S, there exist a polygonal curve lying entirely in S and
connecting the points.

2. A region G ∈ C is an open connected set.

1



CHAPTER 1. ANALYTIC FUNCTIONS 2

1.2 Cauchy-Riemann Equations
Definition 1.2.1. Let G be an open set in C and f : G→ C. Then f
is differentiable at a ∈ G if the limit

lim
h→∞

f(a+ h)− f(a)
h

exists; the value of the limit is denoted by f ′(a) which is called the
derivative of f at a. If f is differentiable at each point of G, then we
say f is differentiable on G.

Definition 1.2.2. A function f : G→ C is analytic if f is continuously
differentiable on G i.e., f ′ is continuous at every point of G.

We shall show later (see Remark 1.11) that analyticity of f alone
(i.e., without the continuity assumption) implies the continuity of f ′
(in a neighbourhood). That is, the function must be continuously dif-
ferentiable. This is certainly not the case in real function theory; there
exist many real functions such that their derivatives are not continu-
ous. (e.g. |x|)

It is an easy exercise to show (from the definition) that if f(z) =
u(x, y) + iv(x, y) is analytic, then u and v satisfy the Cauchy-Riemann
equations at z:

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Note that the partial derivatives are continuous and the converse
is also true.

Theorem 1.2.3. Let u and v be real-valued functions defined on a
region G and suppose that they have continuous derivatives there. Then
f : G → C, f = u + iv is analytic if and only if both u and v satisfy
the Cauchy-Riemann equations.

Proof. See Conway p.41-42.
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1.3 Line Integrals
Definition 1.3.1. A path in a region G ⊂ C is a continuous function
γ : [a, b]→ G (a < b). A path is smooth if γ′ exists and also continuous
on [a, b]. Let a = t0 < t1 < t2 < · · · < tn = b be a partition on [a, b],
then a path γ : [a, b] → G is piecewise smooth if it is smooth on each
subinterval [ti−1, ti], i = 1, . . . , n.

Remark. We note that if γ′(t) 6= 0 implies that γ has a tangent at t.
Some authors will simply assume, in addition to the existence and the
continuity for the smooth curve γ, to have γ′ 6= 0.

Definition 1.3.2. We define the length of a piecewise smooth curve
to be

l(γ) =
∫ b
a
|γ′(t)| dt.

This is clearly a well-defined number. Suppose that f : G → C is
continuous and γ[a, b] ⊂ G, we define the line integral along γ to be
the number ∫

γ
f =

∫ b
a
f dγ =

∫ b
a
f(γ(t))γ′(t) dt.

In fact, it can be shown that the integral always exists (see Conway
p.60-62) and it is independent of any particular parametrization (see
Conway p.63-64).

Definition 1.3.3. Let f and γ be defined as above. Then we define
the line integration of f along γ with respect to the arc length as

∫
γ
f |dz| =

∫ b
a
f(γ(t))|γ′(t)| dt. (1.1)

The integral clearly exists since f is continuous, and γ is piecewise
continuous. It is easy to verify that∣∣∣∣∣

∫
γ
f dz

∣∣∣∣∣ ≤
∫
γ
|f | |dz|.
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Remark. The (1.1) becomes l(γ) if f(t) ≡ 1.
Theorem 1.3.4. Let γ : [a, b] → G be a piecewise smooth path in a
region G with initial and end points α and β. Suppose f : G → C is
continuous with primitive F : G→ C (i.e. F ′ = f), then∫

γ
f = F (β)− F (α). (γ(a) = α, γ(b) = β)

Proof. By definition of line integral above,

∫
γ
f =

∫ b
a
f(γ(t))γ′(t) dt

=
∫ b
a
F ′(γ(t))γ′(t) dt

=
∫ b
a

(F ◦ γ)′(t) dt
= F (γ(b))− F (γ(a))
= F (β)− F (α).

by the Fundamental Theorem of Calculus.

Definition 1.3.5. A curve γ : [a, b]→ C is said to be closed if γ(a) =
γ(b).

We deduce immediately from the above theorem that∫
γ
f = 0

when γ is a closed piecewise smooth path and with f as in the above
theorem.
Remark. (i) All of the above definitions and results about piecewise

smooth paths can be generalized to rectifiable paths. We shall
restrict ourselves to piecewise smooth paths in the rest of the
course. See Conway for more details.

(ii) Although the treatment here (and in most books) about line in-
tegral is short, complex line integral is considered to be a very
important contribution from Cauchy (in a paper dated 1825).
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1.4 Local Cauchy Integral Formula
Theorem 1.4.1 (Local Cauchy Integral Formula). Let f : G → C be
analytic and that B(a, r) ⊂ G, γ(t) = a+ reit, t ∈ [0, 2π]. Then

f(z) = 1
2πi

∫
γ

f(w)
w − z

dw

for any z ∈ B(a, r).

To prove this theorem, we require

Proposition 1.4.2. Let ϕ : [a, b]×[c, d]→ C be a continuous function.
Define g : [c, d]→ C by

g(t) =
∫ b
a
ϕ(s, t) ds.

Then g is continuous. Moreover, if ∂ϕ
∂t

exists and is a continuous
function on [a, b]× [c, d], then g is continuously differentiable on [c, d]
and

g′(t) =
∫ b
a

∂ϕ

∂t
(s, t) ds. (1.2)

Proof. Since ϕ : [a, b] × [c, d] → C is continuous and hence it just be
uniformly continuous on its domain. It follows easily that g, as defined
above, must be continuous on [c, d]. In order to prove (1.2), it suffices
to show that

g(t)− g(t0)
t− t0

−
∫ b
a

∂ϕ

∂t
(s, t0) ds

can be made arbitrarily small.
Since ϕt(s, t) = ∂ϕ

∂t
(s, t) is continuous on [a, b] × [c, d], it must be

uniformly continuous there. Thus, given ε > 0, there exists a δ > 0
such that

|ϕt(s′, t′)− ϕt(s, t)| < ε
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whenever (s′ − s)2 + (t′ − t)2 < δ2. In particular,

|ϕt(s, t)− ϕt(s, t0)| < ε

if a ≤ s ≤ b and |t− t0| < δ. Hence for |t− t0| < δ, we have∣∣∣∣∣
∫ t
t0
ϕt(s, τ)− ϕt(s, t0) dτ

∣∣∣∣∣ < ε|t− t0|.

But the integrand of the last inequality equals, with a fixed s,

(ϕ(s, t)− tϕt(s, t0))− (ϕ(s, t0)− t0ϕt(s, t0))
= ϕ(s, t)− ϕ(s, t0)− (t− t0)ϕt(s, t0).

Hence
|ϕ(s, t)− ϕ(s, t0)− (t− t0)ϕt(s, t0)| < ε|t− t0|

whenever a ≤ s ≤ b and |t− t0| < δ. But this is precisely∣∣∣∣∣∣g(t)− g(t0)
t− t0

−
∫ b
a
ϕt(s, t0) ds

∣∣∣∣∣∣ < ε|b− a|

after integration with respect to s on both sides. This proves g′(t) =∫ b
a ϕt(s, t) ds. But ϕt is continuous and so g′ must also be continuous.

Example 1.4.3. Show that
∫ 2π

0

eis

eis − z
ds = 2π

whenever |z| < 1.

Solution. Since ϕ(s, t) = eis

eis − tz
, for 0 ≤ t ≤ 1, 0 ≤ s ≤ 2π, is

continuously differentiable, it follows from Prop 1.4.2 that

g(t) =
∫ 2π

0
ϕ(s, t) ds =

∫ 2π

0

eis

eis − tz
ds.
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But
∫ 2π

0

zeis

(eis − tz)2 ds = −iz
eis − tz

∣∣∣∣∣
2π

0
= −iz
e2πi − tz

− −iz
e0 − tz

= 0.

for all t ∈ [0, 1]. Hence g(t) = constant, and in particular,

g(0) =
∫ 2π

0

eis

eis − 0 ds = 2π.

For t = 1, we have the required equality.

Now, we are sufficiently prepared to prove Theorem 1.4.1.

Proof of Theorem 1.4.1. For any B(a, r) ⊂ G, we are required to show

f(z) = 1
2πi

∫
γ

f(w)
w − z

dw

where γ(t) = a+ reit, t ∈ [0, 2π].
Without loss of generality, it is clear that we may consider a = 0

and r = 1 only. Since the translation f(a + rz) will take that B(0, 1)
to any preassigned B(a, r). Thus we aim to show

f(z) = 1
2πi

∫
γ

f(w)
w − z

dw = 1
2π

∫ 2π

0

f(eis)eis
eis − z

ds, z ∈ B(0, 1).

Consider
ϕ(s, t) = f(z + t(eis − z))eis

eis − z
− f(z),

where t ∈ [0, 1], s ∈ [0, 2π], |z| < 1. Clearly ϕ is continuously differen-
tiable. Hence

g(t) =
∫ 2π

0
ϕ(s, t) ds
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is also continuously differentiable, and

g′(t) =
∫ 2π

0

∂

∂t

f(z + t(eis − z))eis
eis − z) − f(z)

 ds

=
∫ 2π

0

(eis − z)f ′(z + t(eis − z))eis
eis − z

ds

=
∫ 2π

0
f ′(z + t(eis − z))eis ds

= 1
it
f(z + t(eis − z))

∣∣∣∣∣
2π

0
= 0

for each t ∈ [0, 1]. Hence g(t) = constant. Then
∫ 2π

0

f(z)eis
eis − z

− f(z)
 ds = g(0) = g(1) =

∫ 2π

0

f(eis)eis
eis − z

− f(z)
 ds.

But
∫ 2π

0

f(z)eis
eis − z

− f(z)
 ds = f(z)

∫ 2π

0

 eis

eis − z
− 1

 ds = 0

by the Example 1.4.3 above. Hence g(1) = 0. And this is precisely

2πf(z) =
∫ 2π

0

f(eis)eis
eis − z

ds = 1
i

∫
γ

f(w)
w − z

dw.

The result follows.

1.5 Consequences
We now investigate some consequences of the local Cauchy Integral
formula.

Theorem 1.5.1. Let f be analytic on B(a,R). Then

f(z) =
∞∑
n=0

an(z − a)n
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for z ∈ B(a,R) where an = f (n)(a)
n! and the series has radius of con-

vergence at least R.

Proof. Let r > 0 such that B(a, r) ⊂ B(a, R). Suppose γ(t) = a+reit,
t ∈ [0, 2π]. Define M = maxz∈γ[0,2π] |f(z)| since γ[0, 2π] is compact and
f is continuous on γ[0, 2π]. By Theorem 1.4.1, we have

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ, ζ = γ(t) = a+ reit.

We claim that

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − a+ a− z

dζ

= 1
2πi

∫
γ

f(ζ)
(ζ − a)

(
1− z−a

ζ−a

) dζ

= 1
2πi

∫
γ

f(ζ)
ζ − a

∞∑
k=0

(
z − a
ζ − a

)k
dζ

=
∞∑
k=0

(z − a)k · 1
2πi

∫
γ

f(ζ)
(ζ − a)k+1 dζ :=

∞∑
k=0

ak(z − a)k.

This is because
∣∣∣∣∣z − aζ − a

∣∣∣∣∣ < 1 and
∣∣∣∣∣∣ f(ζ)
ζ − a

(
z − a
ζ − a

)k∣∣∣∣∣∣ ≤ M

r

|z − a|
r

k .

So the series
∑ f(ζ)
ζ − a

(
z − a
ζ − a

)k
converges uniformly by applying M-

test.
Thus we could interchange the integral and summation signs in the

above computation. But the series

f(z) =
∞∑
k=0

ak(z − a)k
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can be differentiated indefinitely within its radius of convergence, and
the derivatives are given by

f (n)(z) =
∞∑
k=0

n(n− 1) · · · (n− k + 1)ak(z − a)k−n, n = 1, 2, 3, · · ·

so that
f (n)(a) = n!an.

Hence
1

2πi
∫
γ

f(ζ)
(ζ − a)n+1 dζ = an = fn(a)

n!
for each n ≥ 0. This completes the proof.

We deduce immediately from the above theorem that

Theorem 1.5.2. Suppose f : G → C is analytic and B(a, r) ⊂ G.
Then

(i) f is infinitely differentiable; and

(ii)

f (n)(a) = n!
2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ, γ(t) = a+ reit.

The next theorem is another very important result in complex anal-
ysis. It will be derived from Theorem 1.5.1 above. However, some
authors prefer to derive it directly and deduce the Cauchy Integral
formula as a consequence.

Theorem 1.5.3. Let f be analytic on B(a,R) and suppose γ is any
closed piecewise smooth curve in B(a,R). Then f has a primitive and∫

γ
f = 0.
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Proof. Suppose z ∈ B(a,R) and f(z) = ∑∞
n=0 an(z − a)n by Theorem

1.5.1. It can be easily verified that the function defined by

F (z) =
∞∑
n=0

an
n+ 1(z − a)n+1

has the same radius of convergence as that of f(z). Clearly F is dif-
ferentiable, and F ′(z) = f(z). Hence, F is a primitive of f in B(a, R).

Suppose γ : [a, b]→ C is as in the assumption, then
∫
γ
f(z) dz =

∫ b
a
f(γ(t))γ′(t) dt

=
∫ b
a
F ′(γ(t)γ′(t) dt

=
∫ b
a

d

dt
F (γ(t)) dt

= F (γ(b))− F (γ(a))
= 0

since γ is closed.

1.6 Liouville’s Theorem
Definition 1.6.1. We say a function f that is analytic everywhere in
C an entire function.

Clearly, any entire function has the power series representation in
B(a, r) for any a ∈ C and any r > 0. So the power series must have
an infinite radius of convergence.

Proposition 1.6.2. Let G be an region. If f : G→ C is differentiable
with f ′(z) = 0 for all z ∈ G, then f is a constant on G.

Proof. Let z0 ∈ G and f(z0) = w0. Set

A = {z ∈ G : f(z) = w0} ⊂ G.
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We aim to show that A = G by proving that A is both open and
closed. Then a standard topological argument gives A = G. Hence, f
is constant on G.

Let {zn} be a sequence in A and zn → z as n → ∞. Then by the
continuity of f , we have

w0 = lim
n→∞ f(zn) = f( lim

n→∞ zn) = f(z).

Hence z belongs to A. This proves that A is closed.
Let a ∈ A, B(a, ε) ⊂ G and z ∈ B(a, ε). Let

g(t) = f(tz + (1− t)a), 0 ≤ t ≤ 1.

Then

g(t)− g(s)
t− s

= f(tz + (1− t)a)− f(sz + (1− s)a)
tz + (1− t)a− (sz + (1− s)a)

· tz + (1− t)a− (sz + (1− s)a)
t− s

→ f ′(sz + (1− s)a) · (z − a) (Chain rule)
= 0 · (z − a) = 0,

as t → s. That is g′(s) = 0. So f(z) = g(1) = g(0) = f(a) = w0.
Since z ∈ B(a, ε) is arbitrary, we conclude that B(a, ε) ⊂ A. Hence A
is open. This completes the proof.

Theorem 1.6.3 (Liouville’s Theorem). Any bounded entire function
must reduce to a constant. That is, there is no non-constant entire
function.

Proof. Let z ∈ B(z, r) ⊂ C. Then Theorem 1.5.2 implies

f ′(z) = 1
2πi

∫
γ

f(ζ)
(ζ − z)2 dζ, γ = z + reit, t ∈ [0, 2π]
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So

|f ′(z)| ≤ 1
2πi

∫
γ

|f(z)|
|ζ − z|2

|ireit| dt

≤ upper bound of |f |
r

→ 0 as r →∞.

Hence f ′(z) = 0 for every z ∈ C.

Alternatively,

|an| =
∣∣∣∣∣∣ 1
2πi

∫
γ

f(ζ)
(ζ − z)n+1 dζ

∣∣∣∣∣∣
≤ upper bound of |f |

rn
→ 0 as r →∞

for each n ≥ 1. Hence

f(z) =
∑
an(z − a)n = a0 = constant.

Definition 1.6.4. Let f : G→ C and a ∈ G such that f(a) = 0. Then
a is a zero of f with multiplicity m ≥ 1 if there is an analytic function
g such that f(z) = (z − a)mg(z) and g(a) 6= 0.

We deduce the following important theorem from the Louville The-
orem.

Theorem 1.6.5 (Fundamental Theorem of Algebra). Every polyno-
mial P (z) = anz

n + · · ·+ a0 can be factored as

P (z) = c(z − b1)k1 · · · (z − bm)km,

where c is a constant, b1, . . . , bm are the zeros of P and k1+· · ·+km = n.

Proof. It suffices to show that P has at least one zero if it is non-
constant, so that we have P (z) = (z − a)g(z), and then obtain the
general form via induction on the degree of P .
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So let us suppose that P (z) 6= 0 for all z ∈ C. Then

F (z) := 1
P (z)

is an entire function on C. But F (z) → 0 uniformly as z → ∞ along
all possible paths, so we can find an M ′ > 0 and R > 0 such that
|F (z)| < M for z ∈ C \B(0, R).

Notice that F is also continuous on B(0, R) since P has no zeros
there. Hence we may find a M ′′ > 0 such that |F | < M ′′ on B(0, R)
since the closed disk is a compact set and F is continuous on it.

Let M = max {M ′,M ′′}, we see that |F | < M for all z ∈ C. So
F , and hence P, must reduce to a constant by Louville’s theorem. It
contradicts to the assumption that P is an arbitrary polynomial.

1.7 Maximum Modulus Theorem
Theorem 1.7.1 (Isolated Zero Theorem). Let G be a region, f : G→
C be analytic. If the set Z := {z ∈ G : f(z) = 0} has a limit point in
G, then f ≡ 0 in G.

Proof. Let a be a limit point of Z := {z ∈ G : f(z) = 0}. Then we
can find a sequence {zn} in G, zn → a and f(zn) = 0. Since

0 = lim
n→∞ f(zn) = f(a),

so f(a) = 0. Theorem 1.5.1 implies that for some R > 0 such that
B(a, R) ⊂ G, we have

f(z) =
∞∑
k=0

ak(z − ak)k

Suppose that there is an integer N where 0 = a0 = a1 = · · · = aN−1
but aN 6= 0. Then we can write

f(z) = (z − a)Ng(z),
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in B(a, R) where g is analytic there and g(a) 6= 0. But since g is
analytic and hence continuous in B(a, R), we can find 0 < r < R such
that g(z) 6= 0 in B(a, r). But since a is a limit point, so there is a
b ∈ B(a, r) different from a such that 0 = f(b) = (b− a)Ng(b) 6= 0. A
contradiction. So no such integer N can be found. Thus, the set

A := {z ∈ G : f (n)(z) = 0 for all n ≥ 0}.

is non-empty.
We next show that A is both closed and open. Let z belongs to

the closure of A, and {zk} ⊂ A converges to z. Since each f (n) is
continuous, it follows that 0 = limk→∞ f

(n)(zk) = f (n)(z). Hence z ∈ A
and A is closed.

Let a ∈ A and B(a, R) ⊂ G. Then f(z) = ∑
ak(z−a)k in B(a, R),

and f (n)(a) = 0 for each n. So f(z) = 0 in B(a, R). Then clearly
B(a, R) ⊂ A. Hence A is open. Since A is non-empty, so A = G.

Corollary 1.7.1.1 (Identity Theorem). If f = g on a sequence of
points having a limit point in G, then f ≡ g on G.

Theorem 1.7.2 (Maximum Modulus Theorem). Let G be a region
and f : G → C is analytic. If there exists a point a ∈ G such that
|f(z)| ≤ |f(a)| for all z ∈ G, then f is constant.

Proof. Let z0 be an arbitrary point in G such that |f(z0)| = |f(a)|,
B(z0, r) ⊂ G, γ(t) = z0 + reit, t ∈ [0, 2π].

By Cauchy’s integral formula,

f(z0) = 1
2πi

∫
γ

f(ζ)
ζ − z0

dζ

= 1
2πi

∫ 2π

0

f(z0 + reit)
reit

ireit dt

= 1
2π

∫ 2π

0
f(z0 + reit) dt.
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We may suppose that |f | is non-constant on ∂B(z0, r) for some
r > 0. Hence, there exists a t0 ∈ [0, 2π] and δ > 0 such that

|f(z0 + reit)| < M = |f(a)| on [t0 − δ, t0 + δ].

Hence

M = |f(z0)| ≤
∣∣∣∣∣ 1
2π

∫
t∈[0,2π]\[t0−δ,t0+δ]

f(z0 + reit) dt
∣∣∣∣∣

+
∣∣∣∣∣ 1
2π

∫
t∈[t0−δ,t0+δ]

f(z0 + reit) dt
∣∣∣∣∣

<
M

2π (2π − 2δ) + M

2π2δ = M.

A contradiction since M ≮ M. Hence |f | ≡ M in B(z0, r), then f
is constant in B(z0, r) (Use f ′ = ux + ivx and Proposition 1.6.2). Now,
since B(z0, r) is non-empty open subset of G, then by the Identity
Theorem, f is constant on G.

Theorem 1.7.3 (Minimum Modulus Theorem). Let f : G → C be
analytic and G is a region. If there exists a ∈ G such that |f(z)| ≥
|f(a)| for all z ∈ G, then either f is a constant or f(a) = 0 i.e. a is
zero of f.

Proof. Exercise.

1.8 Branch of the Logarithm
Definition 1.8.1. Let G be a region and f : G → C is continuous.
We call f(z), a branch of the logarithm if ef(z) = z for every z ∈ G.

If ew = z, then we write w = log z = f(z). But ew+2πik = ew = z for
every integer k. Hence for each z, the equation ew = z has an infinite
number of solution for w = log |z| + i(arg z + 2πk). Let G = C \ {x :
x ≤ 0} and −π < arg z < π. The function

f(z) = log |z|+ i arg z, z ∈ G
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is called the principal branch of the logarithm. The other branches of
the logarithm are given by

fk(z) = log |z|+ i arg z

for (2k − 3)π < arg z < (2k − 1)π., k ∈ Z \ {1}. (Principal branch
f = f1, i.e., k = 1)

The principal branch of the logarithm is analytic on C\{x : x ≤ 0}.

Proposition 1.8.2. Let γ : [0, 1] → C be a closed piecewise smooth
curve and assume that a /∈ γ. Then

1
2πi

∫
γ

dζ

ζ − a
∈ Z.

This proposition seems trivial since
∫
γ

dζ

ζ − a
=
∫
γ
d(log(ζ − a)) =

∫
γ
d(log |ζ − a|) + i

∫
γ
d(arg(ζ − a)).

When γ has described a complete revolution, γ(t) returns to its initial
position, so the first integral ∫γ d(log |ζ − a|) = 0; and i ∫γ d(arg(ζ − a))
gives 2πik, where k is the number of the complete revolutions that γ
around a. However, the function arg(ζ − a) is not uniquely determined
(multi-valued), so the above argument is not precise.

Proof. One of the easiest proofs available is to consider the function

g(t) =
∫ t

0

ζ ′(t)
ζ(t)− a dt.

Note that
g(1) =

∫ 1

0

ζ(t)
ζ(t)− a dt =

∫
γ

dζ

ζ − a
.



CHAPTER 1. ANALYTIC FUNCTIONS 18

We aim to show that eg(t)

ζ(t)− a is constant on [0, 1]. Consider

d

dt

 eg(t)

ζ(t)− a

 = g′(t)eg
ζ(t)− a −

ζ ′(t)eg
(ζ(t)− a)2

= eg
 ζ ′(t)

(ζ(t)− a)2 −
ζ ′(t)

(ζ(t)− a)2


= 0

for t ∈ [0, 1]. Thus

eg(0)

ζ(0)− a = eg(1)

ζ(1)− a =⇒ eg(0) = eg(1).

But g(0) = 0, so eg(1) = 1.
Hence

g(1) =
∫ 1

0

ζ ′(t)
ζ(t)− a dt =

∫
γ

dζ

ζ − a
= 2πik

for some integer k. Then the result follows.

Definition 1.8.3. Let γ : [0, 1]→ C be a closed and piecewise smooth
curve, and a /∈ γ. We define

n(γ; a) = 1
2πi

∫
γ

dζ

ζ − a

to be the index of γ with respect to a or the winding number of γ around
a.

Suppose γ(t) : [0, 1] → C is a curve, we define −γ(t) = γ(1 − t).
If σ : [0, 1] → C is another curve such that γ(1) = σ(0), then γ + σ
means

(γ + σ)(t) =
γ(2t), 0 ≤ t ≤ 1

2
σ(2t− 1), 1

2 < t ≤ 1.
It is left as an exercise to verify that
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(i) n(−γ; a) = −n(γ; a)

(ii) n(γ + σ; a) = n(γ; a) + n(σ; a).
Proposition 1.8.4. Let γ : [0, 1]→ C be a closed and piecewise smooth
curve, and a /∈ γ. Then n(γ; a) is constant for any a belongs to a
bounded component of C \ γ, and zero for a belongs to the unbounded
component.
Remark. There is only one unbounded component since γ is a com-
pact set.
Proof. Let a and b belong to the same component D of C \ γ. Since
n(γ; a) and n(γ; b) both equal to some integers, it suffices to prove
n(γ; a) is continuous on D. (Then, n(γ;D) is connected, and since
n(γ;D) ⊂ Z, n(γ;D) is a constant integer only.)

Let d = minζ∈γ{|ζ − a|, |ζ − b|}. Then, by definition,

|n(γ; a)− n(γ; b)| =
∣∣∣∣∣ 1
2πi

∫
γ

( 1
ζ − a

− 1
ζ − b

)
dζ

∣∣∣∣∣
= 1

2π

∣∣∣∣∣∣
∫
γ

a− b
(ζ − a)(ζ − b) dζ

∣∣∣∣∣∣
≤ 1

2π
∫
γ

|a− b|
|(ζ − a)(ζ − b)| |dζ|

≤ |a− b|2πd2

∫
γ
|dζ|

= |a− b|2πd2 l(γ)→ 0,

as |a−b| → 0. Hence n(γ; a) is continuous on any components of C\γ.
For a belongs to the unbounded component of C \ γ, let d =

minζ∈γ{|ζ − a|} By the above argument, we have

|n(γ; a)| = 1
2π

∣∣∣∣∣
∫
γ

dζ

ζ − a

∣∣∣∣∣
≤ 1

2πdl(γ).
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But minζ∈γ{|ζ − a|} → ∞ as a → ∞. Hence, |n(γ; a)| → 0 as
a→∞. Since n(γ; a) is constant and so n(γ; a) = 0 in this unbounded
component because n(γ; a) was proved to be continuous.

1.9 Cauchy’s Theorem
We next prove the general Cauchy Integral formula and Cauchy’s the-
orem. In particular, we give conditions on n(γ; a) so that the Cauchy
theorem holds.
Proposition 1.9.1. Let γ be a piecewise smooth curve and ϕ is a
function continuous on γ. For each m ≥ 1, define, for z /∈ γ

Fm(z) =
∫
γ

ϕ(ζ)
(ζ − z)m dζ.

Then, Fm is analytic on C \ γ and F ′m = mFm+1.

Proof. We first show that Fm is continuous on C\γ. Since γ is compact
and ϕ is continuous on γ, we may let M = maxz∈γ |ϕ(z)|.

Let a and b belong to the same component (if any) of C \ γ. Then,
as in the proof for n(γ; a),

|Fm(a)− Fm(b)| =
∣∣∣∣∣∣
∫
γ

 ϕ(ζ)
(ζ − a)m −

ϕ(ζ)
(ζ − b)m

 dζ

∣∣∣∣∣∣
≤M

∫
γ

∣∣∣∣∣∣ 1
(ζ − a)m −

1
(ζ − b)m

∣∣∣∣∣∣ · |dζ|.
So, it remains to estimate the function inside the integrand: Since

Am −Bm = (A−B)(Am−1 + Am−2B + · · ·+ ABm−2 +Bm−1).

Putting A = 1
ζ − a

and B = 1
ζ − b

, and let d = minζ∈γ{|ζ−a|, |ζ−
b|}, gives

|Fm(a)− Fm(b)| ≤ mM
|a− b|
dm+1 l(γ)→ 0 as a→ b.
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Hence, Fm is continuous on C \ γ.
Let a, b ∈ C \ γ and A, B as defined above. Then

Fm(a)− Fm(b)
a− b

= 1
a− b

∫
γ
ϕ(ζ)(A−B)(Am−1 + Am−2B + · · ·+ ABm−2 +Bm−1) dζ

= 1
a− b

∫
γ
ϕ(ζ)(a− b)AB(Am−1 + Am−2B + · · ·

+ ABm−2 +Bm−1) dζ
=
∫
γ
ϕ(ζ)(AmB + Am−1B2 + · · ·+ ABm) dζ

−→
∫
γ
ϕ(ζ)(Bm+1 +Bm+1 + · · ·+Bm+1) dζ

= m
∫
γ
ϕ(ζ)Bm+1 dζ

= m
∫
γ

ϕ(ζ)
(ζ − b)m+1 dζ

= F ′m(b)

as a→ b.
Hence, Fm is analytic with its derivative given at the end of the

above expression.

Theorem 1.9.2 (Cauchy’s Integral Formula - First version). Let G
be an open subset of C and f : G → C be analytic. If γ is a closed
piecewise smooth curve in G such that n(γ;w) = 0 for all w ∈ C \ G,
then for a ∈ G \ γ,

n(γ; a)f(a) = 1
2πi

∫
γ

f(ζ)
ζ − a

dζ.

Proof. Define ϕ : G×G→ C by

ϕ(z, w) =


f(z)− f(w)

z − w
, if z 6= w

f ′(z), if z = w.

(Exercise: Show ϕ is continuous and z 7→ ϕ(z, w) is analytic.)
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Let H = {w ∈ C : n(γ;w) = 0}. Then H is open since n(γ;w) is
continuous on C\γ and integer-valued i.e., {0} is open in Z. From the
definition of G and H, we deduce that C = G ∪ H and G ∩ H 6= ∅.
Define g : C→ C by

g(z) =


∫
γ ϕ(z, ζ) dζ, if z ∈ G∫
γ
f(ζ)
ζ − z

dζ, if z ∈ H.

Next, we verify that g is well-defined on G ∩H.

∫
γ
ϕ(z, ζ) dζ =

∫
γ

f(z)− f(ζ)
z − ζ

dζ

=
∫
γ

f(ζ)− f(z)
ζ − z

dζ

=
∫
γ

f(ζ
ζ − z

dζ − f(z) · 2πi n(γ; z)

=
∫
γ

f(ζ)
ζ − z

dζ,

since z ∈ G ∩H. Hence, g is a well-defined function on C.
It follows from Proposition 1.9.1 that g is an entire function, and

from Proposition 1.8.4, H must contain the unbounded component of
C \ γ (because if n(γ;w) = 0, then w ∈ H). For z belongs to the
unbounded component, we have

lim
z→∞ g(z) = lim

z→∞

∫
γ

f(ζ)
ζ − z

dζ =
∫
γ
f(ζ) lim

z→∞
1

ζ − z
dζ = 0

since f is bounded on γ and limz→∞
1

ζ − z
= 0 uniformly.

So, there exists an R > 0 such that |g(z)| ≤ 1 for |z| ≥ R, and since
g is bounded on the compact set B(0, R), then g is a bounded entire
function. Hence g is constant by Liouville’s Theorem. Thus, g(z) = 0
for all z ∈ C.
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That is, for a ∈ G \ γ,

0 = g(a) =
∫
γ

f(ζ)− f(a)
ζ − a

dζ

=
∫
γ

f(ζ)
ζ − a

− f(a) · 2πi n(γ; a).

This completes the proof.

Theorem 1.9.3 (Cauchy’s Integral Formula - Second version). Let G
be an open subset of C and f : G → C is an analytic function. If
γ1, . . . , γm are closed piecewise smooth curves in G such that

n(γ1;w) + · · ·+ n(γm;w) = 0

for all w ∈ C \G, then for all a ∈ G \ γ and γ = γ1 ∪ · · · ∪ γm,

f(a)
m∑
k=1

n(γk; a) =
m∑
k=1

1
2πi

∫
γk

f(ζ)
ζ − a

dζ.

Proof. The proof is similar to that of Theorem 1.9.2 except to define
suitable ϕ, H and g.

Theorem 1.9.4 (Cauchy’s Theorem - First version). Let G be an open
subset of C and f : G → C is an analytic function. If γ1, . . . , γm are
closed piecewise smooth curves in G such that

n(γ1;w) + · · ·+ n(γm;w) = 0

for all w ∈ C \G, then
m∑
k=1

∫
γk
f = 0.

Proof. Put f(z)(z−a) instead of f(z), and then apply Theorem 1.9.3.

Remark. We note that Cauchy’s theorem was published around 1825,
while Goursat’s theorem was around 1900.
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Theorem 1.9.5 (Morera’s Theorem). Let G be a region and f : G→ C
be a continuous function such that∫

T
f = 0

for every closed triangular curve T in G, then f is analytic on G.

Remark. A closed triangular curve is a closed three sides polygon.

Proof. It suffices to show that f has a primitive on each open disks in
G. In fact, we may assume G = B(a,R) since G is open.

Let z ∈ B(a,R) and define

F (z) =
∫
[a,z]

f.

Suppose z0 ∈ B(a,R), then

F (z) =
(∫

[a,z0]
+
∫

[z0.z]

)
f.

b

b

b
a

z

z0

Figure 1.1: B(a,R)

So

F (z)− F (z0)
z − z0

= 1
z − z0

∫
[z0,z]

f

= 1
z − z0

∫
[z0.z]

(f(ζ)− f(z0)) dζ + f(z0).
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Hence∣∣∣∣∣∣F (z)− F (z0)
z − z0

− f(z0)
∣∣∣∣∣∣ ≤ sup

ζ∈[z,z0]
|f(ζ)− f(z0)| ·

∣∣∣∣∣ 1
z − z0

∣∣∣∣∣
∫
[z0,z]
|dζ|

= sup
ζ∈[z,z0]

|f(ζ)− f(z0)|

→ 0 as z → z0.

Hence, F ′(z0) = f(z0). But F must be infinitely differentiable, so
f is analytic on B(a,R).

1.10 Homotopy version of Cauchy’s The-
orem

Definition 1.10.1. Let γ0, γ1 : [0, 1] → G be two closed piecewise
smooth curves in a region G. Then we say that γ0 is homotopic to γ1
is there is a continuous function Γ : [0, 1]× [0, 1]→ G such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s), 0 ≤ s ≤ 1;

Γ(0, t) = Γ(1, t), 0 ≤ t ≤ 1.

γ1

γ0

Figure 1.2: γ0 is homotopic to γ1

Remark. (i) If we write Γ(s, t) = γt(s). Then the above definition
does not require γt(s) to be piecewise smooth.

(ii) If γ0 is homotopic to γ1, we write γ0 ∼ γ1. Note that ∼ defines
equivalent classes on closed piecewise smooth curves in G:
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(a) γ0 ∼ γ0 by the identity map,
(b) If γ0 ∼ γ1, then Λ(s, t) = Γ(s, 1− t) would give γ1 ∼ γ0,
(c) If γ0 ∼ γ1 and γ1 ∼ γ2 with homotopy Γ and Λ respectively,

then the homotopy Ψ : [0, 1]× [0, 1]→ G given by

Ψ(s, t) =
Γ(s, 2t), 0 ≤ t ≤ 1

2
Λ(s, 2t− 1), 1

2 < t ≤ 1

shows that γ0 ∼ γ1.

Definition 1.10.2. A closed piecewise smooth curve γ is said to be
homotopic to zero if γ is homotopic to a constant curve (written γ ∼ 0).
Definition 1.10.3. A region G is a-star shaped if the line segment
[a, z] lies entirely in G for each z ∈ G. We simply call G star shaped if
G is 0-star shaped.

a

z

Figure 1.3: a-star shaped

Example 1.10.4. LetG be an a-star shaped region. Then every closed
piecewise smooth curve γ in G is homotopic to the constant curve
γ0(t) = a.

Solution. Let

Γ(s, t) = tγ0(s) + (1− t)γ1(s)
= ta+ (1− t)γ1(s)

for 0 ≤ s, t ≤ 1.
It is easy to see that Γ is a homotopy between γ1 and γ0.
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Remark. A convex region is a-star shaped with respect to any a that
belongs to G.
Definition 1.10.5. If γ0, γ1 : [0, 1] → G are two piecewise smooth
curves in a region G such that γ0(0) = a = γ1(1), γ0(1) = b = γ1(1).
We say γ0 is (fixed end points) homotopic to γ1 (γ0 ∼ γ1) if there exists
a continuous map Γ : [0, 1]2 → G such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s), 0 ≤ s ≤ 1;

Γ(0, t) = a, Γ(1, t) = b, 0 ≤ t ≤ 1.

γt

γ1

a
b

γ0

γ0

γt

γ1

a = b

Figure 1.4: γ0 is (fixed end points) homotopic to γ1

Similarly, it can be verified that ∼ is an equivalence relation on the
piecewise smooth curves satisfying the above definition. (See Conway
p.93)

And note again that, the intermediate path γs(t) = Γ(s, t) for 0 ≤
s ≤ 1 and t fixed, need not be piecewise smooth.
Theorem 1.10.6 (Cauchy’s Theorem - Second version). Suppose f :
G→ C is analytic and γ is a closed piecewise smooth curve in G such
that γ ∼ 0, then ∫

γ
f = 0.

Theorem 1.10.7 (Cauchy’s Theorem - Third version). Suppose f :
G → C is analytic and γ0, γ1 : [0, 1] → G are two closed piecewise
smooth curves such that γ0 ∼ γ1, then∫

γ0
f =

∫
γ1
f.
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Proof. Let γ0 and γ1 be as in the hypothesis, and Γ : I2 → G (I =
[0, 1]) be the corresponding continuous function. Since I2 is compact,
Γ must be uniformly continuous on I2. Thus Γ(I2) is compact and is
a proper subset of G. Hence

d(Γ(I2),C \G) = inf{|x− y| : x ∈ Γ(I2), y ∈ C \G} = r > 0.

There exists an integer n > 0 such that

|Γ(s′, t′)− Γ(s, t)| < r

whenever |(s′, t′)− (s, t)|2 < 4
n2 and (s′, t′), (s, t) ∈ I2.

Set

Jjk = [ j
n
,
j + 1
n

]× [k
n
,
k + 1
n

] (0 ≤ j, k ≤ n− 1)

(this forms a partition of I × I) and

ζjk = Γ( j
n
,
k

n
) (0 ≤ j, k ≤ n).

As the diameter (= diagonal) of Jjk is
√ 1
n2 + 1

n2 =
√

2
n

<
2
n
, we

must have Γ(Jjk) ⊂ B(ζjk, r) for 0 ≤ j, k ≤ n− 1. (∪jkB(ζjk, r) forms
an open cover of Γ(I2); also it is a proper subset of G by the choice of
r > 0.)

Let
Qk = [ζ0k, ζ1k, . . . , ζnk]

be the closed polygon (since ζ0k = ζnk) for 0 ≤ k ≤ n.
We will first show that ∫

γ0
f =

∫
Q0
f

and ∫
Qn
f =

∫
γ1
f,
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then ∫
Qk
f =

∫
Qk+1

f (0 ≤ k ≤ n− 1).

Thus ∫
γ0
f =

∫
Q0
f = · · · =

∫
Qk
f = · · · =

∫
Qn
f =

∫
γ1
f.

Let
Pjk = [ζjk, ζj+1,k, ζj+1,k+1, ζj,k+1, ζjk]

be a closed polygon. (See Figure 1.5)

Pjk

ζj,k+1

ζj+1,k+1

ζjk
ζj+1,k

b

b
b

b

Figure 1.5: Pjk

But Γ(Jjk) ⊂ B(ζjk, r), hence Pjk ⊂ B(ζjk, r) in which f is analytic.
So ∫

Pjk
f = 0 (0 ≤ j, k ≤ n− 1)

by Theorem 1.5.3.
We now show ∫

γ0 f = ∫
Q0 f , where

Q0 = [ζ00, ζ10, . . . , ζn0].

Let σj(s) = γ0(s) for j
n
≤ s ≤ j + 1

n
, (0 ≤ j ≤ n− 1). (See Figure

1.6)
Clearly σj+[ζj+1,0, ζj0] is a closed piecewise smooth curve inB(ζj0, r)

and so ∫
σj+[ζj+1,0,ζj0]

f = 0.
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σj(s)
ζj,0

ζj+1,0

Q0

γ0

Figure 1.6: σj(s)

That is ∫
σj
f = −

∫
[ζj+1,0,ζj0]

f =
∫

[ζj0,ζj+1,0]
f

So ∫
γ0
f =

n−1∑
j=0

∫
σj
f =

n−1∑
j=0

∫
[ζj0,ζj+1,0]

f =
∫
Q0
f.

Similarly, we can prove ∫
γ1 f = ∫

Qn f. Finally, we show ∫
Qk f =∫

Qk+1 f (0 ≤ k ≤ n− 1). Clearly we have 0 = ∑n−1
j=0

∫
Pjk f.

Pjk

Pj+1,k

ζj+1,k+1

ζj+2,k+1

ζj+2,k

ζj+1,k

ζjk

ζj,k+1

Figure 1.7: Pjk and Pj+1,k

It follows from the Figure 1.7 that∫
[ζj+1,k,ζj+1,k+1]

f
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of
∫
Pjk
f cancels the ∫

[ζj+1,k+1,ζj+1,k]
f

of
∫
Pj+1,k

f . Thus

0 =
n−1∑
j=0

∫
Pjk
f =

∫
Qk
f −

∫
Qk+1

f.

Theorem 1.10.8. Let γ be a closed piecewise smooth curve in G with
γ ∼ 0. Then n(γ; a) = 0 for all a ∈ C \G.

Proof. The proof follows from Theorem 1.10.6. Since 1
z − a

is analytic
on G if a ∈ C \G,

n(γ; a) = 1
2πi

∫
γ

1
ζ − a

dζ = 0.

We note that the converse of Theorem 1.9.8 is not true. That is,
there exist a γ such that n(γ; a) = 0 for all a ∈ C \G but it is not true
that γ ∼ 0. (See exercise). Thus Theorem 1.9.2 and 1.9.3 are more
general than Theorem 1.10.6 and 1.10.7.

Theorem 1.10.9. If γ0 and γ1 are two piecewise smooth curves joining
a to b and γ0 ∼ γ1, then ∫

γ0
f =

∫
γ1
f.

Proof. Since γ0 ∼ γ1, so there exists a continuous map Γ : I2 → C
such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s), 0 ≤ s ≤ 1;

Γ(0, t) = a, Γ(1, t) = b, 0 ≤ t ≤ 1.
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a b

γ1

γ0

Figure 1.8: γ0 ∼ γ1

Because γ0 − γ1 is a closed piecewise smooth curve, we define

γ(s) =



γ0(3s), 0 ≤ s ≤ 1
3

b,
1
3 < s ≤ 2

3
γ1(3− 3s), 2

3 < s ≤ 1.

Next we show γ ∼ 0 by claiming that Λ : I2 → G is a suitable
function:

Λ(s, t) =



Γ(3s(1− t), t), 0 ≤ s ≤ 1
3

Γ(1− t, 3s− 1 + 2t− 3st), 1
3 < s ≤ 2

3
γ1((3− 3s)(1− t)), 2

3 < s ≤ 1.

Note that

Λ(s, t) = γt(s), Λ(s, 0) = γ0 − γ1, Λ(s, 1) = a = b.

It is easy to see that Λ is continuous at s = 1
3; and at s = 2

3 because
Γ(1− t, 1) = γ1(1− t). So, Λ is continuous on I2.

Hence
0 =

∫
γ
f =

∫
γ0
f −

∫
γ1
f.

Definition 1.10.10. An open set G is called simply connected if it
is connected and every closed curve in G is homotopic to zero (i.e.,
γ ∼ 0).
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a b

γ1

γ0

γ

t

s

1

1
0

t

(1− t, 1)

(1− t, t)

1− t

For a fixed t

Figure 1.9: Λ(s, t) and [0, 1− t]× [t, 1]

So we have the following version of Cauchy’s Theorem.

Theorem 1.10.11 (Cauchy’s Theorem - Fourth version). If G is sim-
ply connected, then ∫

γ f = 0 for every closed piecewise smooth curve
and every analytic f .

The notion of simply connected region lies much deeper than it
appears. We shall study this in a more detailed way in a later chapter
(pending). Here we chiefly want to prove some immediate consequences
of analytic function defined on simply connected region.

Theorem 1.10.12. Suppose the region G is simply connected, and
f : G→ C is analytic. Then f has a primitive on G.

Proof. Let a ∈ G and γ : [0, 1] → G be a piecewise smooth curve (if
closed, then by Theorem 1.5.3 immediately) in G where γ(0) = a.

b

b

b

G

a

γ0

γ1

z0
z

Figure 1.10: γ0 − γ1
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Define an expression F (z) =
∫
γ
f(ζ) dζ. We first verify that F is

well-defined.
Since γ0 − γ1 ∼ 0, Cauchy’s Theorem implies that∫

γ0−γ1
f dζ =

∫
γ0
f dζ −

∫
γ1
fdζ = 0.

Hence F is independent on the choice of γ. Thus F is a well-defined
function.

To show F is analytic and F ′ = f , we consider r > 0 so small such
that B(z0, r) ⊂ G. Replace γ by γ + [z0, z] in F :

F (z) =
∫
γ+[z0,z]

f.

Then we have

F (z)− F (z0)
z − z0

− f(z0) = 1
z − z0

∫
[z0,z]

(f(ζ)− f(z0)) dζ.

By the similar argument in the proof of Morera’s Theorem, we can
deduce that F ′ = f and F is analytic.

The next result lies deeper.

Theorem 1.10.13. Let G be simply connected and f : G → C be an
analytic function such that f(z) 6= 0 for any z ∈ G. Then there is
an analytic function g : G → C such that f(z) = eg(z). If z0 ∈ G
and ew0 = f(z0), then we may choose g such that g(z0) = w0. So
simply connected region implies every non-vanishing analytic function
can have a logarithm.

Proof. Since f has no zeros, and f ′

f
is analytic on G. By Theorem

1.10.12, we let g to be a primitive of f
′

f
. Consider

d

dz

(
f

eg

)
= f ′ − g′f

eg
= 0.
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Thus f = (constant)eg = eg+c, where c is a constant.
So, if z0 ∈ G and ew0 = f(z0), we may find a suitable integer k such

that w0 = g(z0) + c + 2πk. Now define g̃ = g + c + 2πk, which is the
required function.

Remark. The converse of the above statement also hold, namely that,
G is a simply connected region if every non-vanishing analytic function
f can be represented as f = eg for same analytic function g on G. We
refer to [1] or [3] for the detail.

1.11 Open Mapping Theorem
Definition 1.11.1. If γ is a closed piecewise smooth curve in G such
that n(γ;w) = 0 for each w ∈ C \ G. We call such curve homologous
to zero (γ ≈ 0).

The following contour shows that although γ ∼ 0 implies γ ≈ 0,
the converse is not true. One can verify that following figure has γ ≈ 0
but γ 6∼ 0 since n(γ; a) = 0 = n(γ; b). The contour was first written
down independently by C. Jordan (1887) and L. Pochhammer (1890).

Figure 1.11: Pochhammer contour

Remark. The Beta function is defined by the integral

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt, (1.3)
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where <(x) and <(y) > 0 so that the integral converges. However, if
we remove the restriction<(x) and <(y) > 0, then we can still compute
the beta function via Pochhammer contour to

B(x, y) =
∫ (1+, 0+, 1−, 0−)

(Pochhammer)
tx−1(1−t)y−1 dt = −eπi(x+y)4π2

Γ(1− x)Γ(1− y)Γ(x+ y) dt.

(1.4)
See [9] for the detail.

By using Cauchy’s Theorem, we shall see below some topological
results of different natures.

Theorem 1.11.2. Let G be a region and f : G→ C analytic on G with
zeros a1, . . . , am (counted with multiplicity). If γ is a closed piecewise
smooth curve in G such that ak 6∈ γ for each k, and if γ ≈ 0 in G, then

1
2πi

∫
γ

f ′

f
(ζ) dζ =

m∑
k=1

n(γ; ak).

Proof. According to previous discussion,

f(z) = (z − a1) · · · (z − am)g(z), g(z) 6= 0, z ∈ G.

Then for z 6= a1, . . . , am, we have

f ′

f
(z) = 1

z − a1
+ · · ·+ 1

z − am
+ g′

g
.

So
1

2πi
∫
γ

f ′

f
(ζ) dζ = 1

2πi
∫
γ

dζ

ζ − a1
+ · · ·+ 1

2πi
∫
γ

dζ

ζ − am
+
∫
γ

g′

g
dζ

= n(γ; a1) + · · ·+ n(γ; am) +
∫
γ

g′

g
dζ.

Since γ ≈ 0 and g′

g
is analytic on G, by the Cauchy Theorem - First

version, we have ∫γ g′
g
dζ = 0. This completes the proof.
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Corollary 1.11.2.1. Let f , G and γ be as in the preceding theorem
except that a1, . . . , am are the roots of f(z) = α (counted according to
multiplicity). Then

1
2πi

∫
γ

f ′(ζ)
f(ζ)− α dζ =

m∑
k=1

n(γ; ak).

We next prove the important Open Mapping Theorem. But we
first need the following theorem.

Theorem 1.11.3. Let f : G→ C be analytic where f(a) = α. Suppose
f − α has a zero of multiplicity m. Then we can find an ε > 0 and a
δ > 0 such that for all ξ in 0 < |ζ − a| < δ, the equation f(z) = ξ has
exactly m simple roots in 0 < |z − a| < ε. (A simple root of f(z) = ξ
is a zero of f − ξ with multiplicity 1.)

×

bc
bc

bc
b b

b
b

bc

ǫ < d
2

γ = ∂B(a, ǫ)

a

f
×
b

ζ

α

δ

σ = f(γ)

Figure 1.12: f : G→ C, f(a) = α

Proof. Let
d = inf

w∈C\G
{|a− w|}.

Since the zero a of f − α is isolated, we may choose ε < d

2 such
that f(z)− α 6= 0 in 0 < |z − a| < ε. Then we have the representation

F (z) = f(z)− α = (z − a)mg(z)
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over the disk B(a, ε), where g is analytic and g 6= 0 there.
Let γ be the boundary of B(a, ε), and write σ = f(γ). Since C \ σ

is open, we can find a component of C \ σ containing α, and a number
δ > 0 such that B(α, δ) is a proper subset of this component.

Consider

n(σ;α) = 1
2πi

∫
σ

dw

w − α

= 1
2πi

∫
γ

F ′(ζ)
F (ζ) dζ

= 1
2πi

∫
γ

m

ζ − a
dζ + 1

2πi
∫
γ

g′(ζ)
g(ζ) dζ

= m+ 0 = m

since γ is closed and g 6= 0 on B(a, ε). (So g
′

g
has a primitive.)

According to Proposition 1.8.4, n(σ; ζ) is a constant on this com-
ponent for each ξ ∈ B(α, δ) \ {α}. Theorem 1.11.2 gives

n(σ; ξ) = 1
2πi

∫
σ

dw

w − ξ

= 1
2πi

∫
γ

f ′(ζ)
f(ζ)− ξ dζ

=
n∑
k=1

n(γ; ak)

where ak for k = 1, . . . , n are the zero of f − ξ in B(a, ε). But γ is a
circle, so n(γ; ak) = 1 for 1 ≤ k ≤ n. But then we must have m = n.
Theorem 1.11.2 again implies that each of these zeros ak is a simple
root of f − ξ. This completes the proof.

We deduce immediately the following important result.

Theorem 1.11.4 (Open Mapping Theorem). Let f be a non-constant
analytic function defined on a region G. Then f is an open mapping,
i.e. f maps open sets onto open sets.
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Proof. Suppose U ⊂ G is open. To show f(U) is open, it suffices to
find a δ > 0 for each ξ ∈ f(U) such that B(ξ, δ) ⊂ f(U). But this
follows easily from Theorem 1.11.3 that there exist ε, δ > 0 such that
B(a, ε) ⊂ U , B(α, δ) ⊂ f(B(a, ε)). In fact, only part of the conclusion
in Theorem 1.11.3 is used.

We now can give a second proof for the maximummodulus theorem.

Theorem 1.11.5 (Maximum Modulus Theorem). Let G be a region
and f : G → C is analytic. If there exists a point a in G such that
|f(z)| ≤ |f(a)| for all z ∈ G, then f is constant.

Second proof (Topological argument). Suppose α ∈ f(G) and f(a) =
α, a ∈ G. Then we can find a δ > 0 such that B(α, δ) ⊂ f(G) by open
mapping theorem. Hence there exist points in B(α, δ) with modulus
strictly longer than |α|. Hence max |f(z)| cannot occur at an interior
of G.

We now consider the definition of an analytic function. Since the
main result we use is Morera’s Theorem, we could do this immediately
after the proof of Morera’s Theorem.

Recall that f : G → C is analytic on G if f is continuously differ-
entiable.

Theorem 1.11.6. Let G be an open set and f : G → C is differen-
tiable. Then f must be analytic on G. That is, f is differentiable if
and only if f is continuous differentiable.

Proof. According to the statement of the theorem, it suffices to show f ′

is continuous. But by using Morera’s Theorem, we can show that f is
analytic directly. See, for examples, [1], [3], [4] for a proof of Goursat’s
Theorem.

Remark. It follows from Theorem 1.11.6 that we could define analytic
function simply that f is merely differentiable (without continuity) at
each point of an open set G.
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1.12 Isolated Singularities
We have proved that every zero of an analytic function must be iso-
lated; and as indicated that this property is not shared by real func-
tions. The next natural question is about the singularities of analytic
functions, i.e., the nature of points a such that f(a) undefined, such
as f(a) =∞. The following is a list of examples:

1. √
z − 1

has a (square-root) branch point at z = 1.

2.
ln(z − 1)

has a logarithmic branch point at z = 1.

3.
e1/(z−1)

has an essential singularity at z = 1 (see below).

4.
tan[ln(z − 1)]

has a non-isolated essential singularity at z = 1 (see below).

We can deal with a small selection of singularities in this course. In
the case where f(a) =∞, the standard way to investigate the problem
is to consider F (z) = 1

f
at a i.e. F (a) = 1

∞
= 0. Since any zeros

are isolated, we may assume F has no zeros in 0 < |z − a| < δ for
some δ > 0. So F has only one zero at a i.e. any singularities of f
with f(a) = ∞ must be isolated (just like the zeros). It turns out
that there are only a few types of singularities for analytic functions,
and the easiest way to study them is by considering the power series
expansions of the functions around the singularities.
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Theorem 1.12.1 (Laurent Series, 1843). Let f(z) be analytic function
in an annulus Γ(a;R1, R2) = {z : R1 < |z − a| < R2}. Then

f(z) =
∞∑

n=−∞
an(z − a)n

and the series converges uniformly in Γ(a;R1, R2) = {z : R1 < |z−a| <
R2}. The coefficients an are given by the formula

an = 1
2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ

where γ is any circle in Γ(a;R1, R2) centred at a, and for all integers
n.

Proof. Let r1 and r2 be two real numbers such that R1 < r1 < r2 < R2,
and σ be a straight line segment joining the boundary of Γ(a; r1, r2)
and passing through a. Let γ1(t) = a + r1e

it, and γ2(t) = a + r2e
it for

t ∈ [0, 2π], then any closed curve inside γ := γ2 +σ− γ1−σ is ∼ 0. By
Cauchy’s formula we obtain, for z ∈ Γ(a; r1, r2),

b
a

R1

γ1 γ2

R2

σ

Figure 1.13: γ := γ2 + σ − γ1 − σ
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f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ

= 1
2πi

(∫
γ2

+
∫
σ
−
∫
γ1
−
∫
σ

)
f(ζ)
ζ − z

dζ

= 1
2πi

∫
γ2

f(ζ)
ζ − z

dζ − 1
2πi

∫
γ1

f(ζ)
ζ − z

dζ

= 1
2πi

∫
γ2

f(ζ)
(ζ − a)

(
1− z−a

ζ−a

) dζ − 1
2πi

∫
γ1

f(ζ)
(z − a)

(
1− ζ−a

z−a

) dζ
=
∞∑
n=0

(z − a)n 1
2πi

∫
γ2

f(ζ)
(ζ − a)n+1 dζ

+
∞∑
n=0

(z − a)−n+1 1
2πi

∫
γ1
f(ζ)(ζ − a)n dζ

=
∞∑
n=0

an(z − a)n +
−1∑
−∞

(z − a)n 1
2πi

∫
γ1
f(ζ)(ζ − a)−n−1 dζ

=
∞∑
n=0

an(z − a)n +
−1∑
−∞

an(z − a)n (uniform convergence)

where
an = 1

2πi
∫
γ1

f(ζ)
(ζ − a)n+1 dζ for n ≥ 0

and
an = 1

2πi
∫
γ2

f(ζ)
(ζ − a)n+1 dζ for n ≤ −1.

Let γ = a + reit for t ∈ [0, 2π] and R1 < r1 < r < r2 < R2. By
constructing suitable contours involving γ, we may bring the above
two line integrals over γ2 and γ1 respectively to the common curve γ.
Thus we obtain the formula for an as stated in the theorem.

Remark. We remark that Laurent expansion of an analytic function
in a punctured disk gives a beautiful generalization of Taylor expansion
of analytic function.
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Looking at the Laurent expansion of the functions in the above
theorem, there are several possibilities:

(i) ak = 0 for all k ≤ −n for some integer n > 0; the point a is called
a pole of order n;

(ii) there are infinitely many ak 6= 0, k ≤ −1; the point a is called an
essential singularity of f at a;

(iii) ak = 0 for all k ≤ −1, then a is called a removable singularity of
f at a.

• If f has a pole of order n, then

f(z) =
n∑
k=1

ak
(z − a)k +

∞∑
k=0

ak(z − a)k

where the sum ∑n
k=1 ak/(z − a)k is called the principal part of f

at a, and |f | → ∞ in the manner of O(|z − a|−n) as z → a.

• If f has a removable singularity at a, then f(z) = ∑∞
k=0 ak(z−a)k

in 0 < |z − a| < δ (some δ > 0). But we clearly have f → a0 as
z → a, thus we may define a new function at a by g(z) = f(z)
for 0 < |z− a| < δ and g(z) = a0 at z = a. Then g is an analytic
function in |z − a| < δ. Thus f is almost analytic at a if it has
a removable singularity at a and so from this point of view, this
case is less interesting.

We shall discuss the implication of pole later. The behaviour of
f near an essential singularity is very different. It is not true that
|f | → ∞ as z → a.

Example 1.12.2. 1. The sin z/z has a removable singularity at z =
0.

2. The Euler-Gamma function Γ(z) has simple poles at each of neg-
ative integers (see a later chapter).
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3. The Weierstrass function ℘(z) has double poles at the vertices of
its fundamental period parallelograms (see a later chapter).

4. The e1/z, sin
(
1/z) and cos(1/z) all have an essential singularity

at z = 0.

5. Show the following Laurent expansion

e
1
2 (z−1/z) =

∞∑
−∞

akz
k,

where
ak = 1

2π
∫ 2π

0
cos(kθ − sin θ) dθ.

Theorem 1.12.3 (Casorita-Sokhotskii-Weierstrass-1864). Suppose f
has an essential singularity at a. Then for every δ > 0, f(Γ(a; 0, δ)) =
C.

The statement of this theorem is equivalent to given any ρ, ε > 0
and any c ∈ C, there is a point z inside 0 < |z − a| < ρ in which
|f(z)− c| < ε. That is to say, given any c, f tends to c as the limit as
z tends to a through a suitable sequence of complex numbers.

Proof. We first show that f is unbounded on any punctured disks
Γ(a; 0, δ).

Suppose |f(z)| ≤ M for all z ∈ Γ(a; 0, δ). Let γ(t) = a + Reit,
t ∈ [0, 2π], then

|an| =
∣∣∣∣∣∣ 1
2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ

∣∣∣∣∣∣ for n ≤ −1

= 1
2π

∣∣∣∣∣∣
∫ 2π

0

f(a+Reit)
(Reit)n+1 iReit dt

∣∣∣∣∣∣
≤MR−n

→ 0 as R→ 0.
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Hence an = 0 for all n ≤ −1 and f has a removable singularity at
most. A contradiction.

Let us now assume that δ > 0 is chosen so small that f − c has
no zero in Γ(a; 0, δ). Then the function φ(z) = 1

f − c
is analytic in

Γ(a; 0, δ). We claim that φ has an essential singularity at a. For if φ
has a pole at a, then f = 1

φ
+ c would be analytic at a; while if φ has

a removable singularity, then f either has pole or analytic at a. This
is a contradiction.

We now apply the result obtained above to φ i.e. φ is unbounded
on Γ(a; o, δ), so |f − c| = 0 on Γ(a; 0, δ). That is, given ε > 0, there
exists z ∈ Γ(a; 0, δ) such that

|φ(z)| > 1/ε,

i.e.,
|f(z)− c| = |1/φ(z)| < ε.

So we could find a sequence εn = 1/n and {δn} such that δn → 0 and
zn ∈ Γ(a; 0, δn) so that zn → a for and f(zn)→ c. This completes the
proof.

1.13 Rouché’s theorem
This is an application of the argument principle discussed earlier.

Theorem 1.13.1 (E. Rouché). Let f(z) and g(z) be analytic in the
domain D containing the closed, piece-wise smooth curve γ. Suppose

|f(z)| > |g(z)|, for all z ∈ γ.

Then f(z) and f(z) + g(z) have the same number of zeros, counting
multiplicity, in the domain enclosed by γ.
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Proof. It is evident from the assumption that |f(z)| > |g(z)|, for all
z ∈ γ that both f(z) and f(z) + g(z) do not have zeros on γ.
The argument principle assets that

∆γ arg
(
f(z) + g(z)

)
= ∆γ arg

[
f(z)

(
1 + g(z)

f(z)
)]

= ∆γ arg f(z) + ∆γ arg
(
1 + g(z)

f(z)
)
.

But since
1 >

∣∣∣∣∣∣g(z)
f(z)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
(g(z)
f(z) + 1

)
− 1

∣∣∣∣∣∣ ,
on γ. It follows that 1 + g(z)

f(z) can never circle around w = 0. Hence

∆γ arg(f + g) = ∆γ arg f(z) + 0.

Thus

Nf+g = 1
2πi

∫
γ

(f + g)′(z)
f(z) + g(z) dz = 1

2πi
∫
γ

f ′(z)
f(z) dz = Nf

inside γ, as required.

Example 1.13.2. If f(z) has zero of order two at a, and a pole of
order 3 at b, where both a and b are inside γ, then

∆γ arg f(z) = 2π(2− 3) = −2π.

Example 1.13.3. Determine the number of roots of

z7 − 4z3 + z − 1 = 0

in |z| < 1.
On |z| = 1, we write

f(z) = −4z3, g(z) = z7 + z − 1.



CHAPTER 1. ANALYTIC FUNCTIONS 47

Then |f(z)| = 4 and |g(z)| ≤ |z|7 + |z| + 1 = 3 Hence |f(z)| > |g(z)|
on |z| = 1. Thus Rouché’s theorem asserts that f + g has the same
number of zeros as that of f = −4z3 in |z| < 1. Thus there are 3 zeros
inside |z| < 1.

Exercise 1.13.1. Prove the open mapping theorem for analytic func-
tion by applying Rouché’s theorem.

See next chapter for an hint.



Chapter 2

Conformal mappings

2.1 Stereographic Projection
One known problem with numbers in the complex plane C = {(x, y) :
−∞ < x, y < +∞} do not have an ordering like the real numbers
on the real-axis R. Riemann’s (1826-1866) idea is to add an ideal
point, denoted by ∞, to C to obtain an extended complex plane Ĉ =
C ∪ {∞}. This construction can get around the problem of ordering.
The resulting Ĉ is compact which can be vasualised by the following
construction.

We show that there is an one-to-one correspondence between

S = {(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1}

and Ĉ = C ∪ {∞}. The S is called the Riemann sphere.
Let N = (0, 0, 1) and z ∈ C. If we join the straight line between

N and z, the straight line intersects the sphere S at Z = (x1, x2, x3)
say. The construction clearly exhibits an one-to-one correspondence
between S \ {N} and C. Note that Z → N as |z| → ∞. We may
associate N with ∞ and obtain the bijection between S and Ĉ. This
is known as the Stereographic projection.

Suppose P (x1, x2, x3) = Z ∈ S associates with z = (x, y) ∈ Ĉ.
Then we may associate z the notation P with coordinate (x, y, 0).

48

https://en.wikipedia.org/wiki/Riemann_sphere
https://en.wikipedia.org/wiki/Stereographic_projection
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b

b

b

N

Z

z

S

Figure 2.1: Riemann sphere

Then we have, by considering similar triangles formed by the line seg-
ment NP and projecting onto the x−, y− and z−axes respectively,

|NP |
|NZ|

= x

x1
= y

x2
= 1

1− x3
, (2.1)

so that
z = x+ iy = x1 + ix2

1− x3
.

Then
|z|2 = x2

1 + x2
2

(1− x3)2 = 1 + x3

1− x3
,

hence
x3 = |z|

2 − 1
|z|2 + 1 .

Then
x1 = z + z

1 + |z|2 , x2 = z − z
i(1 + |z|2) .

This clearly shows a one-one correspondence between S\(0, 0, 1) and
C with the N = (0, 0, 1) corresponds to ∞. We also note that the
upper hemisphere where x3 > 0 corresponds to |z| > 1 and the lower
hemisphere of S corresponds to |z| < 1. An advantage with this Rie-
mann sphere model is that it puts all complex numbers including ‘∞’
in equal footing since any number can be rotated to N and vice-verse.
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From a geometrical viewpoint, it is evident that every (infinite)
straight line in the z−plane is transformed into a circle on S that
passes through the North pole N , and conversely. Hence, every circle
(straight line included) on the z−plane corresponds to a circle/straight
line on S.
Theorem 2.1.1. A circle on the Riemann sphere is mapped under the
Stereographic projection into a circle (including a straight line) of the
C, and conversely.

Proof. Show that
1. a circle equation that lies on the Riemann sphere is an equation

of the form
ax1 + bx2 + cx3 = d

subject to 0 ≤ c < 1 and a2 + b2 + c2 = 1 (this is the intersection
of the plane and the unit sphere).

2. the above equation can be rewritten in the form

a(z + z̄)− ib(z − z̄) + c(|z|2 − 1) = d(|z|2 + 1)

3. the above equation can be further rewritten into the form

(d− c)(x2 + y2)− 2ax− 2by + d+ c = 0,

which is clearly a circle equation in the C and it becomes a straight
line. equation if and only if c = d.

That is, a circle on the Riemann sphere S corresponds to either
a circle or a straight line on C. In the case the circle on S passes
through the North pole N = (0, 0, 1), then the corresponding straight
line (also considered as an unbounded circle passes through) to ∞.

Exercise 2.1.1. Show that if z and w are two points in C so that
their images lie on two diametrically opposite points on the Riemann
sphere, then

wz + 1 = 0.
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Theorem 2.1.2. The stereographic projection is isogonal (i.e., the
mapping preserves angles).

Proof. The statement of the theorem means that the tangents of two
curves in the C intersect at point z0 is equal to the angle made by two
tangents at the corresponding intersection point of two image curves
on the Riemann sphere. We shall make two assumptions:

1. that the Stereographic projection preserves tangents. We skip
the detail verification of this fact. But this is not difficult to see
since the Stereographic projection is a smooth map,

2. that without loss of generality that the two curves in C are (in-
finite) straight lines.

Suppose the two straight line equations are given by

a1x+ a2y + a3 = 0 (x3 = 0);
b1x+ b2y + b3 = 0. (x3 = 0) (2.2)

It follows from (2.1) that the two plane equations become respectively,

a1X1 + a2X2 + a3(X3 − 1) = 0;
b1X1 + b2X2 + b3(X3 − 1) = 0.

In the limiting case when X3 = 1, we have the two tangent plane
equations

a1X1 + a2X2 = 0;
b1X1 + b2X2 = 0. (2.3)

at N(0, 0. 1) parallel to the C. Clearly the angle between the two
curves in (2.2) is the same angle between the two lines in (2.3).

Note that any two intersecting circles in general positions on S can
be rotated so that the intersection point passes through the North pole
N . This consideration takes care of the preservation of the angle of
intersection of two curves in general position in C under the Stereo-
graphic projection.
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Theorem 2.1.3. Let z1, z2 be two points in C and Z1, Z2 be their
images on the Riemann sphere S under the Stereographic projection.
We denote a(Z1, Z2) to be arc length between Z1 and Z2. Then

lim
z2→z1

a(Z1, Z2)
|z1 − z2|

= 2
1 + |z1|2

. (2.4)

That is, the ratio depends on position only. So the Stereographic pro-
jection is called a pure magnification.

We easily deduce from the above theorem that

Theorem 2.1.4. Let C = {z = z(s) : 0 ≤ s ≤ L} be a piecewise
smooth curve in C. Let Γ be the image curve of C on the Riemann
sphere under the Stereographic projection. Then the length `(Γ) of Γ
is given by

`(Γ) =
∫ L

0

2|dz(s)|
1 + |dz(s)|2 .

Let d(Z1, Z2) denote the chordal distance between Z1 and Z2 on S.
We also write

χ(z1, z2) := d(Z1, Z2).
where z1, z2 are the corresponding points in C.

Theorem 2.1.5. Let z1, z2 ∈ C. Then

χ(z1, z2) = 2|z1 − z2|√
1 + |z1|2

√
1 + |z2|2

. (2.5)

Since
χ(z1, z2) := d(Z1, Z2) ≈ a(Z1, Z2)

as z1 → z2. So the Theorem 2.1.3 follows from the equation (2.5) in
the limit z2 → z1.

Proof. Let z1 = (x1, y1) and z2 = (x2, y2) and none equal to ∞. We
construct a plane passing through the following three points:

(0, 0, 1), (x1, y1, 0), (x2, y2, 0).
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Figure 2.2: Riemann sphere slide

Then we have the above figure.
We deduce from the Riemann sphere S that

d(N, z1) =
√

1 + |z1|2, d(N, z2) =
√

1 + |z2|2.

One can see from similar triangles consideration on the Riemman
sphere S that

x1

x
= 1− x3

1 = x2

y
.

Hence

1 + |z|2 = 1 + x2 + y2 = 1 + x2
1

(1− x3)2 + x2
2

(1− x3)2

= 2(1− x3)
(1− x3)2 = 2

1− x3
.

and
d(N, Z)
d(N, z) = 1− x3

1 = 2
1 + |z|2 .
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holds. This gives raise to

d(N, Z1) = 2√
1 + |z1|2

, d(N, Z2) = 2√
1 + |z2|2

.

We conclude that

d(N, z1)d(N, Z1)= 2 =d(N, z2)d(N, Z2).

Hence the triangles ∆Nz1z2 and ∆NZ1Z2 are similar. Hence

d(Z1, Z2)
d(z1, z2)

= d(N, Z2)
d(N, z1)

.

It follows from the above consideration that

d(Z1, Z2) = d(z1, z2) ·
d(N, Z2)
d(N, z1)

= 2|z1 − z2|√
1 + |z1|2

√
1 + |z2|2

.

as required.

We are ready to prove Theorem 2.1.3.
We observe the relation

d(Z1, Z2)
a(Z1, Z2)

= sinα
α

,

holds, where α is the angle between the line segments NZ1 and NZ2
from the above figure. Hence

a(Z1, Z2)
|z1 − z2|

= d(Z1, Z2)
|z1 − z2|

≈ χ(z1, z2)
|z1 − z2|

→ 2
1 + |z1|2

as z2 → z1.
We also note that

χ(z1, ∞) = lim
z2→∞

χ(z1, z2) = 2√
1 + |z1|2

,
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which follows from the Riemann sphere (geometric) or the Theorem
2.1.5 (algebraic) considerations. Thus we define the chordal distance
to be

χ(z, z′) =



2|z − z′|√
1 + |z|2

√
1 + |z′|2

, z, z′ ∈ C

2√
1 + |z|2

, z′ =∞.

Alternative derivation

of the chordal distance. Suppose (x1, x2, x3) ∈ S associates with z =
(x, y) ∈ Ĉ and (x′1, x′2, x′3) ∈ S associates with z′ ∈ Ĉ.

Then the distance or the length of the chord joining (x1, x2, x3) and
(x′1, x′2, x′3) on S is given by√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2.

On the other hand,

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2 = 2− 2(x1x
′
1 + x2x

′
2 + x3x

′
3).

Exercise 2.1.2. Show that
x1x

′
1 + x2x

′
2 + x3x

′
3

= (z + z̄)(z′ + z̄′)− (z − z̄)(z′ − z̄′) + (|z|2 − 1)(|z′| − 1)
(1 + |z|2)(1 + |z′|2)

= (1 + |z|2)(1 + |z′|2)− 2|z − z′|2
(1 + |z|2)(1 + |z′|2)

Exercise 2.1.3. Verify the formaula for chordal distance using the
above formala.
Exercise 2.1.4. Verify that χ(z1, z2) = χ(z̄1, z̄2) = χ(1/z1, 1/z2).
Exercise 2.1.5. Describe a ε−neighbourhood of a pont z0 in the
chordal metric.
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Metric space

The chordal distance χ(z1, z2) defines a metric on Ĉ. This is because

1. χ(z1, z2) ≥ 0 and with equality if and only if z1 = z2;

2. χ(z1, z2) = χ(z2, z1);

3. χ(z1, z3) ≤ χ(z1, z2) + χ(z2, z3),

where the third item follows from

Exercise 2.1.6. Let a, b, c ∈ C. Then

(a− b)(1− c̄c) = (a− c)(1 + c̄b) + (c− b)(1 + c̄a).

Exercise 2.1.7. Show that the above metric space is complete.

2.2 Analyticity revisited

Local properties of one-one analytic functions
We recall that if f : E → P and there correspond only one point
in E for every point in P under this f , then we say the map f is
injective. This defines a function g on P , denoted by z = g(w), called
the inverse function or inverse mapping of f . In particular, we
see that g[f(z)] = z.

Let w = f(z) = u(x, y) + iv(x, y). Then one can view f as a
mapping R2 −→ R2 given byx

y

 7−→
u(x, y)
v(x, y)

.
What is a criterion that guarantee the existence of an inverse mapping
for the above mapping?
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Standard material from calculus courses asserts that if∣∣∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣∣∣
6= 0, at z0 = (x0, y0),

then the Implicit function theorem asserts that an inverse function of
f exists there. That is, if the Jacobian is non-zero at z0. But then the
Cauchy-Riemann equations give∣∣∣∣∣∣∣∣∣∣

∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣∣∣
=
∣∣∣∣∣∣ ux −vxvx ux

∣∣∣∣∣∣ = u2
x + v2

x = |f ′(z0)|2.

This leads to the following statement.

Theorem 2.2.1. Let f(z) be an analytic function on a domain D such
that f ′(z0) 6= 0. Then there is an analytic function g(w) defined in a
neighbourhood N(w0) of w0 = f(z0) such that g(f(z)) = z throughout
this neighbourhood.

Proof. Since ∣∣∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣∣∣
= |f ′(z0)|2 6= 0,

so the Implicit Function theorem asserts that is a neighbourhoodN(w0)
of w0 = f(z0) in which f has a local inverse at w0u

v

 7−→
x(u, v)
y(u, v)

.
Moreover, the analytic Implicit Function theorem asserts that the
stronger conclusion that since f is analytic at z0 so the g(w) is an-
alytic at w0.

http://en.wikipedia.org/wiki/Implicit_function_theorem
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We prove that a strong form of converse of the above statement
also holds. Please note we could apply the Theorem 1.11.3 to prove
the theorem. But we prefer to apply the Rouché theorem instead.
Theorem 2.2.2. Let f(z) be an one-one analytic function on a domain
D. Then f ′(z) 6= 0 on D.

Proof. We suppose on the contrary that f ′(z0) = 0 for some z0 and we
write f(z0) = w0 . We first notice that f ′(z) 6≡ 0. For otherwise, f(z)
is identically a constant, contradicting to the assumption that f(z) is
one-one on D.
Since the zeros of f ′(z) are isolated , so there is a ρ > 0 such that
f ′(z) 6= 0 in {z : 0 < |z − z0| < ρ}. Because of the assumption that f
is one-one, so

f(z) 6= f(z0) on |z − z0| = ρ.

On the other hand, |f(z)| is continuous on the compact set |z−z0| = ρ
so that we can find a δ > 0 such that

|f(z)− f(z0)| ≥ δ > 0 on |z − z0| = ρ.

Let w′ be an arbitrary point in {w : 0 < |w′ − w0| < δ}. Then the
inequality

|f(z)− w0| ≥ δ > |w′ − w0|
holds, so that the Rouché theorem again implies that the function
f(z)− f(z0) = f(z)− w0 and the function

[f(z)− f(z0)] + [f(z0)− w′] = f(z)− w′

have the same number of zeros inside {z : |z−z0| < ρ}. But f ′(z0) = 0
so f(z) − f(z0) has at least two zeros (counting multiplicity). Hence
f(z) − w′ also has at least two zeros (counting multiplicity) in {z :
|z − z0| < ρ}. But f ′(z) 6= 0 in {z : 0 < |z − z0| < ρ}, so there are
at least two different zeros z1 and z2 in {z : |z − z0| < ρ} so that
f(z1) = w′ and f(z2) = w′, thus contradicting to the assumption that
f(z) is one-one.
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2.3 Angle preserving mappings
We consider geometric properties of an analytic function f(z) at z0
such that f ′(z0) 6= 0. Let γ = {γ(t) : a ≤ t ≤ b} a piece-wise smooth
path such that z0 = γ(t0) where a ≤ t0 ≤ b and z′(t0) 6= 0, and

Γ := {w = f(z(t)) : a ≤ t ≤ b}.

That is, Γ = f(γ).
It is clear that the assumption z′(t0) 6= 0 above means that the path γ
must have a tangent at t0. Thus,

df [z(t)]
dt

∣∣∣∣∣∣∣
t=t0

= df(z)
dz

∣∣∣∣∣∣∣
z=z0

· dz
dt

∣∣∣∣∣∣∣
t=t0

= f ′(z0) · z′(t0) 6= 0

since f ′(z0) 6= 0 and z′(t0) 6= 0. We deduce

Arg df [z(t)]
dt

∣∣∣∣∣∣∣
t=t0

= Arg df(z)
dz

∣∣∣∣∣∣∣
z=z0

+ Arg dz
dt

∣∣∣∣∣∣∣
t=t0

.

Let θ0 = z′(t0) denote the inclination angle of the tangent to γ at z0 and

positive real axis, and let ϕ0 := Arg df [z(t)]
dt

∣∣∣∣∣∣∣
t=t0

denote the inclination

angle of the tangent to Γ at w0 = f(z0). Thus

Arg f ′(z0) = ϕ0 − θ0.

Now let γ1(t) : z1(t) : a ≤ t ≤ b and γ2(t) : z2(t) : a ≤ t ≤ b be two
paths such that they intersect at z0. Then

ϕ1 − θ1 = Arg f ′(z0) = ϕ2 − θ2.

That is,
ϕ2 − ϕ1 = θ2 − θ1.

This shows that the difference of tangents of Γ2 = f(γ2) and Γ1 = f(γ1)
at w0 is equal to difference of tangents of γ2 and γ1 at z0.
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f

γ2

γ1

γ′
2(t2)

γ′
1(t1)

σ2

σ1

σ′
1(t1)

σ′
2(t2)

Figure 2.3: Conformal map at z0

Definition 2.3.1. An analytic f : D → C is called conformal at z0
if f ′(z0) 6= 0. f is called conformal in D if f is conformal at each
point of the domain D.

We call |f ′(z0)| the scale factor of f at z0.

Theorem 2.3.2. Let f(z) be analytic at z0 and that f ′(z0) 6= 0. Then

1. f(z) preserves angles (i.e., isogonal) and its sense at z0;

2. f(z) preserves scale factor, i.e., a pure magnification at z0 in the
sense that it is independent of directions of approach to z0.

We consider a converse to the above statement.

Theorem 2.3.3. Let w = f(z) = f(x + iy) = u(x, y) + iv(x, y) be
defined in a domain D with continuous ux, uy, vx, vy such that they do
not vanish simultaneously. If either

1. f is isogonal (preserve angles) at every point in D,

2. or f is a pure magnification at each point in D,

then either f or f̄ is analytic in D.
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Proof. Let z = z(t) be a path passing through the point z0 = z(t0) in
D. We write w(t) = f(z(t)). Then

w′(t0) = ∂f

∂x
x′(t0) + ∂f

∂y
y′(t0),

That is,

w′(t0) = 1
2

∂f
∂x
− i∂f

∂y

 z′(t0) + 1
2

∂f
∂x

+ i
∂f

∂y

 z′(t0). (2.6)

That is,
w′(t0)
z′(t0)

= ∂f

∂z
(z0) + ∂f

∂z̄
(z0) ·

z′(t0)
z′(t0)

where we have adopted new notation

∂f

∂z
:= 1

2

∂f
∂x
− i∂f

∂y

, ∂f

∂z̄
:= 1

2

∂f
∂x

+ i
∂f

∂y

.

If f is isogonal, then the arg w′(t0)
z′(t0) is independent of arg z′(t0) in the

above expression. This renders the expression (2.6) to be independent
of arg z′(t0). Therefore, the only way for this to hold in(2.6) is that

0 = ∂f

∂z̄
:= 1

2

∂f
∂x

+ i
∂f

∂y

,
which represent the validity of the Cauchy-Riemann equations at z0.
Thus f is analytic at z0. This establishes the first part.

We note that the right-hand side of (2.6) represents a circle of
radius ∣∣∣∣12

(∂f
∂x

+ i
∂f

∂y

)∣∣∣∣
centered at ∂f/∂z. Suppose now that we assume that f is a pure
magnification. Then the (2.6) representation this circle must either
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have its radius vanishes which recovers the Cauchy-Riemann equations,
or the centre is at the origin, i.e.,

0 = ∂f

∂z
= 1

2

∂f
∂x
− i∂f

∂y


or the equivalently f(z) is analytic at z0 and hence over D.

Remark. If f(z) is analytic at z0, then it means that f preserves the
size of the angle but reverse its sense.

Example 2.3.4. Consider w = f(z) = ez on C. Clearly f ′(z) = ez 6= 0
so that the exponential function is conformal throughout C. Observe

w = ez = ex + eiy := Reiφ,

so that the line x = a in the is mapped onto the circle R = ea in the
w−plane, while the horizontal line y = b (−∞ < x < ∞) is mapped
to the line {Reib : 0 < R < +∞}. One sees that the lines x = a
and y = b are at right-angle to each other. Their images, namely the
concentric circles centred at the origin and infinite ray at angle b from
the x−axis from the origin are also at right angle at each other. The
infinite horizontal strip

G = {z = x+ iy : |y| < π, −∞ < x <∞}

is being mapped onto the slit-plane C\{z : z ≤ 0}. Moreover, the
image of any vertical shift of G by integral multiple of 2π under f
will cover the slit-plane again. So the f(C) will cover the slit-plane an
infinite number of times.
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Figure 2.4: Exponential map

2.4 Möbius transformations
We study mappings initiated by A. F. Möbius (1790–1868) on the C
that map C to C or even between Ĉ. Möbious considered

The mapping

w = f(z) = az + b

cz + d
, ad− bc 6= 0

is called a Möbius transformation, a linear fractional trans-
formation, a homographic transformation. In the case when
c = 0, then a Möbious transformation reduces to a linear function
f(z) = az+ b which is a combination of a translation f(z) = z+ b and
a rotation/magnification f(z) = az. If ad− bc = 0, then the mapping
degenerates into a constant.

We recall that a function f having a pole of order m at z0 is equiv-
alent to 1/f to have a zero of order m at z0 . Similarly, a function have
a pole of order m at ∞ means that 1/f(1

z) to have a zero of order m
at z = 0.

The mapping w is defined on C except at z = −d/c, where f(x)
has a simple pole. On the other hand,

f(1/ζ) = a/ζ + b

c/ζ + d
= a+ bζ

c+ dζ
= a

c

https://en.wikipedia.org/wiki/August_Ferdinand_M%C3%B6bius
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when ζ = 0. That is, f(∞) = a/c. So f(z) is a one-one map between
Ĉ = C ∪ {∞}. One can easily check that the inverse f−1 of f is given
by

f−1(w) = −wd− b
cw − a

, w 6= a

c
.

Thus f−1 : a
c
7→ ∞, ∞ 7→ −d

c
(Since

f−1
(1
η

)
= −d/η − b

c/η − a
= −d− bη

c− aη
= −d

c

as η = 0. Thus f−1(∞) = −d
c
. Similarly, since

1
f−1(w)

∣∣∣∣
a/c

= −cw − a
dw − b

∣∣∣∣
w=a/c

= 0.

Thus f−1
(a
c

)
=∞.

)

Theorem 2.4.1. The above Möbius map is conformal on the Riemann
sphere.

Proof. Let c 6= 0. Then

f ′(z) = ad− bc
(cz + d)2 6= 0,

whenever z 6= −d
c . Hence f(z) is conformal at every point except per-

haps when z = −d/c where f has a simple pole. So we should check if
1

f(z) is conformal at z = −d/c. But

( 1
f(z)

)′∣∣∣∣
z=−d/c

= − f
′(z)

f(z)2

∣∣∣∣
−d/c

= ad− bc
(cz + d)2 ×

(cz + d

az + b

)2

= − ad− bc
(az + b)2

∣∣∣∣
−d/c

= −(ad− bc)c2

(ad− bc)2 = −c2

ad− bc
6= 0.
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Hence f is conformal at −d/c, whenever c 6= 0.
Similarly, in order to check if f is conformal at ∞, we consider,

when c 6= 0
(
f
(1
ζ

))′
=
(a+ bζ

c+ dζ

)′
= bc− ad

(c+ dζ)2 = bc− ad
c2 6= 0

when ζ = 0 and whenever c 6= 0. Hence f is conformal at ∞ if c 6= 0.
If c = 0, then we consider f(z) = az + b

d
= αz + β instead. Since

f ′(z) = α 6= 0 for all z ∈ C, so f is conformal everywhere. It remains
to consider

1
f
(
1/ζ

) = 1
α/ζ + β

= ζ

α + βζ
.

Hence f(∞) =∞. We now consider the conformality at ∞:
( 1
f(1/ζ)

)′
ζ=0

= α

(α + βζ)2

∣∣∣∣
ζ=0

= 1
α
6= 0,

as required.

Exercise 2.4.1. Complete the above proof by considering the case
when c = 0.

Exercise 2.4.2. Show that

1. the composition of two Möbius transformations is still a Möbius
transformation.

2. For each Möbius transformation f , there is an inverse f−1.

3. If we denote I be the identity map, then show that the set of all
Möbius transformations M forms a group under composition.
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Theorem 2.4.2. Let w = f(z) = az + b

cz + d
. Then f(z) maps any circle

in the z−plane to a circle in the w−plane.

Remark. We regard any straight lines to be circles having infinite radii
(+∞).

Proof. We note that any az + b

cz + d
can be written as

w =a
c

[z + b/a

z + d/c

]
= a

c

[
1 + b/a− d/c

z + d/c

]

= a

c

[
1 +

(bc/a− d
1

) 1
cz + d

]

= a

c
+
(bc− ad

c

)( 1
cz + d

)
,

Showing that w can be decomposed by transformations of the basic
types:

1. w = z + b (translation),

2. w = eiθ0z (rotation),

3. w = kz (k > 0, scaling),

4. w = 1/z (inversion).

In fact, we can write the T (z) as a compositions of four consecutive
mappings in the forms

w1 = cz + d, w2 = 1
w1
, w3 =

(bc− ad
c

)
w2, w4 = a

c
+ w3,

From the geometric view point, the translation z + b or rotation w =
eiθ0z all presences circles (lines). So it remains to consider scaling
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w = kz (k > 0) and inversion w = 1/z.
Let us consider the circle equation (centred at z0 = (x0, y0) with radius
R). Then

(x− x0)2 + (y − y0)2 = R2.

That is,
x2 + y2 − 2x0x− 2y0y + (x2

0 + y2
0 −R2) = 0.

Substituting z = x+ iy, z = x− iy

zz + −2
2 (z0 + z0)

1
2(z + z)− 2

2i(z0 − z0)
1
2i(z − z) + z0z0 −R2.

This can be rewritten as

zz +Bz +Bz +D = 0,

where B = −z0, D = x2
0 + y2

0 −R2.
Conversely, suppose B = −z0, |B|2 −D = R2 > 0, then the above

equation represents a circle equation centred at −B = z0 with radius

R =
√
|B|2 −D.

In fact, |z − (−B)| =
√
|B|2 −D. We consider the scaling : w = kz.

The circle equation becomes

1
k2 ww + B

k
w + B

k
w +D = 0.

Thus
ww + kBw + kBw + k2D = 0

Clearly, k2D is a real number, and
√
k2 |B|2 − k2D = k

√
|B|2 −D > 0.

Hence the above equation is a circle equation in the w−plane.
It remains to consider inversion w = 1/z. Then the equation becomes

1
ww

+ B

w
+ B

w
+D = 0,
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or
ww + B

D
w + B

D
w + 1

D
= 0.

clearly 1/D is a real number, and |B/D|2 − 1/D = 1
D2 (|B|2 −D) > 0.

So the equation is a circle equation in the w−plane.

2.5 Cross-ratios
Let

T (z) = az + b

cz + d
(2.7)

be a Möbius transformation, and let w1, w2, w3, w4 be the respectively
images of the points z1, z2, z3, z4. Then it is routine to check that

wj − wk = ad− bc
(czj + d)(czk + d)(zj − zk), j, k = 1, 2, 3, 4.

Then

(w1 − w3)(w2 − w4) = (ad− bc)2∏4
j=1(czj + d)(z1 − z3)(z2 − z4) (2.8)

Similarly, we have

(w1 − w4)(w2 − w3) = (ad− bc)2∏4
j=1(czj + d)(z1 − z4)(z2 − z3). (2.9)

Dividing the (2.8) by (2.9) yields

(w1 − w3)(w2 − w4)
(w1 − w4)(w2 − w3)

= (z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

. (2.10)

Definition 2.5.1. Let z1, z2, z3, z4 be four distinct numbers in C.
Then

(z1, z2, z3, z4) := (z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

= z1 − z3

z1 − z4
: z2 − z3

z2 − z4
(2.11)
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is called the cross-ratio of the four points. If, however, when any one
of z1, z2, z3, z4 is ∞, then the cross-ratio becomes

(∞, z2, z3, z4) := z2 − z4

z2 − z3
,

(z1, ∞, z3, z4) := z1 − z3

z1 − z4
,

(z1, z2, ∞, z4) := z2 − z4

z1 − z4
,

(z1, z2, z3, ∞) := z1 − z3

z2 − z3
,

respectively.

The equation (2.10) implies that we have already proved the fol-
lowing theorem.

Theorem 2.5.2. Let T be any Möbius transformation. Then

(Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4). (2.12)

Remark. The above formula means that the cross-ratio of four points
is preserved under any Möbius transformation T (z).

Example 2.5.3. We note that the cross-ratio when written as

(z, z2, z3, z4) = (z − z3)(z2 − z4)
(z − z4)(z2 − z3)

= z − z3

z − z4
: z2 − z3

z2 − z4

is a Möbius transformation of z that maps the points z2, z3, z4 to
1, 0, ∞ respectively.

Theorem 2.5.4. Let z1, z2, z3 and w1, w2, w3 be two sets of three arbi-
trary complex numbers. Then there is a unique Möbius transformation
T (z) that satisfies T (zi) = wj, j = 1, 2, 3.
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Proof. The cross-ratio formula

w − w3

w − w4
: w2 − w3

w2 − w4
= z − z3

z − z4
: z2 − z3

z2 − z4

does the trick.

Example 2.5.5. Find a Möbius transformation w that maps −1, i, 1
to −1, 0, 1 respectively.
It follows that

w − 0
w − 1 : −1− 0

−1− 1 = z − i
z − 1 : −1− i

−1− 1 .

So
2w
w − 1 = z − i

z − 1
( 1

1 + i

)
.

Hence
w = 1 + iz

i+ z
.

Arrangements

The above arrangement of the four points z1, z2, z3, z4 in the construc-
tion of our cross-ratio is not special. One can try the remaining twenty
three different permutations of z1, z2, z3, z4 in the construction. How-
ever, we note that

λ := (z1, z2, z3, z4) = (z2, z1, z4, z3) = (z3, z4, z1, z2) = (z4, z3, z2, z1)

so that the list reduces to six only. They are given by

(z2, z3, z1, z4) = λ− 1
λ

, (z3, z1, z2, z4) = 1
1− λ

(z2, z1, z3, z4) = 1
λ
, (z3, z2, z1, z4) = λ

λ− 1 , (z1, z3, z2, z4) = 1−λ.
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The above list contains all six distinct values for the cross-ratio for dis-
tinct z1, z2, z3, z4. If, however, two of the points z1, z2, z3, z4 coincide,
then the list of values will reduce further. More precisely, if λ = 0 or
1, then the list reduces to three, namely 0, 1, ∞. If λ = −1, −1/2 or
2, then the list reduces to three again with values −1, 1/2, 2. There is
another possibility that

λ = 1± i
√

3
2 .

See exercise.
Moreover, if we put z2 = 1, z3 = 0, z4 = ∞, then the cross-ratio

becomes
(λ, 1, 0, ∞) = λ,

which means that λ is a fixed point of the map.

Theorem 2.5.6. Let z1, z2, z3, z4 be four distinct points in Ĉ. Then
their cross-ratio (z1, z2, z3, z4) is real if and only if the four points lie
on a circle (including a straight line).

Proof. Let Tz = (z1, z2, z3, z).
We first prove that if z1, z2, z3, z4 lie on a circle/straight-line in Ĉ,

then Tz is real. But by the fundamental property that T is the unique
Möbius map that maps z1, z2, z3 onto 0, 1, ∞. Hence T is real on
T−1R. It remains to show that the whole circle/straight-line passing
through z1, z2, z3 has Tz real.

If Tz is real, then we have Tz = Tz. Hence

aw + b

cw + d
= āw̄ + b̄

c̄w̄ + d̄
.

Cross multiplying yields

(ac̄− cā)|w2|+ (ad̄− cb̄)w + (bc̄− dā)w̄ + bd̄− db̄ = 0
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which is a straight-line if ac̄−cā = 0 (and hence ad̄−cb̄ 6= 0). Moreover,
in the case when ac̄− cā 6= 0, the above equation can be written in the
form ∣∣∣∣w + ād− c̄b

āc− c̄a

∣∣∣∣ =
∣∣∣∣ad− bc
āc− c̄a

∣∣∣∣,
which is an equation of a circle.

Exercise 2.5.1. Verify that

(λ, 1, 0, ∞) = λ.

Then use this identity to give a different proof of the above theorem:
(z1, z2, z3, z4) is real if and only if the four points z1, z2, z3, z4 lie on
a circle.

Exercise 2.5.2. Show that if one of z2, z3, z4 is∞, the corresponding
cross-ratio still maps the triple onto 1, 0, ∞. Namely the

(z, ∞, z3, z4) := z − z3

z − z4
,

(z, z2, ∞, z4) := z2 − z4

z − z4
,

(z, z2, z3, ∞) := z − z3

z2 − z3
,

2.6 Inversion symmetry
We already know that the point z and its conjugate z̄ are symmetrical
with respect to the real-axis. If we take the real-axis into a circle C by
a Möbius transformation T , then we say that the points w = Tz and
w∗ = T z̄ are symmetric with respect to C. Since the symmetry is a
geometric property, so the w and w∗ are independent of T . For suppose
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there is another Möbius transformation that maps the real-axis onto
the C, then the composite map S−1T maps the R onto itself. Thus the
images,

S−1w = S−1Tz, S−1w∗ = S−1T z̄

are obviously conjugates. Hence we can define

Definition 2.6.1. Two points z and z∗ are said to be symmetrical with
respect to the circle C passing through z1, z2, z3 if and only if

(z∗, z1, z2, z3) = (z, z1, z2, z3).

In order to see what is the relationship between z and z∗, we con-
sider the following special case.

Example 2.6.2. When z3 =∞. Then the symmetry yields

z∗ − z2

z − z4
= z̄2 − z̄4

z̄1 − z̄4
.

That is,
|z∗ − z2| = |z − z2|

first showing that the z and z∗ are equal distances to z2 (which is
arbitrary on C). And

=
(z∗ − z2

z1 − z2

)
= −=

( z − z2

z1 − z2

)

finally showing that the z and z∗ are on different sides of C.

Theorem 2.6.3. Let z and z∗ be symmetrical with respect to a circle
C of radius R and centred at a. Then

z∗ = R2

z̄ − ā
+ a.



CHAPTER 2. CONFORMAL MAPPINGS 74

Proof. We note that

(zj − a)(zj − a) = R2, j = 1, 2, 3.

Thus we have

(z, z1, z2, z3 = (z − a, z2 − a, z3 − a, z3 − a)

=
(
z̄ − ā, R2

z1 − a
,

R2

z2 − a
,

R2

z3 − a
,
)

=
( R2

z − a
, z1 − a, z2 − a, z3 − a

)

=
( R2

z − a
+ a, z1, z2, z3,

)
:= (z∗, z2, z3, z3)

as required.

We deduce immediately that

Theorem 2.6.4. A Möbius transformation carries a circle C1 into a
circle C2 also transforms any pair of symmetric points of C1 into a
pair of symmetric points of C2.

Remark. 1. (z∗ − a)(z̄ − ā) = R2,

2. The symmetry point a∗ =∞ for the centre a above.

3. The expression

z∗ − a
z − a

= R2

(z̄ − ā)(z − a) > 0

implying that z and z∗ lie on the same half-line from a.

We briefly mention the issue of orientation. Suppose we have a
circle C. Then there is an analytic method to distinguish the in-
side/outside of the circle by the cross-ratio. Since the cross-ration
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Figure 2.5: Inversion: z and z∗

is invariant with respect to any Möbius transformation, so it is suffi-
cient to consider the inside/outside issue of the real-axis R since we
can always map the circle C onto the R. Let us write

(z1, z2, z3, z) = az + b

cz + d

where a, b, c, d are real coefficients (since z1, z2, z3 ∈ R). Then

=(z, z1, z2, z3) = ad− bc
|cz + d|2

=z.

Suppose we choose z1 = 1, z2 = 0 and z3 = ∞. Then a previous
formulai

(z, 1, 0, ∞) = z

implies that =(z, 1, 0, ∞) = =z, so that =(i, 1, 0, ∞) > 0 and
=(−i, 1, 0, ∞) < 0. The ordered triple, namely 1, 0, ∞ clearly indi-
cates that the point i is on the right of R (in that order) and the other
point −i is on the left of R (in that order). But any circle C can be
brought to the real-axis R while keeping the cross-ratio unchanged. So
we have

Definition 2.6.5. Let C be a given circle in Ĉ. An orientation of C
is determined by the direction of a triple z1, z2, z3 (i.e., z1 7→ z2 7→ z3
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) lying on C. Let z 6∈ C. The point z is said to lie on the right of C
if =(z, z1, z2, z3) > 0 of the oriented circle. The point z is said to lie
on the left of C if =(z, z1, z2, z3) < 0 of the oriented circle.

Definition 2.6.6. We define an absolute orientation for each finite
circle with respect to∞ in the sense that the∞ is on its right (we call
this outside), otherwise, on its left (we call this inside).

2.7 Explicit conformal mappings
Example 2.7.1. Find a Möbius mapping that maps the upper half-
plane H onto itself.
Suppose f(z) = az + b

cz + d
maps the upper half-plane onto itself.

Then f(z) must map any three points {x1, x2, x3} on the x-axis in
the order x1 < x2 < x3 respectively to three points u1 < u2 < u3 on
real-axis. It follows that is “no turning" on the real-axis, thus implying
that

arg f ′(x1) = 0 or f ′(x1) > 0.
Moreover, one can solve for the coefficients a, b, c and d by solving

ui = axi + b

cxi + d
, i = 1, 2, 3.

One notices that a, b, c and d are therefore all real constants. But

f ′(x1) = ad− bc
(cx1 + d)2 > 0,

implying that ad − bc > 0. Since f must map Ĉ one-one onto Ĉ, the
upper half-plane onto itself. Thus we deduce that

f(z) = az + b

cz + d
, ad− bc > 0.
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Conversely, suppose
w = f(z) = az + b

cz + d
,

where a, b, c and d are real and ad− bc > 0. Then for all real x,

f ′(x) = ad− bc
(cx+ d)2 > 0, and arg f ′(x) = 0.

That is, there is “no turning" on the real-axis. Therefore w must map
the real-axis onto the real-axis, and hence Therefore w must map the
upper half-plane onto upper half-plane.

Exercise 2.7.1. Prove directly, that is without applying f ′, that it is
necessary sufficient that ad− bc > 0 for

1. f maps H into H;

2. that the above map is “onto".

Example 2.7.2. Construct a Möbius mapping f that maps upper
half-plane into upper half-plane such that 0 7→ 0 and i 7→ 1 + i.

According to the last example, we must have

f(z) = az + b

cz + d
, ad− bc > 0,

where a, b, c and d are real. Since f(0) = 0 implying that b = 0. On
the other hand,

1 + i = f(i) = ai

ci+ d
= i

ei+ f
,

say. That is, e− f = 0 and e+ f = 1, or e = f = 1
2 . Hence

w = 2z
z + 1 .
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Example 2.7.3. Show that a Möbius mapping f that maps the upper
half-plane H onto 4 = {z : |z| < 1} if and only if

w = f(z) = eiθ0
z − α
z − α

, =α > 0, θ0 ∈ R.

Suppose f : H → 4. It follows that f must map the x−axis onto

|w| = 1. Let us consider the images of z = 0, 1 and ∞. Since f(z) =
az + b

cz + d
, ad− bc 6= 0. Thus 1 = |f(0)| =

∣∣∣ b
d

∣∣∣, implying |b| = |d| . We also
require f(∞) to lie on |w| = 1 which is necessary finite. But we know
from a previous discussion that

|f(∞)| =
∣∣∣∣∣f
(1
ζ

)∣∣∣∣∣
ζ=0

=
∣∣∣∣∣a+ bζ

c+ dζ

∣∣∣∣∣
ζ=0

=
∣∣∣∣∣ac
∣∣∣∣∣ = 1,

implying that |a| = |c| . So

w = az + b

cz + d
= a

c
× z + b/a

z + d/c
= a

c

z − z0

z − z1

where |z0| = |b/a| = |d/c| = |z1| . Since |a/c| = 1, so there exists a real
θ0 such that a

c = eiθ0. Thus

w = eiθ0
z − z0

z − z1
, |z0| = |z1| .

Consider
1 = |f(1)| =

∣∣∣∣∣z − z0

z − z1

∣∣∣∣∣
implying |z − z0| = |z − z1| or

(1− z1)(1− z1) = (1− z0)(1− z0).

Notice that |z1| = |z0| . Hence

1− z1 − z1 + |z1|2 = 1− z0 − z0 + |z0|2.



CHAPTER 2. CONFORMAL MAPPINGS 79

Thus
2<(z1) = z1 + z1 = z0 + z0 = 2<(z0)

or <(z1) = <(z0). Hence z1 = z0 or z1 = z0. We must have z1 = z0, for
if z1 = z0, then f(z) is identically a constant. Thus

f(z) = eiθ0
(z − z0

z − z0

)
.

Since f(z0) = 0 so =(z0) > 0.
Conversely, suppose

f(z) = eiθ
(z − α
z − α

)
, z ∈ H.

Then |w| < |f | =
∣∣∣∣z − α
z − α

∣∣∣∣ < 1. If z lies on the lower half-plane, then

|w| < |f | =
∣∣∣∣z − α
z − α

∣∣∣∣ > 1. If z lies on the real axis, then |w| =
∣∣∣∣z − α
z − α

∣∣∣∣ =

1. Since f maps Ĉ to Ĉ in a one-one manner, so f must maps the H
onto |w| < 1.

Remark. If =(z0) = =(α) < 0, then f maps the upper half-plane onto
the lower half-plane.

Exercise 2.7.2. Find a Möbius transformation w : H → 4, i 7→ 0.
So

w = f(z) = eiθ0
(z − i
z + i

)
.

Exercise 2.7.3. Let 4 = {z : |z| < 1}. Show that a Möbius transfor-
mation f that f : 4 → 4 if and only if there exists θ0, |α| < 1 such
that

w = f(z) = eiθ0
z − α
1− αz .
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2.8 Orthogonal circles
We follow the ideas of Riemann and Klein to visualise the effects of
conformal mappings. We use the toy models of Möbius transformations
to allow us to have a glimpse.

Consider the map

w = h(z) = k
z − a
z − b

,

where k is some non-zero constant to be chosen later. The map carries
z = a to w = 0 and z = b to w = ∞. This means that any straight-
line passing through the origin in the w−plane has its preimage to pass
through the points z = a and z = b, and this preimage must be a circle
(may be a generalised circle, i.e., a straight-line) in the z−plane.

On the other hand, the circles centred at the orgin in the w−plane
are of the form |w| = ρ for some ρ > 0. That is,

∣∣∣∣z − a
z − b

∣∣∣∣ = ρ/|k|.

Hence the loci of the h−1{|w| = ρ/|k|}, which must also be a circle,
also lies on the z−plane. The relation

|z − a| = (ρ/|k|) |z − b|

describes the loci of the point z so that the distances of it to a and b are
in a constant ratio. Such circles, denoted by C2, are calledApollonius’
circles and the points a and b are called the limit points. It is clear
that the family of concentric circles |w| = ρ/|k| are always at right
angles with any straight-line through the origin in the w−plane. So
their preimages, denoted by C1 are orthogonal to the Apollonius circles
C2. In general, we denoted by C ′1 and by C ′2 the images of C! and
Apollonius circles C2, respectively, under a Möbius transformation in
the w−plane. Obviously, the C ′1 and C ′2 are orthogonal to each other
at their intersections.

We have the following theorem.

https://en.wikipedia.org/wiki/Circles_of_Apollonius
https://en.wikipedia.org/wiki/Circles_of_Apollonius
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Figure 2.6: Orthogonal circles

Theorem 2.8.1. Let a and b be two given points, C1 and C2 as defined
above. Then

(i) there is exactly one C1 and one C2 through each point in C except
at the limit point a and b in the z−plane;

(ii) the tangent of each C1 and that of each C2 are orthogonal to each
other at the points of intersections;

(iii) reflection in C1 transforms every C2 into itself and every C1 into
another C1;

(iv) reflection in a C2 transforms every C1 into itself and every C2
into another C2;

(v) the limit points are symmetric with respect to each C2, but not
with respect to any other circle.

Proof. We consider the special case that a = 0 and b = 0 so that the
circles passing through 0 and ∞ become straightlines passing through
the origin in the z−plane. Then
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(i) it is clear since there is only one straightline passing through any
non-zero finite point and the origin, and only one circle intersect-
ing with the straightline and orthogonal to it at that point;

(ii) follows since the C2 are concentric circles;

(iii) also follows since it is clearly that any reflection of a concentric
circle C2 with respect to any straight line passing through the
origin remains unchange. Reflection of any C1 (straightline) with
respect to a C1 is obviously another C1;

(iv) follows from Theorem 2.6.3 when considering symmetric points
lying on a straightline is reflected upon each other lying on the
same straightline with respect to a C2. So a C1 is mapped onto
itself with respect to any C2. Let C2 relfect with respect to
another C2. Then parts (i) and (ii) imply that each point of
the image of C2 upon reflection must be orthogonal to each C1
and this implies the image must be a circle. The image circle C2
must be different from its preimage except itself because of the
symmetric principle Theorem 2.6.3;

(v) this is obvious because of the choice.

Having established the special case a = 0 and b = 0, the general case
(i-v) for arbitrary a and b follow since one can map a C1 by a Möbius
transformation to a straightline C ′1 passing through the origin and then
each corresponding C2 becomes a circle C ′2 centred at the origin so that
C2 must be orthogonal to C1 because any Möbius transformation is
conformal on C.

Fixed points

The general Möbius transformation T that carries a to a′ and b to b′
can be written as

w − a′

w − b′
= k

z − a
z − b
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which is an application of cross-ratios. Suppose we impose the require-
ment that a = a′ and b = b′. That is, we assume that

z = T (z) = az + b

cz + d
,

which will have two fixed points Ta = a and Tb = b since we have
a quadratic equation in z. In the exceptional circumstance, we have a
double root from the quadratic equation so that we are left with one
double root. The transformation T maps C1 to C ′1, C2 to C ′2 and a, b
to a′, b′.

Theorem 2.8.2. Let w = T (z) be a Möbius transformation that sat-
isfies,

w − a
w − b

= k
z − a
z − b

.

Then

(i) the whole circular net consists of C1 and C2 are mapped onto
itself. That is, the union of C ′1 and C ′2 are the same as the union
of C1 and C2;

(ii) when the images C ′1 and C ′2 are plotted on the same graph as C1
and C2, then

(a) the arg k represents the difference of the angle made by the
tangents at the point of intersections between the circles C1
and C ′1;

(b) the

|k| = |w − a|/|w − b|
|z − a|/|z − b|

measures the ratio of the above right-hand side concerning
the Apollonius circles C2 and C ′2,

(iii) C1 = C ′1 if k > 0 (with orientation reversed if k < 0), where the
points on Tz on C1 flow toward b upon increasing the value of k,
and we call T hyperbolic;
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(iv) C2 = C ′2 if |k| = 1, then as arg k increase, the Tz circulates along
C2, and we call T elliptic.

Proof. Exercise.

Definition 2.8.3. If two fixed points of a Möbius transformation T
coincide, then we call the transformation parabolic.

Rotations of the Riemann sphere

Let us consider a subgroup R of the set of all Möbius transformation
that represent the rotation of the Riemann sphere S about its centre.
Let us assume that the axis of rotation passes through the antipodal
points Z0 and Z1 whose images on C are z0 and z1. Then we know
that they are z0 and z1 = −1/z̄0 since z0z̄1 + 1 = 0.

Theorem 2.8.4. The Möbius transformation

w − z0

1 + z̄0w
= k

z − z0

1 + z̄0z
, k = cosα + i sinα (2.13)

(i) leaves the points z0 and −1/z̄0 invariant;

(ii) leaves the points Z0 and Z1 corresponding to z0 and −1/z̄0 re-
spectively, on the Riemann sphere S invariant;

(iii) rotates the plane that intersects the S in a great circle passing
through Z0 and Z1 by an angle of α.

Proof. The statements (i) and (ii) are clear. It remains to verify the
(iii). It is left as an exercise for the reader to check that if Tz = w,

∣∣∣∣ w − z0

1 + z̄0w

∣∣∣∣ =
∣∣∣∣ z − z0

1 + z̄0z

∣∣∣∣ = ρ > 0
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then their chordal distance is

χ(z, z0) = χ(w, z0) = ρ√
1 + ρ2 .

Let Z and W be the images of z and w respectively. Then it follows
from (2.13) that the T is a rotation of the Riemann sphere S through
the plane containing the great circle passing through the points Z0, Z
and Z1 to the plane containing the great circle Z0, W and Z1.

2.9 Extended Maximum Modulus Theo-
rem

Let us recall some knowledge about metric spaces. Let (X, d) be a
metric space. Then F ⊂ X is closed if X \ F is open. Let A ⊂ X be
a subset, the closure A of A is defined by

∩{F : F is closed and A ⊃ F}.

The boundary ∂A of A is defined by ∂A = A ∩ (X \ A).
Let G be a subset of Ĉ. We write

∂∞G =
∂G if G is bounded;
∂G ∪ {∞} if G is unbounded.

to be the extended boundary of G in Ĉ. If a =∞, then the B(a, r) is
understood in terms of chordal metric.

Example 2.9.1. Let G = {z : | arg z| < π
2}. Then

∂G = {z = x+ iy : x = 0}, ∂∞G = ∂G ∪ {∞}.
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G

Figure 2.7: G = {z : | arg z| < π

2}

Definition 2.9.2. Let G ⊂ C and f : G→ R be continuous. Suppose
a ∈ ∂∞G, then we define

lim sup
z→a

f(z) = lim
r→0

(
sup
z
{f(z) : z ∈ G ∩B(a, r)}

)
= L

and
lim inf
z→a f(z) = lim

r→0

(
inf
z
{f(z) : z ∈ G ∩B(a, r)}

)
= l.

If a 6=∞, the above definition can be written as:
Given ε > 0, there exists r > 0 such that

L− ε < sup
z
{f(z) : z ∈ G ∩B(a, r)} < L+ ε.

In particular, f(z) < L+ ε for all z ∈ G ∩B(a, r).
Similarly, given ε > 0, there exists r > 0 such that

l − ε < inf
z
{f(z) : z ∈ G ∩B(a, r)} < l + ε.

In particular, f(z) > l − ε for all z ∈ G ∩B(a, r).

If a =∞, we understand B(a, r) is with the chordal metric and the
lim sup, lim inf have similar interpretations.

Note also that, it follows easily limz→a f(z) exists if and only if
L = l (a ∈ ∂∞G).
Theorem 2.9.3 (Maximum Modulus Theorem - Extended version).
Let G ⊂ C be a region and f : G→ C is analytic. Suppose

lim sup
z→a

|f(z)| ≤M



CHAPTER 2. CONFORMAL MAPPINGS 87

for some M > 0 and all a ∈ ∂∞G. Then |f(z)| ≤M for all z ∈ G.

Proof. Let
H = {z ∈ G : |f(z)| > M + δ}

for a fixed δ > 0. We aim to show that H = ∅. Since then |f | ≤ M
because δ > 0 is arbitrary. It follows from the elementary fact in
real analysis that H is open because |f | is continuous. We next show
that H has no intersection with a region near the ∞ and in particular
H ∩ ∂∞G = ∅, and hence H is a bounded set.

By the hypothesis lim supz→a |f(z)| ≤ M for all a ∈ ∂∞G, for the
above δ > 0, there exists r > 0 such that

|f(z)| < M + δ

for all z ∈ G ∩ B(a, r). Hence H ⊂ G. This argument works whether
G is bounded or unbounded, and a = ∞. Thus H ∩ ∂∞G = ∅ and
hence H is bounded. Therefore H is a compact set.

Note that |f(z)| = M + δ when z ∈ ∂H since H ⊂ {z ∈ G :
|f(z)| ≥ M + δ}. Thus either f is constant on H by Theorem 1.7.2
(hence f is constant on G by Identity theorem since H is open and
non-empty) or H = ∅. But if f is constant on G, where |f | = M + δ,
then it contradicts the hypothesis that |f | < M + δ near ∂∞G. Thus
H = ∅. This completes the proof.

We shall apply the maximum modulus theorem to characterize cer-
tain analytic map of unit disk. We first recall

Theorem 2.9.4 (Schwarz’s Lemma). Let ∆ = {z : |z| < 1} be the
unit disk. Suppose f : ∆→ C is analytic such that |f(z)| ≤ 1 for each
z ∈ ∆, and f(0) = 0. Then |f(z)| ≤ |z| for all z ∈ ∆ and |f ′(0)| ≤ 1.

Moreover, f(z) = eiθz for a fixed θ whenever |f ′(0)| = 1 or |f(z)| =
|z| for some z 6= 0.

Proof. Define

F (z) =


f(z)
z
, z 6= 0;

f ′(0), z = 0.
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F is thus analytic on ∆.

Moreover, |F (z) =
∣∣∣∣∣∣f(z)
z

∣∣∣∣∣∣ ≤ 1
|z|
→ 1 as |z| → 1. It follows from

Theorem 2.9.3 that |F (z)| ≤ 1.
If |F (z)| = 1 for some z ∈ ∆ (i.e. either |f(z)| = |z| for some z 6= 0

or |f ′(0)| = 1), then F is a constant eiθ for some θ ∈ [0, 2π] by the
maximum modulus theorem 1.7.2 since |F | ≤ 1 for all z ∈ ∆. And so
f(z) = eiθz.

Exercise. Suppose φ(z) is analytic on |z| ≤ R, where |φ(z)| ≤ 1 and
φ(0) = 0. Show that |φ(z)| ≤ r

R
on |z| = r, where r < R.

Proposition 2.9.5. Suppose |a| < 1, then

ϕa(z) = z − a
1− az

is a conformal map mapping ∆ onto ∆, ∂∆ to ∂∆. Moreover, ϕ−1
a =

ϕ−a, ϕ′a(0) = 1− |a|2 and ϕ′a(a) = (1− |a|2)−1.

Proof. Since |a| < 1, ϕa is clearly analytic. In fact, ϕa is conformal
(Exercise). We only show

|ϕa(eiθ)| =
∣∣∣∣∣∣ e

iθ − a
1− aeiθ

∣∣∣∣∣∣
=
∣∣∣∣∣∣eiθ · e

iθ − a
e−iθ − a

∣∣∣∣∣∣
= |eiθ − a|
|e−iθ − a|

= 1.

Hence ϕa(∂∆) = ∂∆. The remaining conclusion is left as an exercise.

Proposition 2.9.6. Suppose f : ∆ → ∆ is analytic and f(a) = α.
Then

|f ′(a)| ≤ 1− |α|2
1− |a|2 . (max. value of |f ′(a)|)

Moreover, equality occurs if and only if f(z) = ϕ−α(cϕa(z)), |c| = 1.
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Remark. We may assume |α| < 1. Otherwise f is a constant.

Proof. Define g = ϕα◦f ◦ϕ−a, Then g(∆) ⊂ ∆, and g(0) = ϕα(f(a)) =
ϕα(α) = α− α

1− αα = 0. Clearly g is analytic and thus |g(z)| ≤ |z| and
|g′(0)| ≤ 1 by Schwarz’s Lemma. But

g′(0) = 1− |a|2
1− |α|2f

′(a).

Thus
|f ′(a)| ≤ 1− |α|2

1− |a|2 . (2.14)

Equality will occur if and only if there exists a c such that |g′(0)| =
|c| = 1 and g = cz.

We can now prove the converse of Proposition 2.9.5.
Theorem 2.9.7. Let f : ∆ → ∆ be an one-to-one analytic function
onto ∆. Suppose f(a) = 0. Then there is a c such that |c| = 1 and

f = cϕa = c
z − a
1− az .

Proof. Since f is bijective, we let g : ∆→ ∆ to be f−1. So g(f(z)) = z
for all z ∈ ∆.We apply (2.14) to both f and g to derive the inequalities:

|f ′(a)| ≤ 1
1− |a|2 and |g′(0)| ≤ 1− |a|2.

On the other hand, 1 = g′(0)f ′(a). Thus, |f ′(a)| = (1−|a|2)−1 since
1

1− |a|2 ≤ |f
′(a)| ≤ 1

1− |a|2 .

Then, since ϕ0(z) = z, Proposition 2.9.6 gives f = cϕa for some c with
|c| = 1.

Remark. A simple consequence of the maximum modulus of entire
functions is that the function M(r) = M(r, f) = max|z|=r |f(z)| is an
increasing function of r, i.e. M(r1) ≤M(r2) if r1 ≤ r2.
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2.10 Phragmén-Lindelöf principle

Example 2.10.1. Let f(z) = exp(γza), γ > 0, a ≥ 1
2, be defined on

C.
Note that |f(z)| = exp(raγ cos(aθ)), and cos(aθ) < 0 if

Sn : (2n− 1) π2a < θ < (2n+ 1) π2a

for all odd integers n, cos(aθ) > 0 for θ ∈ Sn and for all even integers;
and |f(z)| = 1 if θ = π

2a(2n + 1) for all integers n. Note that each Sn
has an opening π

a
.

We conclude that |f | → 0 (so bounded) on each sector Sn (n odd);
and |f | → ∞ on Sn (n even); and f is bounded on the boundary of
Sn.

Clearly, logM(r, f) = γra and it is possible for an entire function
to be bounded on two rays making angle of π

a
with each other without

being bounded inside the sectors Sn (n even). Phragmén (1863-1937)
observed that this example is the best possible in 1904.

Theorem 2.10.2 (Phragmén). Let G =
{
z : | arg z| < π

2a, a ≥
1
2

}
and f : G→ C is analytic. If f is bounded on ∂G and

logM(r, f) = o(ra),

then f is bounded on G.

So for each analytic function f on G and bounded on ∂G, either f
is bounded on G or

lim sup
r→∞

logM(r, f)
ra

> 0.

We shall prove a more general result than that by Phragmén.
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Theorem 2.10.3 (Phragmén-Lindelöf Theorem). Let G be a simply
connected region and f : G → C be analytic. Suppose there exists
a non-vanishing, bounded analytic function w(z) : G → C such that
|w(z)| ≤ 1 on G. Moreover, if ∂∞G = A ∪B, then

(i) lim supz→a |f(z)| ≤M, for every a ∈ A;

(ii) lim supz→b |w(z)|ε|f(z)| ≤M, for every b ∈ BR and ε > 0,

then, |f(z)| ≤M for all z ∈ G.

Proof. Set F (z) = w(z)εf(z) for z ∈ G. Since w 6= 0 on G and so we
can find an analytic branch for logw and thus wε = exp(ε logw) is a
well-defined analytic function (a branch). It follows from the hypothe-
ses (i) and (ii) that

lim sup
z→z0∈∂G

|F (z)| ≤M.

By the maximum modulus principle (extended version), we deduce
immediately that |F (z)| ≤M must hold for all z ∈ G. Thus

|f(z)| ≤ |w(z)|−εM, for all z ∈ G.

Since ε > 0 is arbitrary, we may let ε→ 0 to obtain

|f(z)| ≤M, z ∈ G

as required.

Theorem 2.10.4 (Phragmén-Lindelöf (1908)). Let a ≥ 1/2 and

G =
{
z : | arg z| < π

2a

}
.

Suppose f : G → C is analytic and lim supz→a |f(z)| ≤ M for all
a ∈ ∂∞G, where M > 0 is a fixed constant. Suppose further that there
exist constants K, b < a such that

|f(z)| ≤ K exp(rb) as z →∞, z ∈ G.

Then |f(z)| ≤M for each z ∈ G.
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Proof. We choose a constant c such that b < c < a, and define

F (z) = w(z)εf(z)

in G, where ε > 0, w(z) = exp(−zc). Notice that

|w| = exp(−rc cos cθ) ≤ 1.

Let z = reiθ, θ = ± π

2a. Then |w(z)| = exp(−rc cos cθ) ≤ 1.
Hence for a ∈ ∂G,

lim sup
z→a

|F (z)| = lim sup
z→a

|w(z)|ε|f(z)|

≤ lim sup
z→a

|f(z)| ≤M.

For z ∈ G,

|F (z)| = |w(z)|ε|f(z)|
≤ K exp[−εrc cos(cθ) + rb]
→ 0 < M

when |z| → ∞, since cos cθ > 0, θ ∈
(
− π

2a ,
π
2a
)
, c < a.

It follows from Theorem 2.10.3 that, |f(z)| ≤M for all z ∈ G.

We shall consider a generalization of Theorem 2.10.4 below. It
follows from Example 2.10.1 and the hypothesis of Theorem 2.10.4
that we cannot relax the size of the angle in G or the constant b there.
But this is exactly what we try to do.

Theorem 2.10.5 (“Generalisation"). Assuming the hypothesis and no-
tation in Theorem 2.10.4, but f satisfies, instead, for each δ > 0, there
exists K > 0 such that

|f(z)| ≤ K exp(δra) (K = K(δ))

uniformly in G. Then |f(z)| ≤M for all z ∈ G.
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Proof. Let
F (z) = exp(−εza)f(z)

in G, where ε > 0 is a fixed constant choosing arbitrarily. We may
suppose 0 < δ < ε since δ > 0 is arbitrary. Suppose z = r ∈ R, then

|F (z)| = | exp(−εza)||f(z)| = exp[−εra cos 0]|f(r)|
≤ K exp[(δ − ε)ra]
→ 0

as r →∞. Hence |F (z)| ≤ M ′ for all z > 0, where M ′ = sup{|F (z)| :
z > 0}.

We now apply Theorem 2.10.4 to the sector

S1 : θ ∈
(
0, π2a

)
and S2 : θ ∈

(
− π

2a, 0
)
.

By the hypothesis |F | ≤ M on the rays θ = π/2a and θ = −π/2a.
We conclude that |F | ≤ max{M,M ′} on S1 and S2. We claim that
M ′ ≤ M. For suppose M ′ > M, then we can find a z = x0 ∈ R
such that |f(x0)| = M ′. This is a contradiction to maximum modulus
principle unless F reduces to a constant, and so M ′ ≤M .

We completes the proof by letting ε→ 0 in |f | ≤ exp(εra)M.
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Riemann Mapping
Theorem
Let G be an open set in C. We consider families of analytic functions
{fn}, fn : G → C and ask for condition on {fn} so that we could
extract a convergent subsequence {fnk} which converges uniformly in
a certain sense. Such consideration is of fundamental importance in
complex function theory. As an application, we shall prove the cele-
brated Riemann mapping theorem at the end of this chapter. We shall
develop the theory step by step, first to continuous functions and then
to analytic and meromorphic functions. On the other hand, we shall
consider functions with values in a general complete metric space Ω
although Ω = C or Ω = Ĉ is our primary considerations.

3.1 Metric Space
Definition 3.1.1. Let (Ω, d) to denote a complete metric space with
the metric d on Ω. Suppose G is an open subset of C, then C(G,Ω)
denotes the set of all continuous functions from G to Ω.

In order to develop C(G,Ω) to have a meaning of compactness, we
have to clarify several issues, such as how to turn C(G,Ω) into a metric
space, what are the topology on it etc.

94
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Let us first recall some basic facts about point-set topology.

Definition 3.1.2. (i) A metric space S is complete if every Cauchy
sequence converges;

(ii) A subset X of a metric space S is compact if and only if every
open covering of X contains a finite subcovering. (Heine-Borel
property) (See Ahlfors p.60)

Proposition 3.1.3. Let X be a compact subset of a metric space. Then
X is complete and bounded.

Proof. Let {xn} be a Cauchy sequence and suppose that xn 6→ y for
any y ∈ X as n→∞. Then there exists an ε > 0 such that d(xn, y) >
2ε for infinitely many n. With the same ε, there exists n0 such that
d(xn, xm) < ε for n,m > n0. We choose a n > n0 such that d(xn, y) >
2ε. Then 2ε < d(xn, y) ≤ d(xn, xm) + d(xm, y) < ε + d(xm, y) for all
m > n0. So d(xm, y) > ε for all m > n0, i.e. all open balls B(y, ε)
contains only finitely many xn.

Let U be the union of open balls which contain only a finite number
of xn. If we suppose {xn} dose not converge, then U is an open covering
of X all open balls contains only finitely many xn by the preceding
paragraph, or considering if any one of the open balls contain an infinite
number of xn, then {xn} will converge by the preceding paragraph.

Then, since X is compact, we could find a finite subcovering of
the original covering. But this implies {xn} is a finite sequence. A
contradiction. Hence xn must converge.

Fix an x0 ∈ X. Then ∪r>0B(x0, r) is am open covering of X.
Thus X ⊂ B(x0, r1)∪ · · · ∪B(x0, rm). Let r̃ = max1≤i≤m ri. So for any
x, y ∈ X, d(x, y) ≤ d(x, x0)+d(x0, y) < 2r̃ and thus X is bounded.

In fact, a compact set is not just bounded, but totally bounded.

Definition 3.1.4. A subset X of a metric space S is totally bounded
if for every ε > 0, X can be covered by finitely many balls of radius ε.

Theorem 3.1.5. A metric space is compact if and only if it is complete
and totally bounded.
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Proof. It remains to prove a compact set is totally bounded in ” =⇒ ”.
But this is easy, since ∪x∈XB(x, ε) is an open cover of X. We extract
a finite subcover B(x1, ε) ∪ · · · ∪B(xm, ε) of X by compactness.

” ⇐= ” We now assume X to be complete and totally bounded.
Suppose X has an open covering U which does not contain any finite
subcovering. Let εn = 1/2n. We know that X can be covered by
finitely many B(x, ε1), hence there must exist a B(x1, ε1) has no finite
subcovering otherwise X must have a finite subcovering. But B(x1, ε1)
is itself totally bounded (why?), hence there exists a ball B(x2, ε2)
which does not admit a finite subcovering. Continuing the process, we
obtain a sequence {xn} with the property that B(xn, εn) has no finite
subcovering and xn+1 ∈ B(xn, εn). But then

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xx+2) + · · ·+ d(xn+p−1, xn+p)

< εn + εn+1 + · · ·+ εn+p−1 <
1

2n−1 .

Thus {xn} is a Cauchy sequence and suppose xn → y. This y
must belong to a B(y, δ) which belongs to an open set in the original
cover U . We choose n so large that d(xn, y) < δ/2 and εn < δ/2. But
d(x, y) ≤ d(x, xm)+d(xn, y) < δ/2+δ/2 whenever d(x, xn) < εn < δ/2.
That is B(xn, εn) ⊂ B(y, δ) ⊂ an open subset of U. A contradiction
since B(xn, εn) has no finite subcovering by construction.

We state the following results without proofs.

Corollary 3.1.5.1. A subset of R or C is compact is and only if it is
closed and bounded.

Theorem 3.1.6. A metric space is compact if and only if every infinite
sequence has a limit point.

Corollary 3.1.6.1. Any infinite sequence in a closed and bounded sub-
set of R and C has a convergent subsequence.
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Theorem 3.1.6 can be rephrased as a metric space is compact if
and only if every infinite sequence has a convergent subsequence. We
called such space to have the Bolzano-Weierstrass property.

We shall return to the question asked at the beginning of this chap-
ter namely how to make C(G,Ω) to have the Bolzano-Weierstrss prop-
erty. But for C(G,Ω) we have another name.

Definition 3.1.7. A family F ⊂ C(G,Ω) is normal if each infinite
sequence in F contains a convergent subsequence converges to a func-
tion in C(G,Ω). (Note that the precise definition is not given at this
stage.)

Note that this definition differs to a subset to be sequentially com-
pact (i.e. Theorem 3.1.6) in a metric space, because we do not require
the limit of the infinite sequence to be in the subset.

Our first question is how to turn C(G,Ω) into a metric space. The
problem being that G is an open set and even continuous functions
may not behave well on an open set. So compact sets are much more
suitable for our consideration especially for an infinite sequence. We
shall first investigate some fundamental point-set topology result to
see how one can approximate an open set by compact subsets.

Proposition 3.1.8. Suppose that G is an open set, then there exists
a sequence {Kn} of compact subsets of G such that G = ∪∞n=1Kn.
Moreover, the sequence can be chosen so that

(i) Kn ⊂ intKn+1

(ii) for each compact subset K of G, we can find an n such that
K ⊂ Kn;

(iii) every component of Ĉ \Kn contains a component of Ĉ \G.

Proof. Let A ⊂ X and x ∈ X, recall that the distance from x to A is
defined by

d(x,A) = inf{d(z, a) : a ∈ A}
, where (X, d) is any metric space.
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One way to construct the compact subset Kn is to let Kn consist of
all points in G at distance ≤ n from the origin, and at distance ≥ 1/n
from the boundary ∂G. That is, we define

Kn = {z ∈ G : |z| ≤ n} ∩ {z ∈ G : d(z,C \G) ≥ 1/n}

which is bounded; and being the intersection of two closed sets must
itself be closed. The interior intKn is just {z ∈ G : |z| < n} ∩ {z ∈
G : d(z,C \G) > 1/n}. Hence intKn+1 ⊃ Kn and (i) is satisfied. It is
also easy to see from the definition of Kn that G = ∪∞1 Kn.

But since also Kn+1 ⊃ intKn+1, we get G = ∪∞1 intKn as well.
Suppose now K is a compact subset of G. G = ∪∞1 intKn implies
that {intKn} forms an open cover of G and also of K. But K is
compact so we can find a finite subcovering ∪N1 intKn of K. Since
∪N1 intKn ⊂ intKN ⊂ KN , there exists an N such that K ⊂ KN .

To prove part (iii), we need to show every component of Ĉ \ Kn

contains a component of Ĉ \ G. Since Kn ⊂ G for each n, we have
Ĉ \ G ⊂ Ĉ \ Kn. It follows that the unbounded component of Ĉ \ G
must be a subset of the unbounded component of Ĉ\Kn for each n. It
also follows from the definition of Kn that the unbounded component
of Ĉ \Kn must contain {z : |z| > n} as a subset. So for any bounded
component D (open) of Ĉ \ Kn, it must contain a point z such that
d(z,C \ G) < 1/n. By definition we can therefore find a w ∈ C \ G
such that |w−z| < 1/n. But then z ∈ B(w, 1/n) ⊂ Ĉ\Kn. Since disks
are connected and z is in the component D of Ĉ \Kn, B(w, 1/n) ⊂ D.
If D1 is the component of Ĉ \ G that contains w, then it follows that
D1 ⊂ D.

The sequence of compact sets Kn such that ∪Kn = G, Kn ⊂ Kn+1
is called an exhaustion of G by compact sets.

Metric Space C(G,Ω)

Suppose (S, d) is a metric space then it is easy to show that

d′(s, t) = d(s, t)
1 + d(s, t) (s, t ∈ S)
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is also a metric on S, and hence (S, d′) is another metric space. (Verify
that d′(s, t) ≤ d′(s, q) + d′(q, t) and d′(s, t) = 0 ⇐⇒ s = t.)

It is also not difficult to check that d and d′ induce the same topol-
ogy on S i.e. a subset T is open in (S, d) if and only if it is open in
(S, d′); a sequence is a Cauchy sequence in (S, d) if and only if it is a
Cauchy sequence in (S, d′), etc.

Let G be an open set in C and according to Proposition 3.1.8, there
is an exhaustion of G by the compact set {Kn}, Kn ⊂ intKn+1, G =
∪∞1 Kn. Suppose f, g ∈ C(G,Ω), and we recall that C(G,Ω) denotes
the set of all continuous functions f : G→ Ω. We define

ρn(f, g) = sup{d(f(z), g(z)) : z ∈ Kn}.

It is easy to see that ρn is a metric on C(Kn,Ω) for each n since (Ω, d)
is a metric space. We further define

ρ(f, g) =
∞∑
n=1

1
2n ·

ρn(f, g)
1 + ρn(f, g)

≤
∞∑
n+1

1
2n = 1

since ρn(f, g)/(1+ρn(f, g)) ≤ 1. By the above discussion ρ satisfies the
triangle inequality, ρ(f, g) = ρ(g, f). Finally suppose ρ(f, g) = 0. Then
ρn(f, g) = 0 and f = g on Kn. But G = ∪Kn. So f = g identically
on G. So ρ is a metric on C(G,Ω) and (C(G,Ω), ρ) is a metric space.
(We shall see later that (C(G,Ω), ρ) is in fact a complete metric space.)

If fm → f in C(G,Ω) with sequence to ρ, then fm → f uniformly
on each compact subset Kn of G. (See later if this is unclear to you at
this point.)

Since the construction of the metric space (C(G,Ω), ρ) depends on
a particular exhaustion {Kn}, we naturally ask will {Kn} affects the
topology on (C(G,Ω), ρ) i.e. if O is open with respect to {Kn}, would
O be still open with respect to another exhaustion? To do so, we
require the following characterization of open sets in (C(G,Ω), ρ) in
terms of the metric d on Ω.
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Proposition 3.1.9. Let ρ be the above metric defined on C = C(G,Ω).
(i) For every ε > 0, there exist a δ > 0 and a compact set K ⊂ G

such that for f, g ∈ C, sup{d(f(z), g(z) : z ∈ K} < δ implies
ρ(f, g) < ε.

(ii) Conversely, if we are given a δ > 0 and a compact set K ⊂ G,
there exists an ε > 0 such that for f, g ∈ C, ρ(f, g) < ε implies
sup{d(f(z), g(z) : z ∈ K} < δ.

Proof. (i) Let ε > 0 be given, we choose an integer p so large such
that ∑∞p+1 1/2n < ε/2. Let δ > 0 be chosen so small such that
for 0 < t < δ, we have t/(t + 1) < ε/2. Recall that G =
∪Kn, now let K = Kp, and consider those f and g such that
sup{d(f(z), g(z)); z ∈ K} < δ. But ρk(f, g) ≤ ρp(f, g) for 1 ≤
k ≤ p. Hence

ρ(f, g) =
∞∑
1

ρk(f, g)
2k(1 + ρk(f, g)) =

 p∑
1

+
∞∑
p+1

 ρk(f, g)
2k(1 + ρk(f, g))

≤
p∑
1

1
2k ·

ε

2 +
∞∑
p+1

1
2k

<
ε

2 + ε

2 = ε

as required.

(ii) Suppose now a δ > 0 and a compact set K ⊂ G is given. Suppose
∪Kn = G is an exhaustion of G by compact set. Then there exists
an integer p such that K ⊂ Kp. Choose ε > 0 so small such that

2pε
1− 2pε < δ.

Suppose ρ(f, g) < ε, then
ρp(f, g)

2p(1 + ρp(f, g) < ε,

i.e.
ρp(f, g) < 2pε

1− 2pε < δ.
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Thus sup{d(f(z), g(z)) : z ∈ K} ≤ ρp(f, g) < δ as required.

What is an open ball in (C, ρ)?
Ans: B(f, ε) = {g : ρ(g, f) < ε}.

What about an open set in (C, ρ)?
Ans: Since open set is an union of open balls, or for each f in the open
set, there exists an ε > 0 such that B(f, ε) is a proper subset of the
open set.

We immediately obtain:

Proposition 3.1.10. A set U ⊂ (C, ρ) is open if and only if for each
f ∈ U , there exist a compact set K ⊂ G and a δ > 0 such that

U ⊃ {g : d(f(z), g(z)) < δ : z ∈ K}.

Proposition 3.1.10 clearly indicates that any open set U of (C, ρ) is
independent of the particular exhaustion {Kn} used to define ρn and
hence ρ. This answers the question raised before Proposition 3.1.9.

Here we again answer a claim made before Proposition 3.1.9.

Proposition 3.1.11. Let {fn} be an infinite sequence in (C(G,Ω), ρ).
Then fn → f ∈ (C(G,Ω), ρ) if and only if {fn(z)} converges to f(z)
uniformly on every compact subset of G.

Proof. ” =⇒ ” Let K ⊂ G be an arbitrary compact set. By (ii) of
Proposition 3.1.8, there exists a compact set KN in the exhaustion
∪Kn = G so that K ⊂ KN ⊂ Kn for all n ≥ N. Thus ρN(fm, f) → 0
as m→∞ since

ρN(fm, f)
2N(1 + ρN(fm, f)) ≤

∞∑
1

ρN(fm, f)
2N(1 + ρN(fm, f)) = ρ(fm, f)→ 0

as m→∞. But

sup{d(fm(z), f(z)) : z ∈ K} ≤ sup{d(fm(z), f(z)) : z ∈ KN} → 0
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as m → ∞ by Proposition 3.1.9(ii). Hence fm → f on any compact
set K ⊂ G.

The converse is left as an exercise.

So far we have not used the assumption at the beginning that Ω is
a complete metric space.

Theorem 3.1.12. (C(G,Ω), ρ) is a complete metric space.

Proof. Suppose {fn} is a Cauchy sequence in (C(G,Ω), ρ). That is ,
given ε > 0, there exists a N > 0 such that ρ(fn, fm) < ε whenever
n,m > N.

By Proposition 3.1.9(ii), given any compact set K ⊂ G and δ > 0,
we have

sup{d(fn(z), fm(z) : z ∈ K} < δ (3.1)
whenever n,m > N. That is, {fn(z)} is a Cauchy sequence in C. Thus
fn(z) must converge to a complex number f(z), say. This is true for
every z ∈ K. So we obtain a function by f : K → C, z 7→ f(z).

We need to verify that fn → f with respect to ρ and that f ∈
C(G,Ω). Let z be an arbitrary element of K, then there exists an
m0 = m0(z) such that d(fm(z), f(z)) < δ for m > m0.

Let n > N and z ∈ K, we have

d(fn(z), f(z)) ≤ d(fn(z), fm(z)) + d(fm(z), f(z)) ≤ δ + δ = 2δ (3.2)

by choosing m > m0 sufficiently large. It follows from (3.1) that (3.2)
holds uniformly for all z ∈ K and n > N. That is, fn → f uni-
formly on every compact subset K of G. Proposition 3.1.10 implies
that ρ(fn, f)→ 0 as n→∞. Moreover since fn → f uniformly on K,
f must be continuous. Since K is arbitrary, f must be continuous on
G by Proposition 3.1.8, i.e. f ∈ C(G,Ω).

Recall that a family F ⊂ C(G,Ω) is normal if every infinite se-
quence has a subsequence which converges to a function in C(G,Ω).
Note that the limit is not required to be a member of F . This and
Theorem 3.1.6 imply that
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Proposition 3.1.13. A family F ⊂ C(G,Ω) is normal if and only if
F is compact (or F is relatively compact in C(G,Ω)).

We now relate the concepts of normality and total boundedness.
We recall, from Theorem 3.1.5 that, a subset is compact if and only if
it is complete and totally bounded. Hence Proposition 3.1.13 can be
rephrased as: F ⊂ C(G,Ω) is normal if and only if F is complete and
totally bounded. F being a subset of F is also totally bounded, i.e.
given ε > 0, F ⊂ ∪N1 B(fi, ε) for some {f1, . . . , fN} of F . So for every
ε > 0, there exist f1, . . . , fN ∈ F such that for every f ∈ F , there exist
an i such that ρ(f, fi) < ε.

We now state this in terms of the original metric d.

Exercise.

Let S = {x = (x1, x2, . . .) : xi ∈ R, only finitely many xi 6= 0}. Then
(S, d) is a metric space, where d(x, y) = max{|xi − yi|}. Is (S, d) com-
plete? Show that the δ−neighbourhoods are not totally bounded.

Theorem 3.1.14. A set F ⊂ C(G,Ω) is normal if and only if for
every compact set K ⊂ G and δ > 0, there exist f1, . . . , fn ∈ F such
that for each f ∈ F , there exists an i among {1, . . . , n} with

sup{d(f(z), fi(z)) : z ∈ K} < δ. (3.3)

Proof. Suppose F is normal; hence F is compact and thus totally
bounded. So for each ε > 0, there exist f1, . . . , fn among F such that
F ⊂ ∪n1B(fi, ε).

Let K ⊂ G be compact and δ > 0 be given. According to Proposi-
tion 3.1.9(ii), we may choose ε > 0 such that for each f ∈ B(fi, ε), we
have

sup{d(f(z), fi(z)) : z ∈ K} < δ.

Conversely, suppose F has the property (3.3), then it is clear that
F also has this property (3.3). By Proposition 3.1.13, it is equivalent
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to show that F is a compact subset of (C, ρ) in order to show that F
is normal. But F is compact if and only if it is complete and totally
bounded. Since F satisfies (3.3), F is totally bounded by Proposition
3.1.9(i). But F is a closed subset of the complete metric space (C, ρ),
so it must be complete also. This proves that F is normal.

We have essentially established the theory part of Normal family.
However, it is still too general to be applicable. For example, one
main result is by Montel: A family of analytic functions is normal
if and only if the family is locally bounded. We shall define the term
locally bounded precisely later. It essentially means each f in the family
is bounded on every ball. To make the connection, we still need to
establish several links, some of them are very important on their own.

3.2 Arzela-Ascoli Theorem
Definition 3.2.1. A set F ⊂ C(G,Ω) is equicontinuous at a point
z0 ∈ G if for every ε > 0, there is a δ > 0 such that for |z − z0| < δ,
d(f(z), f(z0)) < ε for every f ∈ F .

Similarly, F is equicontinuous over a set E ⊂ G if for every ε > 0,
there exists a δ > 0 such that for |z − z′| < δ, d(f(z), f(z′)) < ε
whenever z, z′ ∈ E and for every f ∈ F .

Remark. If F = {f}, then F is equicontinuous at z0 means just f is
continous at z0. And F = {f} is equicontinous over a set E ⊂ G if f
is uniformly continuous over E.

Lemma 3.2.2 (Lebesgue’s Covering Lemma). Let (X, d) be a compact
metric space. If G is an open covering of X, then there is an ε > 0
such that for each x ∈ X, there is a set G ∈ G with B(x, ε) ⊂ G.

Proof. Since X is compact, Theorem 3.1.6 implies that every infinite
sequence has a convergent subsequence. Let G be an open cover of
X, suppose on the contrary that there is no such ε > 0 can be found.
In particular, for every integer n there is a point xn ∈ X such that
B(xn, 1/n) is not contained in any member G of G. But {xn} must
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have a subsequence {xnk} converging to x0 ∈ X, say. There must be a
G0 ∈ G such that x0 ∈ G0. Choose ε > 0 such that B(x0, ε) ⊂ G0. Let
N > 0 such that d(x0, xnk) < ε/2 for all nk > N . We further choose
nk such that nk ≥ max{N, 2/ε}, y ∈ B(xnk, 1/nk). Then d(x0, y) ≤
d(x0, xnk)+d(xnk, y) < ε/2+ε/2 = ε. That is B(xnk, 1/nk) ⊂ B(x0, ε) ⊂
G0 ∈ G. A contradiction.

Remark. The ε > 0 in the above lemma is known as Lebesgue’s num-
ber.

Proposition 3.2.3. Suppose F ⊂ C(G,Ω) is equicontinuous at each
point of G. Then F is equicontinuous over each compact subset of G.

Proof. Let K ⊂ G be a compact set and fix ε > 0. F is equicontinuous
at each point w of K means that there exists a δw > 0 such that
d(f(w), f(w′)) < ε/2, for all f ∈ F and |w − w′| < δw.

The set {B(w, δw) : w ∈ K} forms an open cover of K. By
Lebesgue’s Covering Lemma, there exists a δ > 0 such that for each
z ∈ K, B(z, δ) is contained in one of these B(w, δw). So if z′ ∈ B(z, δ),
then d(f(z), f(z′)) ≤ d(f(z), f(w)) + d(f(w), f(z′)) < ε/2 + ε/2 = ε
for all f ∈ F whenever z′ ∈ B(z, δ). Hence F is equicontinuous over
K.

Theorem 3.2.4 (Arzela-Ascoli Theorem). A set F ⊂ C(G,Ω) is nor-
mal if and only if

(i) F is equicontinuous at each point of G;

(ii) for each z ∈ G, {f(z) : f ∈ F} is compact in Ω.

We shall postpone the proof of Arzela-Ascoli Theorem and give an
application first. (Full detail will be given later.)

Theorem 3.2.5 (Montel’s Theorem). Let H(G) be a subset of C(G,Ω)
of all analytic functions f : G → Ω = C. (Note that H(G) is com-
plete.) Then F ⊂ H(G) is normal if and only if F is locally bounded.

In order to prove the Arzela-Ascoli Theorem, we need the following
lemma.
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Lemma 3.2.6 (Cantor Diagonalization Process). Let (Xn, dn) be a
metric space for each n ∈ N, and let X = ∏∞

1 Xn be their Cartesian
product. Let ξ = (xn), η = (yn) ∈ X. Then

d(ξ, η) =
∞∑
n=1

dn(xn, yn)
2n(1 + dn(xn, yn))

defines a metric on X ((X, d) is a metric space). Let

ξk = (xkn)∞k=1 = (xk1, xk2, xk3, . . .) ∈ X,

then ξk → ξ = (xn) say, in (X, d) if and only if xkn → xn ∈ Xn for
each n as k →∞.

Moreover (X, d) is compact if (Xn, d) is compact for each n.

Proof. It is left to the reader to verify that (X, d) is a metric space.
” =⇒ ” Suppose first that ξk → ξ in (X, d), i.e. d(ξk, ξ) → 0 as

k →∞. Then, for each n ∈ N, dn(xkn, xn)→ 0 as k →∞ since

lim
k→∞

dn(xkn, xn)
1 + dn(xkn, xn)

≤ lim
k→∞

d(ξk, ξ)2n = 0.

”⇐= ” Suppose now that dn(xkn, xn)→ 0 for each n ∈ N as k →∞.
Given ε > 0, we choose l so large that ∑∞

n=l+1 1/2n < ε/2, and
choose a δ > 0 so small that t

1 + t
<
ε

2 if t < δ. Since dn(xkn, xn) → 0
as k →∞, there exists a K > 0 such that dn(xkn, xn) < δ if k > K for
1 ≤ n ≤ l. Hence

d(ξk, ξ) =
 l∑

1
+
∞∑
l+1

 dn(xkn, xn)
2n(1 + dn(xkn, xn))

<
l∑
1

1
2n ·

ε

2 +
∞∑
l+1

1
2n < ε

by the choice of l and k above. Hence d(ξk, ξ) → 0 as k → ∞. This
proves the first part of the lemma.
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Suppose now that (Xn, dn) is compact for each n ∈ N. By Theorem
3.1.6 it suffices to prove that every infinite sequence contains a conver-
gent subsequence. We now come to describe the famous Cantor diag-
onalization process. Let ξk = (xkn) = (xk1, xk2, xk3, . . .), k = 1, 2, 3, . . ., be
a sequence in (X, d) where each xkn ∈ (Xn, dn)

Since X1 is assumed to be compact, so (xk1)∞1 has a convergent
subsequence converges to a point x1 say, in X1 (by Theorem 3.1.6). So
there is a subset of N denoted by N1 such that k ∈ N1. Similarly since
X2 is compact, we can find a subset of N1 denoted by N2 such that
xk2 → x2 ∈ X2 as k → ∞, k ∈ N2. It is to be noted that xk1 → x1 and
xk2 → x2 as k → ∞, k ∈ N2. By the same method we may repeat the
above procedure for X3, X4, . . . and obtain N2 ⊃ N3 ⊃ N4 ⊃ N5 ⊃ · · · .

We now let kj be the j−th element in Nj, then

ξkj = (xkj1 , x
kj
2 , x

kj
3 , . . .)

converges to ξ = (xn) = (x1, x2, x3, . . .) as kj →∞ with j. To see this,
we note that limkj→∞ x

kj
n = xn for each n, since kj ∈ Nj ⊂ Nn when

j ≥ n. This completes the proof.

Now we are ready to prove the Arzela-Ascoli Theorem (Theorem
3.2.4).

Proof of Arzela-Ascoli Theorem. ” =⇒ ” Let us first assume that F
is normal. We deal with (ii) first. So fix a z ∈ G and define a map
F : C(G,Ω)→ Ω by f 7→ f(z).We aim to prove that F is a continuous
mapping. Proposition 3.1.9(ii) implies that given f, g ∈ C(G,Ω) and
ε > 0, we can find a δ > 0 such that

d(f(z), g(z)) < ε whenever ρ(f, g) < δ. (K = {z})

The statement is equivalent to

d(F (f), F (g)) < ε whenever ρ(f, g) < δ.

That is, F is a continuous mapping from C(G,Ω) to Ω. Since F is
normal, and so F is compact, it follows F (F) is also compact in Ω.
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Since this argument works for each z ∈ G, it completes the argument.

We now show that F is equicontinuous at each point z0 of G. Fix
z0 ∈ G, and let ε > 0 be given. We choose R > 0 such that B(z0, R) ⊂
G. Let K = B(z0, R) which is a compact set. According to Theorem
3.1.14, there exist f1, . . . , fn ∈ F such that for each f ∈ F , there exists
a k ∈ {1, . . . , n} with

sup{d(f(z), fk(z)) : z ∈ B(z0, R) = K} < ε

3 .

We now make use of the fact that fk is continuous at z0. That is,
there exists a 0 < δ < R such that |z − z0| < δ implies

d(fk(z), fk(z0)) <
ε

3
for 1 ≤ k ≤ n. Therefore given ε > 0, f ∈ F , there exists a δ > 0 (with
a suitable k) such that |z − z0| < δ implies

d(f(z), f(z0)) ≤ d(f(z), fk(z)) + d(fk(z), fk(z0)) + d(fk(z0), f(z0))
<
ε

3 + ε

3 + ε

3 = ε.

” ⇐= ” We now prove the converse. So suppose (i) and (ii) of the
theorem hold. Let {zn} be an rational enumeration of G (i.e. zn has
rational real and imaginary parts, zn ∈ G). We define

Xn = {f(zn) : f ∈ F} ⊂ Ω

for every n. By (ii) of the hypothesis (Xn, d) is a compact metric space.
Hence Lemma 3.2.6 implies X = ∏∞

1 Xn, with the metric as defined in
Lemma 3.2.6, is again a compact metric space .

For each f ∈ F we define a sequence

f̃ = (f(z1), f(z2), f(z3), . . .) ∈ X.

Suppose {fk} is an infinite sequence in F , we shall prove fk → f ∈
C(G,Ω) by proving that {fk} is a Cauchy sequence in the C(G,Ω).
But C(G,Ω) is complete and hence F must be normal.
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As for f̃ , we define

f̃k = (fk(z1), fk(z2), . . .)

which is an infinite sequence in the compact metric space X. By
Theorem 3.1.6 {f̃k} has a convergent subsequence which we still de-
note by {f̃k}. Suppose limk→∞ fk(zn) = wn, Lemme 3.2.6 implies
limk→∞ f̃k = ξ = (wn).

So our strategy is to show given ε > 0, K is an arbitrary compact
subset, there exists a J > 0 such that

d(f(k(z), fj(z)) < ε whenver k, j > J

and for z ∈ K. Then by Proposition 3.1.9(i), {fk} will be a Cauchy
sequence in C(G,Ω).

Since K is compact, let R = dist(K, ∂G) > 0, and

K1 =
{
z ∈ G : d(z,K) ≤ R

2

}
.

So K1 is again compact and K ⊂ intK1 ⊂ K1 ⊂ G.
We clearly have the values of fk at zn when k is large, fk(zn) ∼ wn

(k sufficiently large). We use the hypothesis that F is equicontinuous
over K to gain control of fk(z) when z is close to one of zn. Since F is
equicontinuous at each point of G, it is equicontinuous over K1. That
is, with the ε > 0 given above, we can find a δ > 0 such that δ < R

2
and

d(f(z), f(z′)) < ε

3
for all f ∈ F whenever |z−z′| < δ and z, z′ ∈ K1. LetD = {zn}∩K1 =
{ξi}. Then the open sets {B(ξi, δ) : ξi ∈ D} is an open cover of K.
(See Figure 3.1)

ButK is compact, so we can find a subcovering of disks with centres
ξ1, ξ2, . . . , ξn ∈ D.

Note that limk→∞ fk(ξi) exists for each i, hence there exists a J > 0
such that for j, k > J , d(fk(ξi), fj(ξi)) <

ε

3 for each of i = 1, . . . , n.
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R

R/2

K

K1

G

b

b

b b b

z

ζi ζi+1 ζi+2

δ
×

Figure 3.1: {B(ξi, δ) : ξi ∈ D}

Now let z be an arbitrary point in K, z ∈ B(ξi, δ) for some i, so

d(fk(z), fj(z)) ≤ d(fk(z), fk(ξi)) + d(fk(ξi), fj(ξi)) + d(fj(ξi), fj(z))
<

ε

3︸︷︷︸
equicontinuous

+ ε

3︸︷︷︸
convergence

+ ε

3︸︷︷︸
equicontinuous

= ε

provided j, k > J. This completes the proof.
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3.3 Normal Family of Analytic Functions
Let G be an open subset of C and let H(G) be a subset of C(G,C)
consisting of analytic functions f : G → C. Thus almost all basic
properties of C(G,Ω) are carried over to H(G). However, it is not
clear that if H(G) is closed (and hence complete).

Theorem 3.3.1. Suppose {fn} is a sequence in H(G) and f ∈ C(G,Ω)
such that fn → f. Then f ∈ H(G), and f (k)

n → f (k) for each k ≥ 1.

Proof. Let T be a triangle contained inside a disk D ⊂ G. Since T
is a compact set, {fn} converges to f uniformly over T. Hence ∫T f =
lim ∫

T fn = 0 by Cauchy’s Theorem. But this is true for every T ,
Morera’s Theorem implies that f must be analytic on every disk D ⊂
G. That is, f is analytic on G.

To show f (k)
n → f (k), this follows from Cauchy’s integral formula.

Let a ∈ G. Then there exists R > r such that B(a, r) ⊂ B(a,R) ⊂ G.
Let γ = ∂B(a,R) then Cauchy’s integral formula gives, for z ∈ B(a, r),

f (k)
n (z)− f (k)(z) = k!

2πi
∫
γ

fn(w)− f(w)
(w − z)k+1 dw.

Let Mn = max{|fn(w)− f(w)| : w ∈ γ}. Then Mn → 0 as n→∞
since fn → f in C(G,Ω). Thus

|f (k)
n (z)− f (k)(z)| ≤ k!

2πMn

∫ 2π

0

1
(R− r)k+1Rdθ

= k!MnR

(R− r)k+1 → 0 as n→∞.

Hence f (k)
n → f (k) uniformly onB(a, r). SupposeK is an arbitrary com-

pact set of G. Then we can find a1, . . . , am such that K ⊂ ∪m1 B(ai, r).
So f (k)

n → f (k) uniformly on K and thus ρ(f (k)
n , f (k)) → 0 in H(G) by

Proposition 3.1.11.

Corollary 3.3.1.1. (i) H(G) is a complete metric space;
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(ii) If each fn : G→ C is analytic and ∑∞n=1 fn(z) converges uniformly
on compact sets to f , then

f (k)(z) =
∞∑
n=1

f (k)
n (z).

Note that both Theorem 3.3.1 and Corollary 3.3.1.1 have no ana-
logues in real variable theory. Can you think of some examples?

Here is again an unusual theorem.

Theorem 3.3.2 (Hurwitz’s Theorem). Let G be a region and fn : G→
C are in H(G). Suppose fn → f 6≡ 0, B(a,R) ⊂ G and f(z) 6= 0 on
|z − a| = R, then there is an integer N such that for n ≥ N , f and fn
have the same number of zeros in B(a,R).

Proof. Let us recall Rouché’s Theorem: (see Conway p.125) Suppose
f and g are analytic in a neighborhood of B(a,R) and have no zeros
on |z − a| = R. Suppose further that

|f(z) + g(z)| < |f(z) + |g(z)|

for all |z − a| = R, then f and g have the same number of zeros with
due count of multiplicities of multiple zeros.

Since f(z) 6= 0 on |z − a| = R, therefore

δ = inf{|f(z)| : |z − a| = R} > 0.

The hypothesis fn → f uniformly on |z − a| = R implies there is an
N such that fn 6= 0 for all n ≥ N . But

|f(z)− fn(z)| < δ

2 < |f(z)| ≤ |f(z)|+ |fn(z)|

for all n sufficiently large. We conclude the theorem by applying
Rouché’s theorem.

Corollary 3.3.2.1. Suppose G is a region and {fn} ⊂ H(G), fn → f
in H(G). Suppose fn(z) 6= 0 for each z ∈ G and n, then either f ≡ 0
or f(z) 6= 0 for all z ∈ G.
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Definition 3.3.3. A family F ⊂ H(G) is locally bounded if each a ∈ G,
there is a M > 0 and an r > 0 such that for all f ∈ F ,

|f(z)| ≤M, for all z ∈ B(a, r).

We immediately deduce

Proposition 3.3.4. A family F ⊂ H(G) is locally bounded if and
only if for each compact set K ⊂ G there is a constant M such that

|f(z)| ≤M, for all f ∈ F and z ∈ K.

Theorem 3.3.5 (Montel’s Theorem). A family F ⊂ H(G) is normal
if and only if F is locally bounded.

Proof. ” =⇒ ” Suppose F is normal and not locally bounded. By
Proposition 3.3.4, there exists a compact set K ⊂ G and f ∈ F such
that sup{|f(z)| : z ∈ K} = ∞. So we can find a sequence {fn} ⊂ F
such that sup{|fn(z)| : z ∈ K} ≥ n. But F is normal, so there exist
a subsequence fnk → f uniformly on any compact subsets. That is
sup{|fnk(z)− f(z)| : z ∈ K} → 0 as k →∞.

Since f ∈ H(G) and |f | ≤M , z ∈ K for some M > 0. But

nk ≤ sup{|fnk(z)| : z ∈ K}
≤ sup{|fnk(z)− f(z)| : z ∈ K}+ sup{|f(z)| : z ∈ K}
→ 0 +M as k →∞

A contradiction.
” ⇐= ” Suppose now that F is locally bounded. Then the set

{f(z) : f ∈ F} is clearly compact, and it remains to show F is equicon-
tinuous at each point of G. Let a ∈ G and ε > 0 be given. Tt follows
from the hypothesis that there exists an M > 0 and r > 0 such that
for all f ∈ F , |f(z)| ≤M for z ∈ B(a, r). Now choose a z in |z−a| < r

2
(z ∈ B(a, r/2)). Put γ(t) = a + reit, 0 ≤ t ≤ 2π. Then we have, for
w ∈ γ, |w − z| ≥ |w − a| − |a − z| > r

2. An application of Cauchy’s
integral formula on γ gives
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× ×
a

z
w

R

γ

Figure 3.2: z ∈ B(a, r/2)

|f(z)− f(a)| ≤ 1
2π

∣∣∣∣∣∣
∫
γ

f(w)(z − a)
(w − a)(w − z) dw

∣∣∣∣∣∣
≤ 1

2π2πM |z − a|
|reit|r2

|ireit| = 2M
r
|z − a| < ε (independent of f)

provided we choose δ < min
{
r

2 ,
r

2Mε

}
. Hence given ε > 0, there exists

a δ > 0 such that |f(z)− f(a)| < ε for all f ∈ F and z ∈ B(a, δ).

Corollary 3.3.5.1. F ⊂ H(G) is compact if and only if F is closed
and locally bounded.

Example 3.3.6. Let S be the normalized class of one-to-one conformal
mapping on the unit disk with Taylor’s expansion

f(z) = z + a2z
2 + a3z

3 + · · · .

It is well-known that

|z|
(1 + |z|)2 ≤ |f(z)| ≤ |z|

(1− |z|)2 , for all |z| < 1 and f ∈ S.

Montel’s theorem implies that S is a normal family.
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Theorem 3.3.7 (Another theorem of Montel). Let G be a region and
F ⊂ H(G). Suppose each f ∈ F omits same two fixed values a, b ∈ C
in their range. Then F is normal.

The above theorem is called as Fundamental normality test.

Remark (Bieberbach conjecture). |an| ≤ n, for all n ≥ 2 and f ∈ S.
Proved by de Branges in 1984.

3.4 Riemann Mapping Theorem
Definition 3.4.1. Two regions G1 and G2 in C are said to be con-
formally equivalent if there exists an one-to-one analytic map f with
f(G1) = G2.

We note that Louville’s theorem implies that C is not equivalent
to the unit disk ∆.

Theorem 3.4.2 (Riemann Mapping Theorem). Let G ⊂ C be a simply
connected region where its complement contains at least one point. Let
a ∈ G. Then there is a unique one-to-one analytic mapping f : G→ C
that satisfies f(G) = ∆ = {z : |z| < 1} and f(a) = 0, f ′(a) > 0.

Suppose f and g are Riemann mappings for G1 and G2 respectively
with f(G1) = ∆, g(G2) = ∆. Then g−1 ◦ f : G1 → G2 is an one-to-one
analytic map such that (g−1 ◦ f)(G1) = G2.

It is clear to see that conformally equivalent is an equivalence re-
lation mapping all simply connected regions where their complements
are non-empty.

Proof of Riemann Mapping Theorem. Let G be a region as assumed
in the theorem. We shall divide the proof into five stages. Let a ∈ G,
we define the family

F = {f ∈ H(G) : f one-to-one, f(G) ⊂ ∆, f(a) = 0, f ′(a) > 0}.

The theorem will be proved if we can find a f ∈ F such that f(G) = ∆.
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(A) (F is non-empty). Let b ∈ C \G is non-empty by the hypothesis.
Since G is simply connected, Theorem 1.10.13 asserts that we can
find an analytic function g with

g(z) =
√
z − b = exp

(1
2 log(z − b)

)
, g(z)2 = z − b.

It is easily observed that g is one-to-one analytic function.
Then the open mapping theorem (Theorem 1.11.4) asserts that
there is a real number r > 0 with B(g(a), r) ⊂ g(G). We next
show B(−g(a).r) ∩ g(G) = ∅. For suppose there exists a z ∈ G
with g(z) ∈ B(−g(a), r), then

|g(z)− (−g(a))| < r.

This inequality can be written as

| − g(z)− g(a)| < r.

In other words, −g(z) ∈ B(g(a), r). Hence there exists a w ∈
G such that g(w) = −g(z), squaring both sides yields w − b =
g(w)2 = g(z)2 = z− b. So w = z, and 2g(z) = 0. A contradiction.
Hence B(−g(a), r) ∩ g(G) = ∅.

g(G)
T

∆

1

Figure 3.3: T ◦ g : G→ ∆
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For any three points fixed on ∂B(−g(a), r), we can always find
a unique Möbius mapping T (z) = az + b

cz + d
(: C → C) such that

T (∂B(−g(a), r)) = ∂∆ and T (C\B(−g(a), r)) = ∆. Hence T ◦g :
G → ∆. It remains to make T ◦ g a member of F . But this is
easy. Suppose T ◦ g(a) = α, then we define ϕα = z − α

1− αz which
is an automorphism with ϕα(α) = 0. Hence (ϕα ◦ T ◦ g)(G) ⊂ ∆
with (ϕα ◦ T ◦ g)(a) = 0.

Since each of ϕα, T and g is conformal, so is ϕα ◦ T ◦ g. That is,
(ϕα ◦ T ◦ g)′(z) 6= 0 for all z ∈ G. We finally choose a suitable θ,
so that eiθ(ϕα ◦ T ◦ g) ∈ F . Hence F is non-empty.

(B) (F = F∪{0}). Note that the zero function 0 is not conformal. Let
{fn} be a sequence in F . Suppose fn → f . We show either f ∈ F
(not identically zero) or f ≡ 0. We first deduce that f(a) = 0
and f ′(a) ≥ 0 since the convergence is uniform on every compact
subsets of G.
Let z1, z2 ∈ G. We choose an r > 0 so small that z1 6∈ B(z2, r).
Then fn(z) − fn(z1) 6= 0 on B(z2, r) since fn ∈ F and so one-to-
one. According to Corollary 3.3.2.1, we have

fn(z)− fn(z1)→ f(z)− f(z1) =
 6= 0, for all z ∈ B(z2, r);
≡ 0, for all z ∈ B(z2, r).

If f(z) ≡ f(z1) for all z ∈ B(z2, r), then f(z) ≡ 0 on G since
f(a) = 0. If, however, f(z) 6= f(z1) for all z ∈ B(z2, r), this
means f(z2) 6= f(z1) whenever z1 6= z2. So f is one-to-one on
G. But this implies f ′(z) 6= 0 for each z ∈ G, and in particular
f ′(a) > 0. Hence f ∈ F as required.

(C) (Existence of the largest f ′(a) > 0). Note that (C) and (D) below
are related. Consider the mapping H(G)→ C given by f 7→ f ′(a)
(a is already fixed in G). By Theorem 3.3.1 the mapping f →



CHAPTER 3. RIEMANN MAPPING THEOREM 118

f ′(a) is continuous. But F is locally bounded (since |f | < 1 for
each f ∈ F) and so normal. That is, F is compact by Proposition
3.1.13. The image of F under the above continuous mapping must
also be compact in C. Hence there exists a f ∈ F such that
f ′(a) ≥ g′(a) > 0 for all g ∈ F . But F 6= ∅ by (A) so there exists
a non-constant f ∈ F such that f ′(a) ≥ g′(a) > 0 for all g ∈ F .

(D) (The f found in (C) has f(G) = ∆). We suppose that there exists
a w ∈ ∆ such that f(z) 6= w for all z ∈ G. Then the function

f − w
1− wf 6= 0

for all z ∈ G. We may define an analytic branch h : G→ C by

(h(z))2 = f(z)− w
1− wf(z) .

Let
k(z) = |h

′(a)|
h′(a)

h(z)− h(a)
1− h(a)h(z)

.

It is not difficult to observe that h(G) ⊂ ∆ and k(G) ⊂ ∆. We
also have k(a) = 0 and k′(z) 6= 0. In fact, k ∈ F since

k′(a) = |h
′(a)|
h′(a) h

′(a) 1− |h(a)|2
(1− |h(a)|2)2

= |h′(a)|
1− |h(a)|2 > 0.

On the other hand, |h(a)|2 =
∣∣∣∣∣∣ f(a)− w
1− wf(a)

∣∣∣∣∣∣ =
∣∣∣∣∣0− w1− 0

∣∣∣∣∣ = |w|.

Notice that

2h(z)h′(z) = d

dz
(h(z))2 = f ′(z)(1− |w|2)

(1− wf(z))2 .

Thus
2h(a)h′(a) = f ′(a)(1− |w|2).



CHAPTER 3. RIEMANN MAPPING THEOREM 119

Finally,

k′(a) = |h′(a)|
1− |h(a)|2 =

f ′(a|(1− |w|2)
2|h(a)|

1− |h(a)|2

= f ′(a)
1 + |w|

2
√
|w|


> f ′(a).

A contradiction. This completes the proof of (D).

(E) (Uniqueness of f). Suppose g also satisfies (A)-(D), then f ◦
g−1 : ∆ → ∆ is an one-to-one, onto analytic map. Notice that
f ◦ g−1(0) = f(a) = 0. So Theorem 2.9.7 shows that there is a
constant c = eiθ and f ◦ g−1(z) = cz for all z ∈ ∆. That is
f(z) = cg(z) for all z ∈ G which gives 0 < f ′(a) = cg′(a). But
g′(a) > 0, so c = 1 and f(z) = g(z).

Remark. The simply connectedness implies the existence of analytic
square root function which is all we need to prove the conclusion.

Corollary 3.4.2.1. Among the simply connected regions, there are
only two equivalence classes; one consisting of C alone and the other
containing proper simply connected regions.
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3.5 Boundary Correspondence of Confor-
mal Mappings

Suppose f is a conformal mapping from the unit disc ∆ to a simply
connected domain D. We are concerned with under what circumstance
that we could extend the f to the boundary |z| = 1.

Lemma 3.5.1. Let f : ∆ → C be continuous, f(∆) = D. Suppose
limz→ξ f(z) exists for every ξ with |ξ| = 1. Then the function f̃ : ∆→
C defined by

f̃(z) =
f(z), |z| < 1,

limz→ξ f(z), |ξ| = 1,

is the unique continuous extension of f to |z| ≤ 1. Moreover, ¯f(∆) =
D̄.

The lemma provides a way to define a possible meaning of a con-
tinuous extension of f to |z| = 1. Interested reader can consult Palka’s
book [8, Chap. XI] or Ahlfors’ [1].

Definition 3.5.2. A plane domain/region G is finitely connected along
its boundary if corresponding to each point z of ∂G and each r > 0,
there exists an s ∈ (0, r) such that G∩B(z, s) intersects at most finitely
many components of the open set G ∩B(z, r).

Theorem 3.5.3 (Väisälä & Näkki). Let f : ∆→ C be conformal. The
f can be extended to a continuous mapping f̃ of ∆ onto f(∆) if and
only if f(∆) is finitely connected along its boundary.

Definition 3.5.4. A plane domain/region G is locally connected along
its boundary if corresponding to each point z of ∂G and each r > 0,
there exists an s ∈ (0, r) such that G ∩ B(z, s) intersects exactly one
component of G ∩B(z, r).

Theorem 3.5.5. Let f : ∆→ C be conformal. Then f can be extended
to a homeomorphism f̃ of f(∆) if and only if f(∆) is locally connected
along its boundary.
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etc.
etc.

z0 z0

finitely connected at z0 not finitely connected at z0

bb

G G

Figure 3.4: Finitely connectedness along different boundaries

Definition 3.5.6. A set J of points in C is called a Jordan curve if J
is the boundary of some simple closed path. (J is compact and hence
bounded.)

Theorem 3.5.7 (Jordan Curve Theorem, Jordan 1887). The comple-
ment of a Jordan curve J has exactly two components, each having J
as its boundary. One of these components is a bounded set (the inside
of J), while the other is unbounded (the outside of J).

Definition 3.5.8. A domain/region G ⊂ C with the property that ∂G
is a Jordan curve is called a Jordan domain.

Theorem 3.5.9 (Caratheodory-Osgood Theorem). A conformal map-
ping f of ∆ onto a domain D can be extended to a homeomorphism of
∆ onto D if and only if D is a Jordan domain.

3.6 Space of Meromorphic Functions
Definition 3.6.1. LetM(G) ⊂ C(G, Ĉ) denote the space of meromor-
phic functions on the region G.

Theorem 3.6.2. Let {fn} ⊂ M(G), fn → f in C(G, Ĉ). Then either
f is meromorphic or f ≡ ∞. If each {fn} is analytic or f ≡ ∞.
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Corollary 3.6.2.1. M(G) ∪ {∞} is a complete metric space. (w.r.t.
spherical metric)

Corollary 3.6.2.2. H(G) ∪ {∞} is closed in C(G, Ĉ).

Example 3.6.3. fn(z) = n(z2 − n) is analytic on C for each n. The
fn → ∞ uniformly on each compact subset of C. While {f ′n(z)} =
{2nz} is not a normal family, since f ′n(0) = 0 and f ′n(z) → ∞ for
z 6= 0. So F is normal 6=⇒ F′ is normal.

Definition 3.6.4. ρ(f)(z) = 2|f ′(z)|
1 + |f(z)|2 is called the spherical deriva-

tive of f . It is defined even at the poles of f .

Recall that the chordal distance under the stereographic projection
is given by

d(f(z1), f(z2) = 2|f(z1)− f(z2)|√
(1 + |f(z1)|2)(1 + |f(z2)|2)

∼ 2|f ′(z1)|dz
1 + |f(z1)|2

as z2 → z1.

Let γ be the curve in C. The length of f(γ) under the stereographic
projection on the Riemann sphere is given by∫

γ
ρ(f)(z) |dz|.

Theorem 3.6.5. F ⊂ M(G) is normal in C(G, Ĉ) if and only if
ρ(f)(z) is locally bounded on F .
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3.7 Schwarz’s reflection principle
Let G ⊂ C be a region, and Ḡ = {z̄ : z ∈ G}. Clearly if a region G is
symmetrical with respect to R, then Ḡ = G.

Theorem 3.7.1. Suppose Ḡ = G. We denote G+ = {z ∈ G : =z > 0},
G− = {z ∈ G : =z < 0} and G0 = G ∩ R. Suppose f : G+ ∪ G0 → C
is continuous, analytic on G+ such that f is real on G0. Then

g(z) :=
f(z) z ∈ G+

f(z̄) z ∈ G0 ∪G−
(3.4)

is analytic on G.

Figure 3.5: Schwarz’s relfection along the R

Remark. We note that if f is only defined on G+ and continuous and
real on G0, then we can use the above g to extend f across to G−
by reflection. By the identity theorem applied to R, so that such an
extension is unique.
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Proof. It is clear that g is analytic on G+ and G−. It remains to con-
sider if g is analytic on G0. That is, if g is analytic in a neighbourhood
B(x0, , r), where x0 real and for every x0 ∈ G0 and a corresponding
r > 0. We could achieve this by proving for each triangle T within
B(x0, r) the integral ∫T g dz = 0. Then g is analytic in B(x0, r) by
Morera’s theorem. Thus, if the triangle T lies entirely in G+ with no
intersection with G0, then

∫
T f = 0 since f is analytic there. Similarly

if T lies entirely in G−. So we assume that T ∩G0 6= ∅.

Figure 3.6: One triangle and one quadrilaterial

In general, either T ∩G0 is a single point or it is a line segment. The
former consideration obviously gives ∫T f = ∫

T g = 0. The latter means
that the G0 deivdes the T into two pieces. Without loss of generality,
we may assume that G+∪G0 contains the triangle T ′ = [a, b, c, a] part
of T and [a, b] lies on G0, leaving the quadrilateral part in G− ∪G0.

Notice that g = f is uniformly continues on T ′ since T ′ is a compact
set. That is, given ε > 0, there is a δ > 0 such that if z, z′ ∈ T ′, and
|z − z′| < δ, then

|f(z)− f(z′)| < ε.

We construct a sub-triangle T ′′ = [α, β, c, α] of T ′ such that one of
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Figure 3.7: Integration along the quadrilaterial

the sides [α, β] is parallel and close to [a, b] and hence to the R. We
may parametrise the horizontal line segments [a, b] and [β, α] by

(1− t)a+ tb, (1− t)α + tβ, (0 ≤ t ≤ 1).

So now with the given ε > 0, we choose δ > 0 so that

|α− a| < δ, |β − b| < δ (0 ≤ t ≤ 1),

hence

|(1− t)α + tβ − ((1− t)a+ tb)| ≤ (1− t)|α− a|+ t|β − b|
≤ δ(1− t+ t)
= δ.

This implies

|f [(1− t)α + tβ]− f [(1− t)a+ tb)]| < ε, (0 ≤ t ≤ 1).
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Thus∣∣∣∣ ∫[a, b]
f−

∫
[α, β]

f
∣∣∣∣

=
∣∣∣∣(b− a)

∫ 1

0
f [(1− t)a+ tb)− (β − α)

∫ 1

0
f [(1− t)α + tβ] dt

∣∣∣∣
≤ |b− a|

∣∣∣∣ ∫ 1

0
f [(1− t)a+ tb)−

∫ 1

0
f [(1− t)α + tβ] dt

∣∣∣∣
+ |(b− a)− (β − α)|

∣∣∣∣ ∫ 1

0
f [(1− t)α + tβ] dt

∣∣∣∣
≤ |b− a| ε+ |(b− a)− (β − α)|M
≤ ε`(T ′) + |(b− a)− (β − α)|M
≤ ε`(T ′) + 2δM

where `(T ′) stands for the length of the parameter of T ′, and M =
max{|f(z)| : z ∈ T ′}. The estimates of the remaining integrals are
easy: ∣∣∣∣ ∫[a, α]

f
∣∣∣∣ ≤ |α− a|M ≤Mδ,

∣∣∣∣ ∫[b, β]
f
∣∣∣∣ ≤ |β − b|M ≤Mδ.

We finally deduce∣∣∣∣ ∫
T ′
f
∣∣∣∣ =

∣∣∣∣ ∫
T ′′
f +

∫
[a, b, β, α, a]

f
∣∣∣∣

=
∣∣∣∣ ∫[a, b, β, α, a]

f
∣∣∣∣

=
∣∣∣∣ ∫[a, b]

f −
∫

[α, β]

∣∣∣∣ + ∣∣∣∣ ∫[a, α]
f
∣∣∣∣ + ∣∣∣∣ ∫[b, β]

f
∣∣∣∣

≤ ε `(T ′) + 4δM
≤ ε (`(T ′) + 4M)

since we may choose δ < ε. This shows that ∫T ′ f = 0. We conclude
that f is analytic in B(x0, r). Hence g is analytic on G.

The above is called Schwarz’s1 reflection principle. We can map the
above upper half-plane onto a circle and the real-axis R to |z− a| = r.

1 H. A. Schwarz (1843-1921): advisor Karl Weierstrass

https://en.wikipedia.org/wiki/Hermann_Schwarz
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Theorem 3.7.2 (Schwarz reflection principle: second version). Let
G1 denote a simply-connected domain interior to Ca := {z : |z − a| =
r} with an arc γ on Ca such that every point of int(γ) has a semi-
circular neighbourhood in B(a, r) ∩ γ. Let f : G1 → C be analytic
and continuous on G1 ∪ γ. Suppose f(γ) = Γ consists of an arc of the
circle Cb := {w : |w − b| = R}. Then we can extend f to the region
G2, obtained by reflecting G1 with respect to Ca, mapping every z ∈ G1
to

z∗ = a+ r2

z̄ − ā
being the symmetric (inverse) point of z in G1, and

f(z∗) = b+ R2

f(z)− b̄
,

in G2 so that the new function is analytic in G = G1 ∪ γ ∪G2.

Proof. Let z ∈ G1. Then we recall that the symmetric point z∗ with
respect to the circle Ca is given by

z∗ = a+ r

z̄ − ā
.

Let MCa be the Möbius transformation that maps the circle onto R
with the notaton z 7→ Z. We also denote the inverse point of w = f(z)
with respect to the circle|w − b| = R to be

w∗ = b+ R

f(z)− b̄
.

We also denote the Möbius transformation that maps the circle
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|w − b| = R onto R by MCb with the notaton w 7→ W . Then we have

f(z∗) = f ◦MCa(Z∗)
= F (Z∗) = F (Z̄)
= F (Z̄)
= W (= W ∗)
= MCb(w∗)
= MCb(f(z)∗)

= b+ R2

f(z)− b̄
,

where F = f ◦MCa.

Figure 3.8: Schwarz reflection with respect to circles

One can achieve a more general reflection below.

Theorem 3.7.3. Let G1 and G2 be two simply-connected domains such
that

1. G1 ∩G2 = ∅;
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2. Ḡ1 ∩ Ḡ2 = γ where γ is a smooth curve such that every interior
point int(γ) of γ has a neighbourhood lying entirely inside G :=
G1 ∪ int(γ) ∪G2.

Let fj(z) be analytic in Gj, continuous in Gj ∪ γ, j = 1, 2 such that
for every point ξ ∈ γ

lim
D13z→ξ

f1(z) = h(ξ) = lim
D23z→ξ

f2(z)

for some complex-valued function h : γ → C. Then there exists an
analytic function f in G such that f(z) = fj(z) for each z ∈ Gj,
j = 1, 2.

3.8 Schwarz-Christoffel formulae
The Riemann mapping theorem that we discussed is an existence re-
sult. It is rather difficult to construct explicit formulae that actually
realise the theorem for even reasonable shape simple-connected regions.
But a given simply connected can be approximated by polygons, so it
becomes of interest to find explicit formulae for conformal of polygons.
Theorem 3.8.1 (Schwarz (1869), Christoffel (1867)). Let f be a one-
one conformal mapping that maps the upper half-plane H+ onto the
interior of the a polygon D = [w1, w2, · · ·wn] with the interior angles

0 < αkπ := (1− νk)π < 2π,

at each of the vertices wk, k = 1, · · ·n. Suppose −∞ < a1 < a2 < · · · <
an < ∞ are real numbers on R such that f(ak) = wk, k = 1, · · ·n.
Then f is given by

f(z) = α
∫ z

0

dz

(z − a1)1−α1(z − a2)1−α2 · · · (z − an)1−αn
+ β

= α
∫ z

0

dz

(z − a1)µ1(z − a2)µ2 · · · (z − an)µn
+ β

(3.5)

where α, β are two integration constants, where the νk, k = 1, · · · , n
are the corresponding exterior angles.

https://en.wikipedia.org/wiki/Elwin_Bruno_Christoffel


CHAPTER 3. RIEMANN MAPPING THEOREM 130

We recall that from elementary geometry that if the above polygon
D is convex, that is, 0 < νk < 1, then

n∑
k=1

νπk = 2π.

Proof. Since the boundary of the proposed polygon D is certainly a
Jordan curve, we immediately deduce from Theorem 3.5.9 that there is
a conformal mapping f from the upper half-plane H+ onto the D such
that f can be extended continuously to the real-axis R and f(R) = ∂D.
Let us label

f(ak) = wk, k = 1, · · · , n
wn+1 = w1 that are the vertices of the polygon D. Let us denote
f(ak, ak+1) = Lk, k = 1, · · ·n. Then we can apply Schwarz’s reflection
principle (Theorem 3.7.2) to a chosen H+ ∪ (ak, ak+1) for some k ∈
{1, · · · , n} and reflect along (ak, ak+1) to continue f to the lower half-
plane H−. But this corresponds to a reflection image D′ obtained from
D after a reflection of D along its side Lk. In fact, the D′ = f(H−).
where we have reused the notation for the extension of f onto the
domain H+∪(ak, ak+1)∪H−. But the Riemann mapping theorem again
asserts that there is a one-one conformal mapping f̂ that maps H− onto
D′. So we may apply the Schwarz reflection principle (Theorem 3.7.2)
again to reflect H− along one of the other intervals (ak+1, ak+2)2 say,
to the upper half-plane H+. This again corresponds to the reflection
of D′ along its side Lk+1 to a symmetrical region. The resulting image,
which we denote by D′′ is of identical shape as D where we started off,
but located in a different position. The Riemann mapping theorem
again implies that there is a f̃ that maps the upper half-plane H+ onto
the D′′. Since we can superimpose theD to D′′ by a translation and a
rotation, so we have

f̃(z) = Af(z) +B (3.6)
in H+ for some constants A, B3.

2Any other side will do.
3In fact, A = eiθk .
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Figure 3.9: Even number of reflections

We deduce
f̃ ′(z) = Af ′(z) 6= 0

throughout the H+ since f is conformal there. Moreover,

g(z) := f̃ ′′(z)
f̃ ′(z)

= f ′′(z)
f ′(z) (3.7)

in H+. This shows that the function g is analytic in H+. A similar
consideration leads to a similar conclusion that g is analytic in H−,
and hence on

H+ ∪nk=1 (ak, ak+1) ∪H−

by the Schwarz reflection principle. Hence g is analytic on C except
perhaps at ak, k = 1, · · ·n. Let us investigate what happens at these
ak. Let us consider the behaviour of f when z changing from the line
segment (ak−1, ak) to (ak, ak+1). We have

f(z) = f(ak) + (z − ak)αkh(z)

where h is analytic in a neighbourhood at z = ak and h(ak) 6= 0
(imagine that z lies on a line segment slight above the R. Thus f(z)−
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f(ak) changes an angle αkπ from Lk−1 to Lk when z “passes through"
ak.

Figure 3.10: “Opening" an angle

Hence

f ′(z) = αk(z − ak)αk−1h(z) + (z − ak)αkh′(z)

= (z − ak)αk−1
[
αkh(z) + (z − ak)h′(z)

]
:= (z − ak)αk−1φ(z),

(3.8)

where φ(z) is analytic at ak and φ(ak) 6= 0. Thus,

f ′′(z)
f ′(z) = αk − 1

z − ak
+ φ′(z)
φ(z) .

This shows that the function g defined above is analytic in C except
at the ak, k = 1, · · · , n where it has a residue αk − 1 at each simple
pole ak. Thus the function

f ′′(z)
f ′(z) −

n∑
k=1

αk − 1
z − ak
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is an entire function, and in fact including z =∞. To see this we note
that f and its analytic continuation are bounded at ∞, that is, we
have the Laurent expansion at ∞:

f(z) = f(∞) +O
( 1
zm

)
, z →∞

for some integer m ≥ 1. We deduce that g has a simple pole at ∞.
This shows that

f ′′(z)
f ′(z) −

n∑
k=1

αk − 1
z − ak

≡ 0

by Liouville’s theorem. The above formula implies that

f ′(z) = α
n∏
k=1

(z − ak)αk−1.

integrating the above formula from 0 to z yields the desired formula.

Remark. We can continue the above reflection along one (ak, ak+1)
from H+ to H− and then from H− to H+ via another interval (aj, aj+1)
any number of times for different k and j in the above construction.
The upshoot is that evey time we complete a cycle we end up with
a different function valued at the same point in the upper half-plane
and similarly in the lower half-plane. This suggests that we should
consider that these different values from different "reflected values" to
be different branches of an analytic function w = F (z) defined on
C\ ∪nk=1 (ak, ak+1). The above proof shows that the g = f ′′/f ′(z) so
constructed is independent of the branches chosen. In fact, we have
shown that it is globally defined in Ĉ.

Remark. The reader may have noticed that we did not discuss the
actual locations of the real numbers −∞ < a1 < a2 < · · · < an < ∞
and the constants α, β in the Schwarz-Christoffel formula above. This
turns out to be a difficult unsolved problems. However, we can still pre-
scribe a1, a2, an to w1, w2, wn say after a suitably chosen Möbius trans-
formation. However, given a polygon with more than three vertices, it
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becomes a non-trivial problem to determine the other points a4, · · · , an
on the real axis. This is partly due to the fact that the Schwarz-
Christoffel formula only precribes the angles αk, but not the length
of (ak, ak+1) (recall that conformal map does not preserve lenghts in
general). The remaining unknowns are a4, · · · , an real numbers and
two complex numbers α and β. We deduce from the formula (3.5) that
when z = x > an, then

arg f ′(x) = argα,

and the line segment (an, a1) (via Ĉ) corresponds to the side Ln =
[wn, w1] of the polygon D. But arg f ′(x) = argα corresponds to the
angle that Ln makes with the real-axis R. This shows that argα is
known. On the other hand, putting z = a1 in (3.5) yields f(a1) = β.
This implies β = w1 is therefore also known. We are left with n − 2
real unknown constants

a4, · · · , an, |α|

to be determined. On the other hand, we have a further n−2 equations

`([wk, wk+1]) = |α|
∫ ak+1

ak

∣∣∣∣ n∏
k=1

(z − ak)αk−1
∣∣∣∣ |dz|

k = 4, · · · , n (with an+1 = an) that can be used to compute the
a4, · · · , an, |α|. But the determination is generally difficult if not im-
possible.
Example 3.8.2. Find a conformal mapping from the upper half-plane
onto an equilateral triangle of side lenght `.

That is the three angles of the triangle are all equal to αkπ =
π/3, k = 1, 2, 3. According to the last remark, the Schwarz-Christoffel
formula completely determine the aj, wj = f(aj), k = 1, 2, 3. So let
us choose

a1 = −1, a2 = 0, a3 = 1.
Then the SC-formula (3.5) yields

w = f(z) = α
∫ z

0

dt

(t− (−1))1−1/3t1−1/3(t− 1)1−1/3 + β,
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Without loss of generality, we may choose f(a2) = f(0) = 0. Hence
β = 0. Moreover, we have

` =
∣∣∣∣α ∫ 1

0

dt
3
√
t2(t2 − 1)2

∣∣∣∣,
implying that

α = `∫ 1

0

dt
3
√
t2(1− t2)2

.

Hence

f(z) = `

∫ z
0

dt
3
√
t2(t2 − 1)2∫ 1

0

dt
3
√
t2(1− t2)2

is the desired mapping.

Figure 3.11: Schwarz equaliterial triangle

Exercise 3.8.1. Replace the above equilateral triangle with an isosce-
les right trangle with α2 = 1

2 , α1 = α3 = 1
4 , with the length of the

hypotenuse `.
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Example 3.8.3. Construct a one-one conformal map from the upper
half-plane H+ to a rectangle with coordinates [−K, K, K+iK ′, −K+
iK ′] for some K > 0.

Figure 3.12: Elliptic function of the 1st kind

We recall that a slight variation of Riemann mapping theorem al-
lows us to assert tht there is a one-one conformal mapping from the
first quadrant of the z−plane to the rectangle with vertices [0, K, K+
iK ′, iK ′] such that the points 0, 1 and ∞ in the z−plane are mapped
onto the points 0, K, iK respectively. So we have the following corre-
spondences:

[0, 1] 7→ [0, K], [1, ∞) 7→ [K, K + iK ′] ∪ [K + iK ′, iK ′].

So there is a 0 < k < 1 so that the point z = 1/k > 1 is mapped onto
the point K + iK ′. This also implies that the positive imaginary axis
{z = iy : y > 0} is being mapped onto the line segment [0, iK ′].

So we obtain the desired mapping H+ → [−K, K, K + iK ′, −K +
iK ′] after reflecting the Riemann mapping obtained above with re-
spect to the imaginary axis, so that the real-axis R is mapped onto
[−K, K, K + iK ′, −K + iK ′], and the points −1/k,−1, 1, 1/k are
mapped onto the points −K+ iK ′, −K, K, K+ iK ′ respectively. The
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explicit formula is therefore given by

f(z) = α
∫ z

0

(
z + 1

k

) 1
2−1

(z − 1) 1
2−1(z + 1) 1

2−1
(
z − 1

k

) 1
2−1

+ β

= α′
∫ z

0

dz√
(1− z2)(1− k2z2)

+ β

Let z = 0 in the variable above. Then clearly β = 0. We choose the
branch of square root above in accord to positive value when z lies in
(0, 1). But f(1) = K. So

K = α′
∫ 1

0

dz√
(1− z2)(1− k2z2)

.

This allows us to determine the constant α′ > 0 provided we know the
value of k. Moreover, since f(1

k) = K + iK ′, so

K + iK ′ = α′
∫ 1/k

0

dz√
(1− z2)(1− k2z2)

= α′
∫ 1

0

dz√
(1− z2)(1− k2z2)

+ α′i
∫ 1/k

1

dz√
(z2 − 1)(1− k2z2)

since there is a change of arg(1 − z), amongst all the factors of (1 −
z2)(1− k2z2), by −π. It follows that

K ′ = α′
∫ 1/k

1

dz√
(z2 − 1)(1− k2z2)

.

Let
z = 1√

1− k′2t2

in the above integration, where k′2 = 1 − k2 and 0 < k′ < 1. It is
routine to check that the above substitution yields

K ′ = α′
∫ 1

0

dt√
(1− t2)(1− k′2t2)

.
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We therefore deduce the relationship:

K ′

2K =

∫ 1

0

dz√
(1− z2)(1− k′2z2)

2
∫ 1

0

dz√
(1− z2)(1− k2z2)

. (3.9)

We see that both the numerator and denominator have similar inte-
grands. As k increases from 0 to 1, the integral

∫ 1

0

dz√
(1− z2)(1− k2z2)

increases from∫ 1

0

dz√
1− z2 = π

2 to
∫ 1

0

dz

1− z2 = +∞.

That is the interval (0, 1) is being mapped onto [π2 , +∞). While k
increases from 0 to 1, its complementary value k′ decreases from 1 to
0. So the numerator

2
∫ 1

0

dz√
(1− z2)(1− k′2z2)

behaves in a similar behaviour but in the opposite direction, namely,
it decreases monotonically from +∞ to π. We deduce that the ratio
K ′/2K, decreases monotonically, as a function of k, from +∞ to 0. So
there is a unique 0 < k < 1 such that (3.9) holds for a given K and
K ′. This allows us to compute an approximate (and hopefully to know
exactly) value of k, and hence α′.

Definition 3.8.4. The above integral where α′ = 1,

K(k) =
∫ z
0

dz√
(1− z2)(1− k2z2)

is called the (Legendre form) of complete elliptic integral of the
first kind.
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Figure 3.13: Modulus of an elliptic integral: Byrd and Friedman, p.
17

Theorem 3.8.5 (Schwarz-Christoffel: second version). Let f be a one-
one conformal mapping that maps the upper half-plane H+ onto the
interior of the a polygon D = [w1, w2, · · ·wn] with the interior angles

0 < αkπ := (1− νk)π < 2π,

at each of the given vertex wk, k = 1, · · ·n. Suppose the corresponding
points −∞ < a1 < a2 < · · · < an−1 < ∞ are real numbers on R such
that f(ak) = wk, k = 1, · · ·n− 1, and an =∞, f(∞) = wn. Then f is
given by

f(z) = α
∫ z

0

dz

(z − a1)1−α1(z − a2)1−α2 · · · (z − an−1)1−αn−1
+ β (3.10)

where α, β are two integration constants.

Proof. The transformation

z = a− 1
ζ

(i.e., ζ = −1/(z − a)), a < a1

transforms the upper half-plane H+ onto itself such that the a1 < · · · <
an−1 are mapped onto b1 < · · · < bn−1 and an = ∞ to bn = 0. Hence
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we may apply (3.5) to

F (ζ) = f
(
a− 1

ζ

)

and this yields

F (ζ) = α′
∫ ζ

0

dζ

(ζ − b1)1−α1 · · · (ζ − bn−1)1−αn−1ζαn−1 + β′

= α′
∫ ζ

0

n−1∏
k=1

(ζ − bk)αk−1ζαn−1 dζ + β′.

Hence

f(z) = F (ζ) = α′
∫ z
z0

n−1∏
k=1

( −1
z − a

+ 1
ak − a

)αk−1( −1
z − a

)αn−1
ζ2 dz + β′

= α′
∫ z
z0

n−1∏
k=1

( ak − z
(z − a)(ak − a)

)αk−1( −1
z − a

)αn−1 dz

(z − a)2 + β′

= α′′
∫ z
z0

n−1∏
k=1

(z − ak)αk−1 1
(z − a)

∑
αk−n+2 dz + β′

= α′′
∫ z

0

n−1∏
k=1

(z − ak)αk−1 dz + β′′

since ∑n
k=1 αk = n− 2.

Example 3.8.6. Let us apply the above formula to obtain an equilat-
eral triangle of side length `. That is, we may assume the three points
on the real axis to be

a1 = 0, a2 = 1, a3 =∞.

Then αk = π/3, k = 1, 2, 3. The formula (3.10) yields

f(z) = α
∫ z

0

dz

(z − 1) 2
3 z

2
3

+ β.
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The side length ` can be expressed as integration of arc-lenght:

` = |α|
∫ 1

0
|f ′(z)| |dz|

= |α|
∫ 1

0
|z

1
3−1(z − 1) 1

3−1||dz|

= |α|
∫ 1

0
t

1
3−1(t− 1) 1

3−1 dt

= |α|Γ(1
3)Γ(1

3)
Γ(1

3 + 1
3) = |α|Γ(1

3)2

Γ(2
3) ,

where Γ(z) denotes the Euler-Gamma function (see later) and it is
known that

B(α, β) =
∫ 1

0
tα−1(1− t)β−1 dt = Γ(α)Γ(β)

Γ(α + β) ,

provided that <α > −1 and <β > −1.

Example 3.8.7. In general, if we consider the image of 0, 1, ∞ to
be the general triangle ABC with angles απ, βπ, γπ with side lengths
a, b, c respectively, then we have the Schwarz-Christoffel map to be

f(z) =
∫ z

0
zα−1(1− z)β−1 dz

where we have chosen C1 = 1 and C2 so that f(0) = 0. Then we can
compute the side length of, say,

c =
∫ 1

0
|f ′(z)| |dz| = Γ(α)Γ(β)

Γ(α + β) .

But since Γ(x)Γ(1− x) = π

sin πx , so

c = Γ(α)Γ(β)
Γ(1− γ) = 1

π
sin(γπ) Γ(α) Γ(β) Γ(γ)

since α + β + γ = 1. Similarly, the side lengths of the other two sides
are given by

a = 1
π

sin(απ) Γ(α) Γ(β) Γ(γ)
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and
b = 1

π
sin(βπ) Γ(α) Γ(β) Γ(γ).

Example 3.8.8. Apply a SC-formula to show that the conformal map-
ping f that maps H+ onto the half vertical strip:

−π2 < <(w = f(z)) < π

2 ; =(w) > 0.

such that −1 7→ −π2 , 1 7→ π

2 , ∞ 7→ ∞ is given by

f(z) =
∫ z

0

dz√
1− z2 = sin−1 z.

Exercise 3.8.2. Show that the formula

f(z) =
∫ z

0

dz√
z(1− z2)

maps the upper half-plane H+ onto the interior of a square of side
length

1
2
√

2π
Γ
(1

4
)2
.

Exercise 3.8.3. Given a polygon D with vertices w1, · · · , wn and in-
terior angles αk k = 1, · · · , n, has one of its angles, α2 = 0, say. See
the figure below. Derive a Schwarz-Christoffel formula mapping the
upper half-plane to this polygon. (Hint: Consider the polygon with
n + 1 sides constructed from that of the original polygon with a line
segment drawn from new vertices w21 and w22 each on the parallel
sides of D with α2 = 0 and perpendicular to the parallel sides. Use the
Schwarz-Christoffel formula of this polygon to approximate the desired
mapping).
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Figure 3.14: The second angle is 0



Chapter 4

Entire Functions

4.1 Infinite Products
Definition 4.1.1. Let {zn} be a sequence of complex numbers, and we
write pn = ∏n

1 zi to denote the nth-partial product of {zn}. If pn → p
as n→∞. We say the infinite product exists and denote the limit by
p = lim pn = ∏∞

1 zi. If pn does not tend to a finite number or pn → 0,
then we say ∏∞

1 zi diverges.

Example 4.1.2. Determine the convergence of (1+1)(1−1
2)(1+1

3) · · · .

Solution. Define

pn =
(1 + 1)(1− 1

2) (1 + 1
3) · · · (1− 1

n), n even;
(1 + 1)(1− 1

2) (1 + 1
3) · · · (1 + 1

n), n odd.

=


(1 + 1)1

2
4
3

3
4 · · ·

n

n− 1
n− 1
n

= 1, n even;

(1 + 1)1
2

4
3

3
4 , · · ·

n− 1
n− 2

n− 2
n− 1

n+ 1
n

= 1 + 1
n
, n odd.

Hence pn → 1 as n→∞, and we conclude that

(1 + 1)(1− 1
2)(1 + 1

3) · · · = 1.

144
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Note that we also have

(1 + 1)(1− 1
2)(1 + 1

3) · · · =
∞∏
n=1

1− (−1)n
n

 .

From Example 4.1.2, we see that the last number 1− (−1)n
n

in the
partial product pn tends to one as n → ∞. This is true in general.

For suppose pn → p, then zN =
∏N

1 zi∏N−1
1 zi

→ p

p
= 1 as N → ∞. In

view of this observation, it will be more convenient for us to consider
infinite product of the form ∏∞

1 (1 + an) where an → 0 as n→∞ if the
infinite product converges. We now prove a fundamental convergence
criterion.

Theorem 4.1.3. The infinite product ∏∞1 (1 + an) is convergent if and
only if given ε > 0, there exists an N > 0 such that

|(1 + an+1) · · · (1 + am)− 1| < ε

for all m > n ≥ N.

Proof. Suppose ∏∞1 (1 + ai) = p. Let pn be the nth-partial product of∏∞
1 (1 +ai), then {pn} is a Cauchy sequence in C. That is, given ε > 0,

there exists an N such that |pn| >
|p|
2 and

|pn − pm| < ε
|p|
2

for all m > n ≥ N. Thus

|(1 + an+1) · · · (1 + am)− 1| = |pn|
∣∣∣∣∣pmpn − 1

∣∣∣∣∣ 1
|pn|

= |pm − pn|
1
|pn|

< ε
|p|
2

2
|p|

= ε
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for all m > n ≥ N , as required.
Conversely, suppose given 1 > ε > 0, there exists an N such that

for m > n ≥ N we have ∣∣∣∣∣pmpn − 1
∣∣∣∣∣ < ε.

Let p′k = pk
pN

for all k ≥ N and N fixed, then

1− ε < |p′k| < 1 + ε < 2.

Notice that the assumption is equivalent to∣∣∣∣∣∣p
′
m

p′n
− 1

∣∣∣∣∣∣ < ε.

That is
|p′m − p′n| < ε|p′n| < 2ε

for all m > n ≥ N. Hence {p′m} is a Cauchy sequence. So {pn} is also
a Cauchy sequence and thus converges in C.

If all the an are positive. Then we have

Proposition 4.1.4. Suppose all the an > 0. Then ∏(1+an) converges
if and only if ∑ an converges.

Proof. Suppose ∏(1 + an) converges. By

a1 + · · ·+ an ≤ (1 + a1) · · · (1 + an)

we conclude immediately that ∑ an <∞.
Conversely, since 1+a < ea for all a > 0, hence (1+a1) · · · (1+an) <

ea1+···+an. Thus ∏(1 + ai) converges.

Definition 4.1.5. The infinite product ∏(1+an) is said to be absolutely
convergent if the product ∏(1 + |an|) converges.
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We recall from Example 4.1.2 that the infinite product

(1 + 1)(1− 1
2)(1 + 1

3) · · ·

is not absolutely convergent. The converse, however, is definitely true.

Theorem 4.1.6. If ∏(1 + |an|) converges, then ∏(1 + an) converges.

Proof. Method I: The result follows immediately from the observation
that

|(1 + an+1) · · · (1 + am)− 1| ≤ (1 + |an+1|) · · · (1 + |am|)− 1,

and by Theorem 4.1.3.

Method II: Let pn = ∏n
1(1 + ai) and Pn = ∏n

1(1 + |ai|). Then

pn − pn−1 = (1 + a1) · · · (1 + an−1)an,
Pn − Pn−1 = (1 + |a1|) · · · (1 + |an−1|)|an|,

and
|pn − pn−1| ≤ Pn − Pn−1.

Since Pn →
∏∞

1 (1 + |ai|), we have ∑n
2(Pi − Pi−1) = Pn − P1 converges.

But then ∑∞
2 (pi − pi−1) converges absolutely by the above inequality.

Hence the limit ∏(1 + an) exists.

Theorem 4.1.7. A product ∏(1 + an) is absolutely convergent if and
only if ∑ an converges absolutely.

Proof. If ∏∞1 (1 + |an|) converges then
∑ |an| must converges by Propo-

sition 4.1.4. The converse also follows from Proposition 4.1.4.

We deduce immediately that

Proposition 4.1.8. ∏∞1 (1 + an) converges if ∑∞1 an converges abso-
lutely.



CHAPTER 4. ENTIRE FUNCTIONS 148

We next turn to the study whether the statement "if ∏(1+an) = p,
then ∑ log(1+an) = log p" holds? Here log p is the principal logarithm.

Proposition 4.1.9. If ∑ log(1 + an) converges, then ∏(1 + an) con-
verges. If ∏(1+an) converges, then

∑ log(1+an) converges to a branch
of log(∏ (1 + an)) .

Proof. Let sn = ∑n
1 log(1 + ai) then the hypothesis implies that sn →∑∞

1 log(1 + ai) = s, say, as n→∞. That is,
n∏
1

(1 + ai) = esn → es, n→∞

i.e. ∞∏
1

(1 + ai) = es.

Suppose now p = ∏∞
1 (1 + ai) converges. Let pn = ∏n

1(1 + ai).
Then we must have log pn

p
→ 0 as n → ∞. We decompose it as

log pn
p

= Sn − log p+ hn(2πi). Then

log pn+1

p
− log pn

p
= log(1 + an+1) + (hn+1 − hn)2πi.

But the left side tends to zero as n → ∞. Also log(1 + an+1) → 0 as
n → ∞. Thus hn+1 − hn = 0 for all n sufficiently large. Let it be h.
Then

sn − log p+ h(2πi) = log pn
p
→ 0.

That is sn → S = log p− h(2πi) answering the question raised before
the proposition.

Finally, we give a criterion for the absolutely convergent product∏(1 + ai) in terms of ∑ log(1 + ai).

Theorem 4.1.10. ∏∞1 (1+ai) converges absolutely if and only if
∑∞

1 log(1+
ai) converges absolutely.
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Proof. The result follows immediately from Theorem 4.1.7 and the
limit

lim
z→0

log(1 + z)
z

= 1.

It suffices to show ∑ | log(1 + ai)| and
∑ |ai| converges and diverges

together. The details is left to the reader.

Example 4.1.11. 1.
∞∏
1

(
1 + 1

nα

)
converges whenever α > 1.

2.
∞∏
1

1− 2
n(n+ 1)

 = 1
3.

3.
∞∏
1

(
1 + x

n

)
=
+∞, x > 0

0, x < 0.

4.
∏

(1 + zn) is absolutely convergent for every |z| < 1.

5. If ∑ an converges absolutely, then ∏(1+anz) converges absolutely
for every z. For example ∏(1 + z

n2

)
converges absolutely.

6. If ∑ an and ∑ |an|2 are convergent, then ∏(1 + an) is convergent
(Hint: log(1 + an) = an +O(|an|2)).

7. Suppose a2n−1 = −1√
n+ 1

, a2n = 1√
n+ 1

+ 1
n+ 1+ 1

(n+ 1)
√
n+ 1

.

Then ∏(1 + an) converges, but ∑ an and ∑
a2
n both diverge.

8. If an is real and ∑
an is convergent, then the product ∏(1 +

an) converges or diverges to zero according to ∑
a2
n converges or

diverges respectively.

4.2 Infinite Product of Functions
It is not difficult to see that the main results from the previous section
can be generalized to infinite product of functions.
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Let G be a region in C, and {fn} be a sequence of analytic functions
defined on G.

Theorem 4.2.1. Let {fn} ⊂ H(G) and ∑∞
1 |fn| converges uniformly

on every compact subsets of G. Then the infinite product ∏(1 + fn(z))
converges uniformly to an analytic function f on G , i.e. ∏∞1 (1+fn) =
f ∈ H(G).

Moreover, f has a zero at those, and only those points of G at which
at least one of the factors is equal to zero. The order of such a zero
is finite and is equal to the sum of the orders to which those factors
vanish there.

Proof. Let K be any compact subset of G. Since ∑ |fn| converges
uniformly on K, there exists a M > 0 such that ∑∞1 |fn(z)| < M for
all z ∈ K. Thus, for any n ∈ N, we have

(1 + |f1(z)|) · · · (1 + |fn(z)|) ≤ e|f1(z)|+···+|fn(z)| < eM

for all z ∈ K. Set Pn(z) = ∏n
1(1 + |fi(z)|). Then

Pn(z)− Pn−1(z) = (1 + |f1(z)|) · · · (1 + |fn−1(z)|)|fn(z)|
< eM |fn(z)|

for all n ≥ 2 and all z ∈ K. Hence∣∣∣∣∣∣
n∏
1

(1 + fi(z))− (1 + f1(z))
∣∣∣∣∣∣ ≤

n∑
i=2

(Pi(z)− Pi−1(z))

< eM
n∑
i=2
|fi(z)| < e2M

for all z ∈ K. So we deduce that ∏∞1 (1 + fi(z))− (1 + f1(z)) converges
uniformly on K. But H(G) is complete, so ∏∞1 (1+fi(z))−(1+f1(z)) is
analytic and hence ∏∞1 (1 + fi(z)) is analytic on K. But K is arbitrary,
so ∏∞

1 (1 + fi(z)) is analytic on G.
Since ∑ |fn(z)| < ∞ for each z ∈ K, there exists an N ∈ N such

that ∑∞
n |fi(z)| < 1

2 for all n > N. Suppose now that z ∈ K and
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f(z) = 0. It follows that ∏∞
N+1(1 + fi(z)) 6= 0 on K and hence the

order of the zero is equal to the sum of orders of those factors (i.e.∏N
1 (1 + fi(z)) vanishes there).

Remark. It is clear from the proof of Theorem 4.1.10 that ∑ |fi(z)| and∑ | log(1 + fi(z))| converge and diverge together. So we could rephrase
Theorem 4.2.1 such that the hypothesis ∑ |fi| < ∞ is replaced by∑ | log(1 + fi)| < ∞. It turns out that both conditions are useful in
applications.

4.3 Weierstrass Factorization Theorem
Suppose f is entire and non-vanishing. Then we can write f as eg
where g is an entire function (see Theorem 1.10.13). If f has only
a finite number of zeros (can be repeated) z1, z2, . . . , zn, say, then

f

(z − z1) · · · (z − zn)
is entire and non-vanishing. Thus we have f(z) =∏n

i=1(z − zi)eg. A natural question is for an representation for f as
above when f has an infinite number of zeros. We can also view the
above question as an interpolation problem: Given z1, z2, . . . , zn, . . .
and w1, w2, . . . , wn, . . ., find an entire function f such that f(zi) = wi
for i = 1, 2, 3, . . .. If wi = 0 for i = 1, 2, . . ., then our question become
a special case of the interpolation problem.

Thus a natural guess of an answer of the interpolation is the func-
tion

f(z) = zmeg(z)
∞∏
1

(
1− z

zi

)
.

But it is unclear of whether such a function exists since the infinite
product may diverge. According to Proposition 4.1.8,

∞∏
1

(
1− z

zi

)
con-

verges if
∑∣∣∣∣ z

zi

∣∣∣∣ = |z|
∑∣∣∣∣ 1

zi

∣∣∣∣ is convergent for every z. Thus if zn = n2,

then
∑∣∣∣∣ 1

zn

∣∣∣∣ =
∑ 1
n2 <∞ and so f has the above factorized form.



CHAPTER 4. ENTIRE FUNCTIONS 152

Weierstrass was able to construct a convergent-producing factor
called primary factor so that a factorization of f always exist regardless
of the given sequence {zn}.

Definition 4.3.1. Let p ≥ 0 be an integer. We define the Weierstrass
primary factor by

Ep(z) = E(z, p) =


(1− z) exp

z + z2

2 + z3

3 + · · ·+ zp

p

 , p ≥ 1;

1− z, p = 0.

Theorem 4.3.2 (Weierstrass Factorization Theorem). Let {an} be a
sequence of complex numbers with lim an = ∞. Then there exists an
entire function f with f(an) = 0 for all n and f has a zero at z = 0 of
order m ≥ 0. In fact, f is given by

f(z) = zmeg(z)
∞∏
n=1

Epn

( z
an

)

= zmeg(z)
∞∏
n=1

(
1− z

an

)
exp

[ z
an

+ · · ·+ 1
pn

(
z

an

)pn ]
,

where g(z) is an entire function and {pn} is any non-negative integer
sequence for which

∞∑
1

( r

|an|

)pn+1
<∞

for each r > 0.

Remark. (i) pn = n − 1 always satisfy the hypothesis. The idea is
to choose {pn} as simple as possible.

(ii) The above factorization has already taken care of the multiplicity
of {an}.

Lemma 4.3.3. Let p be a non-negative integer. Then

(i) |Ep(z)− 1| ≤ |z|p+1 if |z| ≤ 1;
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(ii) | logEp(z)| < k

k − 1|z|
p+1 if |z| < 1

k
and k > 1;

(iii) |Ep(z)− 1| < 6|z|p+1, if |z| < 1
2.

Proof. (i) We expand Ep into a power series:

Ep(z) = 1 +
∞∑
1
akz

k

where all the ak are real. Differentiating both sides yields

E ′p(z) =
∞∑
1
kakz

k−1. (4.1)

But the left side is equal to

E ′p(z) = [(1− z)(1 + z + z2 + · · ·+ zp−1 − 1] exp
z + z2

2 + · · ·+ zp

p


= [(1− zp)− 1] exp

z + z2

2 + · · ·+ zp

p

 . (4.2)

By comparing the coefficients of (4.1) and (4.2), we deduce a1 =
· · · = ap = 0 and ak ≤ 0 for the rest of k. Thus for |z| ≤ 1,

|Ep(z)− 1| =
∣∣∣∣∣∣
∞∑
p+1

akz
k

∣∣∣∣∣∣ = |zp+1|
∣∣∣∣∣∣
∞∑
0
ap+k+1z

k

∣∣∣∣∣∣
≤ |z|p+1

∞∑
0
|ap+k+1| = −|z|p+1

∞∑
0
ap+k+1 = |z|p+1

since 0 = Ep(1) = 1 + ∑∞
p+1 ak and so ∑ |ak| = −∑

ak = 1.
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(ii) Since

| logEp(z)| =
∣∣∣∣∣∣log(1− z) + z + z2

2 + · · ·+ zp

p

∣∣∣∣∣∣
=
∣∣∣∣∣∣
−z − z2

2 − · · ·
 + z + z2

2 + · · ·+ zp

p

∣∣∣∣∣∣
=
∣∣∣∣∣− 1
p+ 1z

p+1 − 1
p+ 2z

p+2 − · · ·
∣∣∣∣∣

≤ |z|p+1
( 1
p+ 1 + 1

p+ 2 |z|+
1

p+ 3 |z|
2 + · · ·

)

≤ |z|p+1(1 + |z|+ |z|2 + · · · )

< |z|p+1
(

1 + 1
k

+ 1
k2 + · · ·

)
= k

k − 1|z|
p+1.

(iii) By the definition of Ep(z),

|Ep(z)− 1| =
∣∣∣∣∣∣(1− z) exp

z + z2

2 + · · ·+ zp

p

− 1
∣∣∣∣∣∣

≤ exp
 |z|p+1

p+ 1 + |u|
p+2

p+ 2 + · · ·
− 1

by 1− z = exp
−z − z2

2 − · · ·


≤ exp[|z|p+1(1 + |z|+ |z|2 + · · · )]− 1

= exp
|z|p+1 1

1− |z|

− 1

< exp(2|z|p+1)− 1
≤ 2|z|p+1 exp(2|z|p+1) ∵ ex − 1 ≤ xex for x ≥ 0
< 2|z|p+1e1 < 6|z|p+1.

Now we can prove Theorem 4.3.2.
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Proof of Theorem 4.3.2. Let {an} be the given sequence of complex
numbers such that an → ∞ as n → +∞. Thus given any |z| = r, we
can find an N > 0 such that |an| > 2r, or

∣∣∣∣∣ zan
∣∣∣∣∣ < 1

2 for |z| < r. Thus
Lemma 4.3.3(iii) gives

∣∣∣∣∣Epn

(
z

an

)
− 1

∣∣∣∣∣ < 6
∣∣∣∣∣ zan

∣∣∣∣∣
pn+1

<

 r

|an|

pn+1

for n > N and |z| < r. It follows from the hypothesis that the sum∑(Epn(z/an)− 1) converges uniformly and absolutely on any compact
subset of B(0, r). Theorem 4.2.1 implies that the infinite product∏∞

1 Epn(z/an) converges to an analytic functions in B(0, r). But r
is arbitrary, so it is actually an entire function.

Suppose f is an entire function with zeros given by {an}, then
f/

∏∞
1 Epn(z/an) is zero-free. Hence we can find an entire function g

such that
f(z) = zmeg(z)

∞∏
1
Epn

(
z

an

)

where m ≥ 0 is an integer.
It is easy to see that we can always find the sequence {pn} by choos-

ing pn = n − 1. Since ∑ ∣∣∣∣∣ ran
∣∣∣∣∣
pn+1

<
∑(1

2

)n
< +∞ for each r. This

completes the proof of the theorem.

Alternatively, we can prove the theorem by applying Lemma 4.3.3(ii).
We choose k > 1 and N so large that |an| > kr for n > N and |z| < r.
Thus ∣∣∣∣∣logEpn

(
z

an

)∣∣∣∣∣ < k

k − 1

∣∣∣∣∣ zan
∣∣∣∣∣
pn+1

<
k

k − 1

(1
k

)pn+1
.

Choose pn = n − 1 again implies ∑ | logEpn(z/an)| converges uni-
formly. The discussion in the remark after Theorem 4.2.1 shows that∏∞

1 Epn(z/an) converges to an entire function. You may fill in the de-
tails as an exercise.
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Remark. Note that some authors will phrase Theorem 4.3.2 as: Let
{an} be a sequence of complex numbers with lim an = ∞, then there
exists {pn} such that the following f is an entire function

f(z) = zmeg(z)
∞∏
1
Epn

(
z

an

)

where g is an entire function.
This is because we can always obtain the estimate, as in the proof,

∣∣∣∣∣Epn

(
z

an

)
− 1

∣∣∣∣∣ < 6
(1

2

)pn+1
.

Hence any increasing non-negative integer sequence {pn} will make∑ |Epn(z/an)− 1| converges uniformly.

Proposition 4.3.4. Suppose G is an open set and {fn} ⊂ H(G) such
that f = ∏

fn converges in H(G). Then

(a) f ′ =
∞∑
k=1

f ′k ∏
n 6=k

fn



(b) f ′

f
=
∞∑
k=1

f ′k
fk

on any compact subset K ⊂ G provided f 6= 0 on K. (See Conway
p.174)

Proof. (Sketch) For (a), Consider F ′k = ∑k
i=1 (f ′i

∏
n 6=i fn) =

(∏k
1 fi

)′.
By Theorem 3.3.1, since we have Fk → f , then

∣∣∣f ′ − ∑k
i=1 (f ′i

∏
n 6=i fn)

∣∣∣
converges in H(G) and f ′ = ∑∞

i=1 (f ′i
∏
n 6=i fn) as required.

For (b), let K be an arbitrary compact set. Hence |f | > a > 0 for
all z ∈ K. Then∣∣∣∣∣∣f

′

f
− F ′k
Fk

∣∣∣∣∣∣ =
∣∣∣∣∣∣f
′Fk − fF ′k
fFk

∣∣∣∣∣∣→ 0 as k →∞

since F ′k → f ′ and Fk → f in H(G).
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4.4 Factorization of Sine Function
We define

sin z = z − z3

3! + z5

5! − · · ·+ (−1)n z2n−1

(2n− 1)! + · · · .

Since this series is convergent uniformly and absolutely on any
closed disk centred at the origin, we could rearrange the terns so that

sin z = 1
2i(e

iz − e−iz).

It follows that each zero of sin(πz) is simple. In fact, the zeros are
real and equal to 0,±1,±2, . . . ,±n, . . .. Let ak be the non-zero zeros.
Then

∞∑
k=1

 r

|ak|

2

=
∞∑
−∞

(n 6=0)

(
r

n

)2
= r2

∞∑
−∞

(n 6=0)

1
n2

always converge for each r > 0 by choosing {pn} = {1}. It follows from
the Weierstrass factorization theorem (Theorem 4.3.2) that

sin πz = zeg(z)
∞∏
−∞

(
1− z

n

)
ez/n

= zeg(z)
∞∏
1

1− z2

n2


for some entire function g(z). We deduce from Proposition 4.3.4 that

π cotπz = π
cos πz
sin πz = 1

z
+ g′(z) +

∞∑
1

2z
z2 − n2

converges uniformly on compact subsets of C \ Z.
We now need a standard contour integration result which can be

found p.122 in Conway :

π cotπz = 1
z

+
∞∑
1

2z
z2 − n2 for z ∈ Z.
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Hence g is identically a constant. In fact g(z) = log π because sin πz
πz

→
1 as z → 0. We finally obtain

sin πz = πz
∞∏
1

1− z2

n2

 .

4.5 Introduction to Gamma Function
We shall only introduce the definition of Gamma function and leave
its more difficult asymptotic expansion to a later chapter when time
allows. To begin with, let us consider the following entire function
defined by

G(z) =
∞∏
1

(
1 + z

n

)
e−z/n.

The infinite product G converges to an entire function in H(C) with
only negative zeros −1,−2,−1, . . . . Similarly the function G(−z) has
similar properties except the zeros are 1, 2, 3, . . .. It is readily seen that
πzG(z)G(−z) = sin πz.

Consider now G(z − 1) which has the same zeros as G(z) plus a
new zero at the origin. Hence there exists an entire function γ(z) such
that

G(z − 1) = zeγ(z)G(z).
We shall determine γ(z). To do so, we take the logarithmic deriva-

tive on both sides:
∞∑
1

( 1
z − 1 + n

− 1
n

)
= 1
z

+ γ′(z) +
∞∑
1

( 1
z + n

− 1
n

)
.
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Rewrite
∞∑
1

( 1
z − 1 + n

− 1
n

)
= 1
z
− 1 +

∞∑
2

( 1
z − 1 + n

− 1
n

)

= 1
z
− 1 +

∞∑
1

( 1
z + n

− 1
n+ 1

)

= 1
z
− 1 +

∞∑
1

( 1
z + n

− 1
n

)
+
∞∑
1

(1
n
− 1
n+ 1

)

= 1
z
− 1 +

∞∑
1

( 1
z + n

− 1
n

)
+ 1 = 1

z
+
∞∑
1

( 1
z + n

− 1
n

)
.

This implies that γ′(z) = 0 and γ(z) = γ is a constant. Putting z = 1
into G(z − 1) = eγzG(z) gives 1 = G(0) = eγG(1). That is

e−γ = G(1) =
∞∏
1

(
1 + 1

n

)
e−1/n.

The nth-partial product is

(n+ 1)e−(1+1/2+1/2+···+1/n)

and this implies

γ = lim
(

1 + 1
2 + · · ·+ 1

n
− log(n+ 1)

)

= lim
(

1 + 1
2 + · · ·+ 1

n
− log n− log

(
1 + 1

n

))

= lim
(

1 + 1
2 + · · ·+ 1

n
− log n

)
− lim log

(
1 + 1

n

)

= lim
(

1 + 1
2 + · · ·+ 1

n
− log n

)
.

The number γ(≈ 0.57722) is called Euler’s constant whose numer-
ical value is still unknown. In fact, it is still undecided whether γ is
rational or irrational.

Using H(z) = eγzG(z) on G(z − 1) = eγzG(z) gives us a new
relation:

H(z − 1) = zH(z).
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A further change of notation Γ(z) = 1
zH(z) gives us the right order:

Γ(z − 1) = Γ(z)
z − 1 or

Γ(z + 1) = zΓ(z) for z 6= −1,−2, . . ..

Of course
Γ(z) = e−γz

z

∞∏
1

(
1 + z

n

)−1
ez/n

is now an infinite product of meromorphic functions. The conver-
gence can easily be justified by considering compact sets K in C \
{−1,−2, . . .}. Γ(z) is call (Euler’s) gamma function. Clearly Γ(1) = 1
and we deduce from the functional equation above that Γ(2) = Γ(1) =
1, Γ(3) = 2Γ(2) = 2 · 1 = 2!, . . . ,Γ(n) = (n − 1)!. Thus the gamma
function can be considered as a generalization of the factorial. Also

Γ(z)Γ(1− z) = π

sin πz

which gives Γ(1/2) =
√
π.

One can show that

Γ(z) =
∫ ∞

0
e−ttz−1 dt. (Mellin transform)

We shall extend Weierstrass factorization theorem to an arbitrary
region.

Theorem 4.5.1. Let G be a region and {aj} ⊂ G is a sequence of
points without a limit point in G. Then there exists an analytic function
f : G→ C such that f(aj) = 0 and f has no other zeros in G.

Proof. We first show that it is possible to simplify the problem by
considering G unbounded and limz→∞ f(z) = 1. More precisely, we
consider G such that {z : |z| > R} ⊂ G and |aj| < R for all j.
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For suppose this is true, then given any region G1 and an arbitrary
sequence {αj} such that {αj} does not have a limit point in G1. We
choose a ∈ G1, r > 0 such that B(a, r) ⊂ G1 and αj /∈ B(a, r) for all
j. Let T (z) = 1

z − a
, then G := T (G1) \ {∞} is such that {z : |z| >

R} ⊂ G and |aj| = |1/(αj − a)| < R for all j and some R > 0.

b
T (z) = 1/(z − a)

a

r

G1

×
×
×

×× ×

× × ×××××××

×××
×

bc
bc bc bc bc bc bc bc

bc bc

K compact

aj

wj

C \G
R

αj

G := T (G1) \ {∞}

Figure 4.1: C \G

Since limz→∞ f = 1, f(T (z)) has a removable singularity at a and
f has zeros at precisely aj = 1

αj − a
for all j. Then according to

the definition, there exists an analytic function g on G1 such that
g = f(T (z)) on G1 \ {a}. Clearly g has the zeros precisely on {αj}. It
remains to prove the special case mentioned above.

Since G is open, so for each an we can find wn ∈ C \G such that

|wn − an| = d(an,C \G)

and
lim
n→∞ |wn − an| = 0

We aim to show that the infinite product ∏En

(
an − wn
z − wn

)
converges in

H(G). So letK be any compact subset ofG, and hence d(K,C\G) > 0.
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Then, for z ∈ K,
∣∣∣∣∣an − wnz − wn

∣∣∣∣∣ ≤ |an − wn|d(wn, K) ≤
|an − wn|
d(K,C \G) .

Hence given δ, 0 < δ < 1, there exists an N such that∣∣∣∣∣an − wnz − wn

∣∣∣∣∣ < δ

for all n > N and all z ∈ K. Thus Lemma 4.3.3(i) implies that
∞∑
N+1

∣∣∣∣∣En

(
an − wn
z − wn

)
− 1

∣∣∣∣∣ <
∞∑
N+1

δn+1.

That is, ∑∞
1

∣∣∣∣∣En

(
an − wn
z − wn

)
− 1

∣∣∣∣∣ converges uniformly, and Theorem

4.2.1 implies that f := ∏∞
1 En

(
an − wn
z − wn

)
converges to an analytic func-

tion in H(G).
The only remaining fact to verify is that limz→∞ f(z) = 1. Given

ε > 0, let R1 > R so that if |z| > R1, |an| < R, we have
∣∣∣∣∣an − wnz − wn

∣∣∣∣∣ ≤ 2R
R1 −R

.

In particular, we can choose R1 sufficiently large such that 2R
R1 −R

< δ

for any 0 < δ < 1. Thus by Lemma 4.3.3(i) again,
∣∣∣∣∣En

(
an − wn
z − wn

)
− 1

∣∣∣∣∣ ≤
( 2R
R1 −R

)n+1
< δn+1

for all |z| > R1 > R. Recall that limz→0
log(1 + z)

z
= 1. Thus we may
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choose R1 so large that when |z| > R1, there exists C > 0 such that∣∣∣∣∣∣
∞∑
1

logEn

(
an − wn
z − wn

)∣∣∣∣∣∣ ≤
∞∑
1

∣∣∣∣∣logEn

(
an − wn
z − wn

)∣∣∣∣∣
≤ C

∞∑
1

∣∣∣∣∣En

(
an − wn
z − wn

)
− 1

∣∣∣∣∣
≤ C

∞∑
1
δn+1

= C
δ2

1− δ .

Thus by choose δ sufficiently small and hence R1 sufficiently large that,

|f(z)− 1| =
∣∣∣∣∣exp

(∑
logEn

(
an − wn
z − wn

))
− 1

∣∣∣∣∣
< ε

for all |z| > R1. This completes the proof.

4.6 Jensen’s Formula
We shall derive a useful formula called Jensen’s formula. It is a special
case of the more general Poisson-Jensen formula. Jensen’s formula will
be used again in later sections.

Theorem 4.6.1. Let f be analytic on a region containing B(0, r) and
that a1, . . . , an are the zeros of f in B(0, r). Suppose in addition that
f(z) 6= 0 on |z| = r and f(0) 6= 0, then

log |f(0)| = −
n∑
k=1

log r

|ak|
+ 1

2π
∫ 2π

0
log |f(reiθ)| dθ.

Alternatively, Jensen’s formula can be written as

|f(0)|
n∏
1

r

|ak|
= exp

( 1
2π

∫ 2π

0
log |f(reiθ)| dθ

)
.
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Proof. We first prove Jensen’s formula when f is non-vanishing on
B(0, r). Hence we may find an analytic branch of log f(z). We then
have, by Cauchy’s integral formula

log f(z) = 1
2πi

∫
γ

log f(ζ)
ζ − z

dζ

where γ = ∂B(0, r) and ζ = reiθ. Thus

log f(0) = 1
2π

∫ 2π

0
log f(reiθ) dθ,

and we obtain the Jensen formula by taking the real parts on both
sides.

We next consider f to have a finite number of zeros in B(0, r). Let
b ∈ ∆ = {z : |z| < 1}, then it is known that the map z − b

z − bz
is an

automorphism of ∆ with |z| = 1 being mapped to |z| = 1. Based on
this automorphism, it is not difficult to check that

r(z − ak)
r2 − akz

mapsB(0, r) ontoB(0, 1) in an one-to-one manner with |z| = rmapped
to |z| = 1 and ak 7→ 0. So the function defined by

F (z) = f(z)
∏n

1
r(z − ak)
r2 − akz

= f(z)
n∏
1

r2 − akz
r(z − ak)

is non-vanishing on B(0, r), and |F (z)| = |f(z)| on |z| = r.
We now apply the result in the first part to F (z) to obtain

log |F (0)| = 1
2π

∫ 2

0
π log |F (reiθ)| dθ

= 1
2π

∫ 2π

0
log |f(reiθ)| dθ.

But log |F (0)| = log |f(0)|+∑n
1 log r

|ak|
. This completes the proof.
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Remark. (i) If f has a finite number of poles b1, . . . , bm except at
the origin, then the Jensen formula becomes

log |f(0)| = −
n∑
1

r

|ak|
+

m∑
1

r

|bv|
+ 1

2π
∫ 2π

0
log |f(reiθ)| dθ.

(ii) The Jensen formula in Theorem 4.6.1 still holds even if there are
finite number of zeros on |z| = r. It suffices to show that f has
only a simple zero a = reiϕ on |z| = r. Let us recall that the
function F (z) defined in the proof of Theorem 4.6.1. Now the
function F (z)

z − a
is zero-free on B(0, r) and hence

log
∣∣∣∣∣∣F (0)
0− a

∣∣∣∣∣∣ = 1
2π

∫ 2π

0
log

∣∣∣∣∣∣ F (reiθ)
reiθ − a

∣∣∣∣∣∣ dθ
= 1

2π
∫ 2π

0
log |F (reiθ)| dθ − 1

2π
∫ 2π

0
log(r|1− ei(θ−ϕ)|) dθ.

Hence

log |F (0)| = 1
2π

∫ 2π

0
log |F (reiθ)| dθ − 1

2π
∫ 2π

0
log |1− ei(θ−ϕ)| dθ.

The above equation will become the Jensen formula if the second
integral on the right hand side vanishes. This will be done in the
next lemma.

Lemma 4.6.2.
1

2π
∫ 2π

0
log |1− eiθ| dθ = 0.

Proof. Consider the simply connected region Ω = {z : <(z) < +1}.
Hence we may define an analytic branch log(1−z) in Ω since 1−z 6= 0
. In particular, the branch is unique if we choose log(1−0) = 0. Notice
that <(1− z) > 0, so we have

<(log(1− z)) = log |1− z| and | arg(1− z)| < π

2 .
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We then consider two paths:

Γ(t) = eit, δ ≤ t ≤ 2π − δ and γ(t) = 1 + ρeit, joining e−iδ to eiδ

We apply Cauchy’s integral formula to log(1− z) to obtain

1
2π

∫ 2π−δ

δ
log |1−eiθ| dθ = <

[ 1
2πi

∫
Γ

log(1− z)dz
z

]
= <

[ 1
2πi

∫
−γ

log(1− z)dz
z

]
.

But on γ(t),

log(1− z)
z

= log(−ρeit)(1− ρeit + (ρeit)2

2! − · · · )

= log(−ρeit)(1 +O(ρ))

= − log 1
ρ

(1 +O(ρ)) + i(imaginary part)(1 +O(ρ)).

Hence ∣∣∣∣∣∣<
 1

2πi
∫
−γ

log(1− z)
z

dz

∣∣∣∣∣∣ ≤ Cδ log 1
δ
→ 0

as δ → 0; thus proving the lemma.

We shall study Weierstrass factorization type problem for the unit
disc in this section (briefly).

Definition 4.6.3. Let ∆ = {z : |z| < 1}. Then we define a subset of
H(∆) as

H∞ = H∞(∆)
where sup {|f(z)| : z ∈ ∆} < +∞ for all f ∈ H∞, i.e. the set of all
bounded analytic functions on ∆.

Definition 4.6.4. We also define

B(z) = zk
∞∏
n=1

αn − z
1− αnz

|αn|
αn

(4.3)

on ∆, which is called Blaschke product provided the infinite product
converges. Here the sequence {αn} consisting of complex numbers in
the unit disc.
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Thus the natural questions is under what condition on {αn} will
(4.3) converges. We shall give an answer to this question in the follow-
ing theorem. In fact we shall give a characterization to the existence
of Blaschke product.
Theorem 4.6.5. Let {αn} be a sequence in ∆ without limit points.
Then (4.3) converges uniformly to an analytic function if and only if∑∞

1 (1− |αn|) < +∞.
Lemma 4.6.6. Suppose 0 ≤ an < 1. Then ∏∞

1 (1 − an) > 0 exists if
and only if ∑∞1 an <∞.
Proof. Since ∑ an <∞, there exists N such that ∑∞N+1 an < 1/2. Note
that

(1− aN+1)(1− aN+2) ≥ 1− aN+1 − aN+2

· · · · · ·
(1− aN+1) · · · (1− aN+k) ≥ 1− aN+1 − · · · − aN+k for all k

> 1/2.

Hence pn = (1 − a1) · · · (1 − an) is monotonic decresing and bounded
below by a positive number. Thus ∏∞1 (1− an) > 0 exists.

Conversely, suppose ∏∞1 (1− an) = p > 0. Then

0 < p ≤ pn =
∞∏
1

(1− ak) ≤ exp
− n∑

1
ak


and if we assume ∑∞1 ak = +∞ then exp (−∑∞

1 ak)→ 0. A contradic-
tion.

Proof of Theorem 4.6.5. Suppose ∑∞
1 (1 − |αn|) < ∞. According to

Theorem 4.2.1, it is sufficient to show
∞∑
1

∣∣∣∣∣∣1− αn − z
1− αnz

|αn|
αn

∣∣∣∣∣∣ <∞.
Notice that

1− αn − z
1− αnz

|αn|
αn

= αn + |αn|z
(1− αnz)αn

(1− |αn|).
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For each |z| ≤ r < 1, we have∣∣∣∣∣∣(1− |αn|)(αn + |αn|z)
(1− αnz)αn

∣∣∣∣∣∣ ≤ 1 + r

1− r(1− |αn|)

since |1 − αnz| ≥ 1 − |αn|r ≥ 1 − r. Hence (4.3) converges if ∑∞1 (1 −
|αn|) <∞.

Suppose now the Blaschke product converges. Then |B(z)| < 1 for
all z ∈ ∆. We may assume B(0) 6= 0, since the factor zk does not
affect the convergence of ∑(1− |αn|). By Jensen’s formula we have for
r < 1 and n zeros in |z| < r,

|B(0)|
n∏
1

r

|αn|
= exp

[ 1
2π

∫ 2π

0
log |B(reiθ)| dθ

]
.

But |B(z)| < 1 for all z ∈ ∆. Hence the right hand side of the Jensen’s
formula is bounded by a constant C > 0 for all 0 < r < 1. Thus

∞∏
1
|αn| ≥ C−1|B(0)| > 0

as r → 1. Lemma 4.6.6 implies ∑(1− |αn|) must converges.

4.7 Hadamard’s Factorization Theorem
We have applied Weierstrass factorization theorem to obtain an infinite
product representation of sin πz:

sin πz = zeg(z)
∞∏
−∞

(
1− z

n

)
ez/n

= πz
∞∏
1

1− z2

n2

 .
It is perhaps difficult to see at the beginning that g(z) reduces

to a constant log π and thus 2z ∏∞1
1− z2

n2

 behaves as eiπz − e−iπz
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(which is the original definition) in the above representation for sin πz.
A question comes into our minds immediately is that how will the
growth of eg and ∏∞

1 Epn(z/an) relate to the growth of the function
f . We shall study this question when g is taken as a polynomial and
pn = p for all n in this section. This line of research has dominated the
development of function theory of one complex variable for the past
seventy years. This area of research is related to subharmonic functions
(log |f(z)| is harmonic away from the zeros of f ; see next chapter for
harmonic functions) and potential theory. Most easier problems have
been solved, with the remaining open problems exceedingly difficult.

Let {an} be a sequence of numbers in C such that an →∞ as n→
∞ and that there exists a non-negative integer p such that ∑ 1

|an|p+1 <

∞. Then according to Weierstrass factorization theorem that
∞∏
1
Ep

(
z

an

)

converges to an entire function on C.

Definition 4.7.1. If the integer p described above is chosen so that∑ 1/|an|p = +∞ and ∑ 1/|an|p+1 < +∞, then the integer is called
the genus of {an}, and the infinite product is said to be canonical
(standard). We also call p the genus of the canonical product.

Example 4.7.2. The infinite product

sin πz = πz
∞∏
−∞

(
1− z

n

)
ez/n = πz

∞∏
1

1− z2

n2



has genus one, since ∑∞1 1
n

= +∞ and ∑∞
1

1
n2 < +∞.

So if a function has a representation

f(z) = zmeg(z)
∞∏
1
Ep

(
z

an

)
, p = genus
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where g is a polynomial, then the growth is determined by that of∏∞
1 Ep(z/an) and eg. Note that the above infinite product represen-

tation of f is unique if p is chosen to be the genus. We now define
the genus of f to be µ = max{deg g, p}. We next show the genus of f
determines its growth.

Theorem 4.7.3. Let f be an entire function of genus µ (refered to its
Weierstrass factorization). Then given α > 0, there exists R > 0 such
that

|f(z)| ≤ exp(α|z|µ+1)
for |z| > R.

We first obtain a result for canonical product.

Theorem 4.7.4. Let P (z) be a canonical product with genus p. Then
given α > 0, there exists R > 0 such that

|P (z)| < exp(α|z|p+1)

for |z| > R.

Proof. We need some elementary estimates for the primary factors.
Since

|Ep(z)| ≤ (1 + |z|) exp
|z|+ |z|22 + · · ·+ |z|

p

p

 ,
thus

log |Ep(z)| ≤ log(1 + |z|) + |z|+ · · ·+ |z|
p

p
.

Thus given any A > 0, there exists R > 0 such that

log |Ep(z)| < A|z|p+1 for |z| > R. (4.4)

We also recall from Lemma 4.3.3(ii) that for k > 1,

log |Ep(z)| ≤ | logEp(z)| ≤ k

k − 1|z|
p+1, for k < 1, |z| < 1/k.
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Without loss of generality, we may assume 1
k
< R. For 1

k
≤ |z| ≤ R,

the function
log |Ep(z)|
|z|p+1

is easily seen to be continuous there except when z = 1 where log |Ep(z)| =
−∞. In any case an absolute upper bound exists. Thus there exists
B > 0 such that

log |Ep(z)| ≤ B|z|p+1

for 1
k
≤ |z| ≤ R. Let M = max{A,B, k

k − 1}, we have

log |Ep(z)| ≤M |z|p+1

for all z ∈ C.
Since ∑∞1 1

|an|p+1 <∞, we choose N so large that

∞∑
N+1

1
|an|p+1 <

α

4M .

Thus
∞∑
N+1

log
∣∣∣∣∣Ep

(
z

an

)∣∣∣∣∣ ≤M |z|p+1
∞∑
N+1

1
|an|p+1

≤ α|z|p+1

4 . (4.5)

To estimate ∑N
1 log |Ep(z/an)|, we note that |z/an| are large for

1 ≤ n ≤ N , hence we may assume the constant A > 0 in (4.4) is
chosen such that A = α

4N min1≤i≤N |ai|p+1 for |z| > R1 > R, say. Thus

N∑
1

log |Ep(z/an)| <
α

4N |z|
p+1

 N∑
1

1
|an|p+1

 min
1≤i≤N

|ai|p+1

≤ α

4N |z|
p+1

N max
1≤i≤N

1
|ai|p+1

 min
1≤i≤N

|ai|p+1

≤ α

4 |z|
p+1 (4.6)
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for |z| > R1 > R. Combining (4.5) and (4.6) yields

log |P (z)| =
∞∑
1

log |Ep(z/an)| < α|z|p+1

for all |z| > R1. This completes the proof.

Proof of Theorem 4.7.3. It is now easy to complete the proof of Theo-
rem 4.7.3. For deg g < µ+ 1, so |z|me|g|/exp(α|z|µ+1)→ 0 as |z| → ∞.
But p + 1 ≤ µ + 1. The required estimate follows from Theorem
4.7.4.

Example 4.7.5. If ∑ 1/|an|2 <∞ and ∑ 1/|an| = +∞, then

f =
∞∏
1

(
1− z

an

)
ez/an

has genus 1. So |f | < exp(α|z|2). It also follows that sin πz has genus
1.

Suppose ∑∞1 1/|an| <∞. Then
∏(1− z

an

)
has genus zero. Hence

f = ez
∏(

1− z

an

)

also has genus 1.

The above theorems show that we can know the growth of f pro-
vided we know the function g and the growth (genus) of the zeros of f .
We shall study the converse problem in what follows. Namely, what
can we say about g and the zeros of f if we know the growth of f .

Definition 4.7.6. Let S(r) be a positive and monotonic increasing
function of r > 0. The order λ of S(r) is defined to be

lim sup
r→+∞

logS(r)
log r .

We say S(r) has infinite order if no finite λ can be found.
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Remark. The above definition is equivalent to: given any ε > 0, there
exists a r0 > 0 such that

(i) S(r) < rλ+ε for r > r0, and

(ii) S(r) > rλ−ε holds for infinitely many r > r0.

Example 4.7.7. The order r and r(log r)3 where s 6= 0 are both equal
to 1. The order of er is infinite.

Definition 4.7.8. Let f be an entire function and M(r) = M(r, f) =
max|z|=r |f(z)|. Then the order of f is defined to be the real number:

λ = lim sup
r→∞

log logM(r, f)
log r .

Example 4.7.9. (i) λ(ez) = 1.

(ii) λ(ep(z)) = n, where p(z) is a polynomial of degree n.

(iii) λ(exp(ez)) =∞.

Definition 4.7.10. Let n(r) be the number of zeros of f in |z| < r
(counted according to multiplicities).

Proposition 4.7.11. The order of n(r) does not exceed that of f , i.e.
λ(n(r)) ≤ λ(f).

Proof. We may assume f(0) 6= 0. Given ε > 0, there exists r0 > 0 such
that

logM(r, f) < rλ(f)+ε for r > r0.

Putting 2r into Jensen’s formula yields

2n(r)|f(0)| ≤ |f(0)|
n(r)∏

1

2r
|an|
≤ |f(0)|

n(2r)∏
1

2r
|an|

= exp
( 1

2π
∫ 2π

0
log |f(2reiθ)| dθ

)

≤M(2r, f).
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Hence

log |f(0)|+ n(r) log 2 ≤ logM(2r, f)
< 2λ+εrλ+ε for r > r0.

Thus, proving the proposition.
Proposition 4.7.12. Suppose λ(f) = λ < +∞ and {ri} are the mod-
uli of the zeros of f . Then the series ∑ r−αn < +∞ whenever α > λ.
Proof. Let λ < β < α. It follows from Proposition 4.7.11 that n(r) <
Arβ for r > r0, say. Suppose r = rn, then n = n(rn) < Arβn. Hence
r−βn < An−1, and so r−αn < An−α/β. Thus ∑ r−αn < A

∑
n−α/β < +∞

since α/β > 1.
Definition 4.7.13. The real number

v = inf
α :

∞∑
1

1
rαn

< +∞


is called the exponent of convergence of the sequence {rn}.
If {an} is a sequence of the zeros of P (z) and |an| = rn, then

p ≤ v < p+ 1

where p is the genus of {an}. Also, it was proved in Theorem 4.7.4 that
|P (z)| < exp(α|z|p+1). We can prove a more precise result.
Theorem 4.7.14. The order of a canonical product is equal to the
exponent of convergence of its zeros.
Proof. See exercise/homework.

It follows that if v is the exponent of convergence of P (z), then

|P (z)| < exp(α|z|v+ε)

for all |z| sufficiently large. It also follows that

genus p ≤ order of a canonical product < p+ 1.

Note also that p = [v], p ≤ v ≤ λ (for an entire function).
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Lemma 4.7.15. Let f be an entire function of order λ < +∞ and
f(0) = 1. Suppose {ai} are the zeros of f and an integer p > λ − 1.
Then

dp

dzp

f ′(z)
f(z)

 = −p!
∞∑
n=1

1
(an − z)p+1

for z 6= a1, a2, . . ..

The proof of this lemma will be given after the Poisson-Jensen
formula.

Theorem 4.7.16 (Hadamard’s Factorization Theorem). Let f be an
entire function of order λ < +∞, and suppose {ai} are the zeros of f
where f(0) = 1. Then

f(z) = eg(z)P (z)
where g is a polynomial of degree ≤ λ, and P (z) is the canonical prod-
uct form from the zeros of f .

Proof. Let p be an integer such that p ≤ λ < p + 1. Since the order
of f , λ(f) <∞, Proposition 4.7.12 implies that the zeros a1, a2, . . . of
f satisfy ∑ 1

|an|p+1 < +∞ since p + 1 > λ. Let P (z) be the canonical
product forms from the zeros of f , and v be its exponent of convergence
of zeros.

Weierstrass factorization theorem implies that there exists an entire
function g(z) such that f(z) = egP (z).

It remains to show that g is a polynomial. But it is easy to check
that

dp

dzp

[Ep

(
z

an

)]′
/Ep

(
z

an

) = −p! 1
(an − z)p+1 .

Combining this and by using Lemma 4.7.15, we obtain

g(p+1)(z)− p!
∞∑
1

1
(an − z)p+1 = dp

dzp

f ′(z)
f(z)

 = −p!
∞∑
1

1
(an − z)p+1 .

Hence g must be a polynomial of degree at most p.
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4.8 Poisson-Jensen Formula
Theorem 4.8.1. Let f be analytic on B(0, r) and let a1, . . . , an be the
zeros of f(z) in B(0, r). Suppose f(z) 6= 0 for z ∈ B(0, r), then

log |f(z)| = −
n∑
k=1

log
∣∣∣∣∣∣ r

2 − anz
r(z − ak)

∣∣∣∣∣∣ + 1
2π

∫ 2π

0
<
reiθ + z

reiθ − z

 log |f(reiθ)| dθ

= −
n∑
k=1

log
∣∣∣∣∣∣ r

2 − anz
r(z − ak)

∣∣∣∣∣∣ + 1
2π

∫ 2π

0

r2 − ρ2

r2 − 2rρ cos(φ− θ) + ρ2 log |f(reiθ)| dθ

where z = ρeiθ.

Proof. We need to quote the quote following result from Chapter 6:
Suppose g is analytic on B(0, r) and that <(g(z) = U(z). Then for
z = ρeiφ, ρ < r, we have

U(ρeiφ) = 1
2π

∫ 2π

0
<
 reiθ+z

reiθ − z

U(reiθ) dθ

= 1
2π

∫ 2π

0

r2 − ρ2

r2 − 2rρ cos(φ− θ) + ρ2U(reiθ) dθ.

Let g(z) = f(z)∏n1 r2 − akz
r(z − ak)

then it is zero-free on B(0, r). Hence

log g(z) is analytic on B(0, r). We thus obtain

log |g(z)| = 1
2π

∫ 2π

0
<
 reiθ+z

reiθ − z

 log |g(reiθ)| dθ

= 1
2π

∫ 2π

0
<
 reiθ+z

reiθ − z

 log |f(reiθ)| dθ.

But
log |g(z)| = log |f(z)|+

n∑
k=1

log
∣∣∣∣∣∣ r

2 − akz
r(z − ak)

∣∣∣∣∣∣
and the required formula now follows.
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Remark. The Poisson-Jensen formula recovers the Jensen’s formula
after putting z = 0.

Now we can give a proof of Lemma 4.7.15.

Proof of Lemma 4.7.15. The easiest way to obtain (f ′/f)(p) is to dif-
ferentiate the Poisson-Jensen formula. Suppose f(z) 6= 0, then log f(z)
exists and Cauchy-Riemann equations gives f ′/f = d

dz
log f(z) =

∂

∂x
<(log f(z)) − i

∂

∂y
<(log f(z)) = ∂

∂x
log |f(z)| − i

∂

∂y
log |f(z)|. We

apply this formula and differentiation under the integral (see Conway
p.69),

log |f(z)| = −
n∑
1

log
∣∣∣∣∣∣ r

2 − akz
r(z − ak)

∣∣∣∣∣∣ + 1
2π

∫ 2π

0
<
reiθ + z

reiθ − z

 log |f(reiθ)| dθ.

We obtain
f ′(z)
f(z) =

n∑
1

1
z − ak

+
n∑
1

ak
r2 − akz

+ 1
2π

∫ 2π

0

2reiθ
(reiθ − z)2 log |f(reiθ)| dθ.

Differentiating this formula p time yields:

dp

dzp

f ′(z)
f(z)

 = −p!
n∑
1

1
(ak − z)p+1 + p!

n∑
1

ak
p+1

(r2 − akz)p+1

+ (p+ 1)! 1
2π

∫ 2π

0

2reiθ
(reiθ − z)p+2 log |f(reiθ)| dθ.

It remains to show the last two terms tend to zero as r → ∞
(n → ∞). We consider the integral of the last expression first, and
note that the integral

∫ 2π

0

reiθ

(reiθ − z)p+2 dθ = 0.

Hence

−
∫ 2π

0

reiθ

(reiθ − z)p+2 log |f(reiθ)| dθ =
∫ 2π

0

reiθ

(reiθ − z)p+2 log M(r, f)
|f(reiθ)| dθ.
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Suppose r > 2|z|, then
∣∣∣∣∣∣
∫ 2π

0

reiθ

(reiθ − z)p+2 log |f(reiθ)| dθ
∣∣∣∣∣∣ ≤ 2r

(r − r/2)p+2

∫ 2π

0
log M(r, f)
|f(reiθ)| dθ

= 2p+3r−p−1
∫ 2π

0
log M(r, f)
|f(reiθ)| dθ

= 2p+3r−p−1
∫ 2π

0
(logM(r, f)− log |f(reiθ)|) dθ

≤ 2p+2
∫ 2π

0

logM(r, f)
rp+1 dθ(

by
∫ 2π

0
log |f(reiθ)| dθ ≥ 0

)

by Jensen’s formula. But logM(r, f)/rp+1 → 0 as r → ∞ since λ <
p+ 1 and this proves the integral tends to zero as r →∞.

We now consider an individual term in the second summand: we
assume again r > 2|z|,

∣∣∣∣∣ ak
r2 − akz

∣∣∣∣∣
p+1
≤ |ak|p+1

(r2 − r2/2)p+1 = (2r)p+1

r2(p+1) =
(2
r

)p+1
.

Hence
n∑
1

∣∣∣∣∣ ak
r2 − akz

∣∣∣∣∣
p+1
≤ 2p+1

n∑
1

1
rp+1 ≤ 2p+1n(r)

rp+1 → 0

as r →∞, n(r) ≥ n(rn) by Proposition 4.7.11. Thus

dp

dzp

f ′(z)
f(z)

→ −p! ∞∑
1

1
(z − ak)p+1

as r →∞ and this completes the proof.

We can rewrite the above lemma as p ≤ λ < p + 1. We also note
the following:

Theorem 4.8.2. Let f be an entire function of finite order, then f
assumes each complex number with at most one exception.
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Proof. Suppose f(z) 6= α, β for all z ∈ C. Since f − α has the same
order of growth of f and never vanish. By Theorem 4.7.16, there exists
a polynomial g such that f − α = exp(g). Thus exp(g) never assume
β − α and so g(z) never assume log(β − α), a contradiction to the
Fundamental theorem of algebra.
Theorem 4.8.3. Suppose the order of an entire function is finite and
not equal to an integer. Then the function must have an infinite num-
ber of zeros.
Theorem 4.8.4. Let α be a real number. Then the function

f(z) =
∞∑
n=0

zn

(n!)α

has order 1/α.
Proof. Suppose z is real and positive. By considering

z

1α ·
z

2α · · · · ·
z

(n− 1)α ·
z

nα
,

we clearly deduce zn/(n!)α is increasing when |z| > nα and it starts to
decrease when |z| < nα. Hence the maximum of zn/(n!)α occurs when
z = nα. Thus
zn

(n!)α = nαn

(n!)α = nnα

(nn+(1/2)e−n
√

2π(1 + o(1)))α
= enα

nα/2(2π)α/2(1 + o(1))

= eαz1/α

z1/2(2π)α/2(1 + o(1))
by Stirling formula (Titchmarsh, p.58).

But the order of growth of f(z) must be greater than its individual
term when z > 0. Hence λ ≥ 1/α.

On the other hand, |f(z)| ≤ f(|z|) when z is real,

f(z) =
N∑
n=0

zn

(n!)α +
∞∑
N+1

zn

(n!)α

<
N∑
n=0

zn

(n!)α +
∞∑
N+1

zn

[(N + 1)!Nn−N−1]α .
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Suppose Nα > z, then

∞∑
N+1

zn

[(N + 1)!Nn−N−1]α = (NN+1)α
[(N + 1)!]α

∞∑
N+1

zn

(Nn)α

= (NN+1)α
[(N + 1)!]α

 zN+1

(NN+1)α + zN+2

(NN+2)α + · · ·


= zN+1

[(N + 1)!]α
(

1 + z

Nα
+ · · ·

)

= zN+1

[(N + 1)!]α(1− (z/Nα)) .

Thus we have

f(z) < AzN + zN+1

[(N + 1)!]α(1− (z/Nα))

whenever Nα > z. Hence, by taking N = [(2z)1/α],

f(z) = O(zN) = O(z(2z)1/α) = O(exp(z(1/α)+ε)),

and we deduce the order of f does not exceed 1/α. Hence λ = 1/α.

Remark. Stirling formula:

Γ(z) = zz−(1/2)e−z
√

2π(1 + o(1))

where Γ(n+ 1) = n!.

Exercise. What is the order of ∑∞n=1
zn

nαn
for α > 0?



Chapter 5

Periodic functions
An (analytic) function f(z) is said to be periodic if there is a non-zero
constant ω such that

f(z + ω) = f(z), z ∈ C.

We call the number ω a period of the function f(z).
Definition 5.0.5. We call ω a fundamental (primitive) period of
f if |ω| is the smallest amongst all periods.

5.1 Simply periodic functions
The simplest periodic function of period ω is e2πiz/ω. Suppose Ω is a
region such that if z ∈ Ω then z + kω ∈ Ω for all k ∈ Z.
Theorem 5.1.1. Given a meromorphic function f defined on a re-
gion Ω (as discussed above). Then there exists a unique meromorphic
function F in Ω′ which is the image of Ω under e2πiz/ω, such that

f(z) = F
(
e2πiz/ω).

Proof. Suppose f is meromorphic in Ω in the z−plane with period ω.
Let ζ = e2πiz/ω. Then we define F by

f(z) = f(log ζ) = F (ζ).

181
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Then clearly F is meromorphic in the ζ−plane whenever f(z) is mero-
morphic in the z−plane.
Example 5.1.2. Let 0 < |q| < 1. Consider the function

f(z) =
∞∑

k=−∞
(−1)kqk2/2ekiz

which represents a 2π−periodic entire function in C. In fact, this is a
complex form of a Fourier series. Let ζ = eiz.

F (ζ) =
∞∑

k=−∞
(−1)kqk2/2ζk

which can be shown to converge in the punctured plane 0 < |ζ| < +∞.
Thus we have

f(z) = F (ζ)
as asserted by the last theorem. Here we have ω = 2π. Thus, the
function F is analytic in 0 < |ζ| < +∞.

More generally, if the series

F (ζ) =
∞∑

k=−∞
cnζ

k

converges in an annulus r1 < |ζ| < r2, then

f(z) := F (ζ) =
∞∑

k=−∞
cne

2πkiz/ω, ζ = e2πiz/ω,

is a ω−periodic analytic function in the infinite horizontal strip {ζ :
er1 < =(ζ) < er2}. We can represent the coefficient

ck = 1
2πi

∫
|ζ|=r

F (ζ)
ζk+1 dζ, r1 < |ζ| < r2

= 1
ω

∫ a+ω

a
f(z)e−2πkiz/ω dz,

where a is an arbitrary in the infinite strip {ζ : er1 < =(ζ) < er2} and
the integration is taken along any path lying in the strip.
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5.2 Period module
Let M denote that set of all periods of a meromorphic function f in
C. If ω 6= 0 is a period, then nω, for any integer n, obviously belongs
to M . If, however, there are two distinct periods ω1 and ω2, then
mω1 + nω2 is also a period for any integral multiples m, n. That is,
mω1 + nω2 ∈ M . This shows that M is a module over the ring of
integers.

We also note that the set of periods must be discrete since if there
is a sequence of periods with a limit point, then this would contradicts
the identity theorem for analytic functions. We are ready to answer
Jacobi’s first question.

Theorem 5.2.1. A discrete module M consists of either nω for an
arbitrary integer n and ω 6= 0, or mω1 + nω2 for arbitrary integers
n, m and non-zero ω1, ω2 with =(ω2/ω1) 6= 0.

Proof. Without loss of generality, we may assume M 6= ∅. Let ω =
ω1 ∈ M and there are at most a finite number of nω1 belong to M
in a fixed |z| ≤ r. Amongst all these ω1, we choose the one with the
smallest |ω1|.

If however, there is a period ω ∈M that is not of the form nω1 for
n ∈ Z. Then again we call ω2 with |ω2| the smallest (but not less than
|ω1|). We claim that =(ω2/ω1) 6= 0. For if it were, then there is an
integer n such that

n <
ω2

ω1
< n+ 1,

or
0 <

∣∣∣∣ω2

ω1
− n

∣∣∣∣ < 1

or |nω1 − ω2| < |ω1|. But nω1 − ω2 is a period which is smaller than
|ω1|. This contradicts the assumption that ω1 is the “smallest” period.

It remains to show that any period ω must be of the formmω1+nω2
for some integers n, m. Without loss of generality, we may assume
=(ω2/ω1) > 0. Hence any complex number ω can be written as ω =
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λ1ω1+λ2ω2 for constants λ1, λ2. We claim that λ1, λ2 are real. Suppose

ω = λ1ω1 + λ2ω2,

ω̄ = λ1ω̄1 + λ2ω̄2.

Then one can can find unique solutions λ1, λ2 since ω1ω̄2 − ω2ω̄1 6= 0.
But then λ̄1, λ̄2 are also solutions. So they are real.

Clearly we find integers m1 and m2 such that

|λ1 −m1| ≤
1
2 , |λ2 −m2| ≤

1
2 .

If ω ∈M , then so does

ω′ = ω −m1ω1 −m2ω2.

But then

|ω′| < |λ1 −m1||ω1|+ |λ2 −m2||ω2|

≤ 1
2 |ω1|+

1
2|ω2|

≤ |ω2|

where the first inequality is strict since ω2 is not a real multiple of
ω1. That is, the |ω′| < |ω2| while ω′ ∈ M . We conclude that ω′ is an
integral multiple of ω1. This gives ω the desired form.

5.3 Unimodular transformations
We consider the case that M is generated by two distinct ω1 and ω2
such that =(ω2/ω1) > 0. We recall that M consists of discrete points
nω1 + mω2 where m, , n are integers. Suppose ω′1 and ω′2 is another
pair of distinct points that also generate M . Then we must have

ω′1 = aω1 + bω2,

ω′2 = cω1 + dω2
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for some integers a, b, c, d. We can rewrite this in a matrix form:ω′1
ω′2

 =
a b
c d

ω1
ω2

 . (5.1)

There is a similar matrix equation for complex conjugates:ω̄′1
ω̄′2

 =
a b
c d

ω̄1
ω̄2

 . (5.2)

We can combine the above two matrix equations into one:ω′1 ω̄′1
ω′2 ω̄′2

 =
a b
c d

ω1 ω̄1
ω2 ω̄2

 . (5.3)

Similarly, we can find integers a′, b′, c′, d′ω1 ω̄1
ω2 ω̄2

 . =
a′ b′
c′ d′

ω′1 ω̄′1
ω′2 ω̄′2

 (5.4)

The determinant ω1ω̄2 − ω2ω̄1 6= 0 since ω2/ω1 would have real ratio.
Hence a b

c d

a′ b′
c′ d′

 =
1 0

0 1

 .
Hence the determinants equal∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣ =
∣∣∣∣∣∣a
′ b′

c′ d′

∣∣∣∣∣∣ = ±1

Definition 5.3.1. The set of all such 2×2 linear transformations with
determinant ±1 is called unimodular. When we restrict to determi-
nant begin 1, it is also recognised as a subgroup of the projective
special linear group PSL(2, C) which we label as Γ = PSL(2, Z)
or just modular group.

It turns out that the modular group has generators

S =
1 1

0 1

 , T =
0 −1

1 0

 .
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We label the lattice generated by ω1, ω2 by Ω(ω1, ω2). Thus if
ω1, ω2 by Ω(ω′1, ω′2) is another lattice, then two latices are connected
by a unimodular transformation.

We can make the basis ω1, ω2 by a suitable restriction.

Theorem 5.3.2. Let τ = ω2/ω1. If

1. =(ω2/ω1) > 0,

2. −1
2 < <(τ) ≤ 1

2,

3. |τ | ≥ 1,

4. <(τ) ≥ 0 when |τ | = 1,

then the τ is uniquely determined.

Figure 5.1: Fundamental region of modular function

It is clear that the region defined by the criteria (1-4) in the theorem
is not an open. But it still call it a fundamental region. If it hap-
pens that =(ω2/ω1) < 0, then we could replace (ω1, ω2) by (−ω1, ω2)
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without changing the assumption −1
2 < <(τ) ≤ 1

2 . The assumption
(2) is also arbitrary in the sense if −1

2 ≤ <(τ) < 1
2 , then we could

use (ω1, ω1 + ω2). Finally, if the last assumption (4) is replaced by
<(τ) < 0 when |τ | = 1, then we consider (−ω2, ω1) instead.

Proof. Let τ ′ be
τ ′ = aτ + b

cτ + d
,

where a, b, c, d are integers and such that ad−bc = ±1. We recall that
the above Möbius transformation that maps the upper half τ−plane
onto itself if the determinant is +1 and onto the lower half τ−plane if
he determinant is −1. A simple calculation gives

=(τ ′) = ±=(τ)
|cτ + d|2

(5.5)

where the ± accords to that of ad− bc.
Suppose both the τ ′, τ situate inside the fundamental region. We

want to show that τ ′ = τ . Without loss of generality, we may assume
that ad− bc = 1, and =(τ ′) ≥ =(τ). This means that

|cτ + d| ≤ 1.

Since c, d are integers, so there are not too many cases to check.
If c = 0, then d = ±1. The condition ad − bc = 1 implies ad = 1.

So either a = d = 1 or a = d = −1, so that the equation (5.5) becomes

τ ′ = τ ± b.

But both τ ′, τ satisfy the assumption (2) which implies that

|b| = |<(τ ′)−<(τ)| < 1.

Thus b = 0 and τ ′ = τ .
Suppose now that c 6= 0. We have

|τ + d/c| ≤ 1/|c|.
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We claim that |c| = 1. For suppose |c| ≥ 2, then |τ +d/c| ≤ 1
2 meaning

that τ is closer to the d/c (real axis) than 1/2. This contradicts the
assumption (3) that |τ | ≥ 1. Thus c = ±1 and

|τ ± d| ≤ 1.

But since τ situates in the fundamental region, so either d = 0 or
d = ±1. In the latter, the |τ + 1| ≤ 1 has no solution there (the
only point being e2πi/3 is outside the fundamental region). The other
inequality |τ −1| ≤ 1 has the only one solution eiπ/3 and it becomes an
equality and |cτ+d| = 1. We deduce from (5.5) that =(τ ′) = =(τ) and
hence τ ′ = τ . Suppose d = 0 and |c| = 1. So |τ | ≤ 1. This together
with the assumption (3) |τ | ≥ 1 imply that |τ | = 1. Hence

τ ′ = aτ + b

cτ
= a

c
+ b

cτ
= a

c
+ −1

τ

since bc = −1. Hence

τ ′ = ±a− 1
τ

= ±a− τ̄ .

But then <(τ ′) = ±a−<(τ̄) = ±a−<(τ) so that

<(τ ′ + τ) = ±a

which is an integer. This is possible only if a = 0. Thus τ ′ = −1/τ
and the only solution for this equation in the fundamental region is
when τ ′ = τ = i (since |τ | = 1).

5.4 Doubly periodic functions
Definition 5.4.1. Let ω1 and ω2 be two distinct non-zero complex
numbers such that =ω1/ω2 > 0. An elliptic function f is a mero-
morphic function on C such that

f(z + ω1) = f(z), f(z + ω2) = f(z)

for any two distinct periods ω1 and ω2.
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That is, f(z + ω) = f(z) whenever ω = nω1 + mω2 for any inte-
gers n, m. Thus we may shift the vertex z = 0 of the parallelogram
to any point a and the above statement still hold. We denote such
parallelogram by Pa with vertices a, a+ ω1, a+ ω2, a+ ω1 + ω2.

We note that the τ = ω2/ω1 when restricted to the fundamental
region described in the Theorem 5.3.2 is unique.

Theorem 5.4.2. An elliptic function without poles must be a constant.

Proof. Being without poles, so an elliptic function f is bounded on
the period spanned by {0, ω1, ω2, ω1 + ω2} which is a compact set.
Hence f is a bounded entire function. Thus f is constant by Liouville’s
theorem.

Theorem 5.4.3. The sum of the residues of an elliptic function is
zero.

Proof. Without loss of generality, we may choose a so that none of the
poles falls on the boundary of Pa. Hence

∑
Res f(poles) = 1

2πi
∫
Pa
f(z) dz = 0

since the integral along the opposite sides of the parallelogram have
equal magnitudes but with opposite signs.

Definition 5.4.4. The sum of orders of the poles of an elliptic function
in its period parallelogram is called the order of the function.

We deduce that the order of an elliptic function in a period par-
allelogram is at least two. That is, an elliptic function cannot have a
single simple pole in a period parallelogram.

Theorem 5.4.5. A non-constant elliptic function has an equal number
of poles and zeros in its period parallelogram.
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Proof. Note that the quotient f ′(z)/f(z) is an elliptic of function of
the same periods as f . But then the last theorem asserts that

0 = 1
2πi

∫
Pa

f ′(z)
f(z) dz

= (no. of zeros)− (no. of poles)

in the period parallelogram Pa.

By considering the function

f(z)
f(z)− a,

we deduce immediately that

Theorem 5.4.6. An elliptic function of order m ≥ 2 assumes every
value m times in the period parallelogram (counted according to multi-
plicities).

Theorem 5.4.7. Let a1, · · · , an and b1, · · · , bn be the zeros and poles
of an elliptic function f in a period parallelogram respectively. Then

n∑
k=1

(ak − bk) = nω1 +mω2

for some integers n, m.

We sometime write the above conclusion in the abbreviated form
n∑
k=1

ak =
n∑
k=1

bk ( mod M).

Proof. By choosing a suitable a we assume that there is no zeros and
poles of f that lie on the boundary of the period parallelogram Pa. It
follows from the residue theorem that

1
2πi

∫
∂Pa

zf ′(z)
f(z) dz =

n∑
k=1

(ak − bk).
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However, the integral has another interpretation: consider the inte-
grations of the integrand from a to a + ω1 and then from a + ω2 to
a+ ω1 + ω2. So

1
2πi

( ∫ a+ω1

a
−
∫ a+ω1+ω2

a+ω2

)zf ′(z)
f(z) dz

= 1
2πi

∫ a+ω1

a

zf ′(z)
f(z) dz − 1

2πi
∫ a+ω1

a

(ζ + ω2)f ′
f

dζ

= − ω2

2πi
∫ a+ω1

a

f ′(z)
f(z) dz

where the last integral is the winding number of f along the path from
a to a + ω1. Hence the integral is an integral multiple of ω2. Simi-
lar calculation over the second and the fourth sides gives an integral
multiple of ω1. This completes the proof.

5.5 Weierstrass elliptic functions
We start to construct doubly periodic functions. Since there is no
non-constant doubly periodic function with a single pole. Otherwise,
such an elliptic function would contradict the sum of residues in a
period parallelogram is zero. Thus a simplest elliptic function f has
a double pole or at least two simple poles with opposite residues in a
period parallelogram. Without loss of generality, we may assume in
the former that this double pole locates at the origin z = 0 (so that
the function has zero residue at z = 0). Moreover, we see that the
function

f(z)− f(−z)
has no pole in a period parallelogram. So it must be a constant. But
since f(ω1/2) − f(−ω1/2) = 0 so that f(−z) = f(z) implying that f
must be an even function. We denote such an elliptic function by ℘(z).
Hence we have the following expansion

℘(z) = 1
z2 + a1z

2 + a2z
4 + · · ·
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around the origin. To actually construct such an elliptic function, we
could resort to Mittag-Leffler theorem. But in this special case we
could construct such functions directly. That is, we have

Theorem 5.5.1. Let ω1, ω2 be such that =(ω2/ω1) 6= 0. Then the
function

℘(z) = 1
z2 +

∑
ω 6=0

( 1
(z − ω)2 −

1
ω2

)
(5.6)

where ω = nω1 + nω2 for all integers n, m with (n, m) 6= (0, 0), is an
elliptic function with fundamental periods ω1, ω2.

Proof. We first show that the infinite sum

∑
ω 6=0

( 1
(z − ω)2 −

1
ω2

)

does converges away from the poles. So let |ω| > 2|z|. Then
∣∣∣∣ 1
(z − ω)2 −

1
ω2

∣∣∣∣ =
∣∣∣∣ z(2ω − z)
ω2(z − ω)2

∣∣∣∣ ≤ 10|z|
|ω|3

.

It remains to consider the sum
∑
ω 6=0

1
|ω|3

=
∑

(n,m)6=(0, 0)

1
|nω1 +mω2|3

(5.7)

converges.
We let S1 to denote the part of the infinite sum that runs through

the points
±ω1, ±(ω1 + ω2), ±ω2, ±(ω1 − ω2)

over the lattice that are closest to the origin (0, 0). There are exactly
eight points. Let D and d be the longest and shortest distances of the
eight points to the origin (0, 0). Then we have

8
D3 ≤ S1 ≤

8
d3 .
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The sum S2 over the second layer has 2 × 8 = 16 lattice points. But
then

16
(2D)3 ≤ S2 ≤

16
(2d)3 .

Similarly, the sum S3 is over 3× 8 = 24 lattice points. Hence
24

(3D)3 ≤ S3 ≤
24

(3d)3 .

For Sn, we have 8n lattice points so that
8

D3n2 = 8n
(nD)3 ≤ Sn ≤

8n
(nd)3 = 8

d3n2 .

The above analysis is sufficient to guarantee that the ℘ converges uni-
formly in any compact subset of C with the lattice points ω and 0
removed.

Then

℘′(z) = − 2
z3 −

∑
ω 6=0

2
(z − ω)3 = −2

∑
ω

1
(z − ω)3 .

This shows that the ℘′ is doubly periodic. We deduce that

℘(z + ω1)− ℘(z), ℘(z + ω2)− ℘(z)

are both constants. We further note that the ℘(z) as defined above
is an even function. Substitute z = −ω1 and z = −ω2 into the above
formulae shows that the two constants can only be zero. We deduce
that ℘(z) is doubly periodic.

5.6 Weierstrass’s Sigma and Zeta func-
tions

Since the sum (5.7) ∑
ω 6=0

1
|ω|3
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converges, so we can form a Hadamard product

σ(z) = σ(z |ω1, ω2) := z
∏
ω 6=0

(
1− z

ω

)
exp

( z
ω

+ z2

2ω2

)
. (5.8)

Thus the infinite product converges uniformly in any compact subset
of C, so it represents an entire function (of order 2). It is not an elliptic
function, for it would reduce to a constant otherwise. The function is
called Weiestrass’s Sigma function.

We further note that

σ(z) = z
∏
m,n

(
1− z

ω

)
exp

( z
ω

+ z2

2ω2

)

×
∏
m′, n′

(
1 + z

ω

)
exp

(
− z

ω
+ z2

2ω2

)

where the m′, n′ in the second infinite product indicate the −m, −n,
for a corresponding pair m, n in the first infinite product. But the
signs interchanged when z is replaced by −z. Hence

σ(−z) = −σ(z)

(because of the factor z) showing that the Sigma function σ(z) is an
odd function.

We now take logarithmic derivative on both sides of the Sigma
function. This gives

σ′(z)
σ(z) = 1

z
+

∑
ω 6=0

( 1
z − ω

+ 1
ω

+ z

ω2

)

We define the Weiestrass’s Zeta function to be

ζ(z) = d

dz
log σ(z).

Notice that
ζ(z) = 1

z
+

∑
ω 6=0

( 1
z + ω

− 1
ω

+ z

ω2

)
,



CHAPTER 5. PERIODIC FUNCTIONS 195

hence

ζ(−z) = −1
z

+
∑
ω 6=0

( 1
−z + ω

− 1
ω

+ z

ω2

)

= 1
z

+
∑
ω 6=0

( 1
z − ω

+ 1
ω

+ z

ω2

)

= −ζ(z).

So ζ(z) is an odd function. Although the Zeta function is meromorphic,
it is not an elliptic function. For it has a residue 1 at the only pole in
each period parallelogram.

We now connect the Weierstrass’s Sigma function and the elliptic
function ℘(z). It should be self-evident that

℘(z) = − d

dz
ζ(z) = 1

z2 +
∑
ω 6=0

( 1
(z − ω)2 −

1
ω2

)
.

Pseudo-periodicity of Zeta function

Since −ζ ′(z) = ℘(z) = ℘(z + ω1) = −ζ ′(z + ω1). So

ζ(z + ω1) = ζ(z) + 2η1, (5.9)

for a suitable η1. Let z = −ω1/2 in the above relation. We deduce

2η1 = ζ(ω1/2)− ζ(−ω1/2) = 2ζ(ω1/2)

because ζ(z) is odd. Hence η1 = ζ(ω1/2). Similarly, if

ζ(z + ω2) = ζ(z) + 2η2, (5.10)

then η2 = ζ(ω2/2). We also observe that (η1, η2) 6= (0, 0) for if it
were, then ζ(z) being doubly periodic would be an elliptic function,
contradicting to our earlier conclusion.

The above relations (5.9) and (5.10) are called pseudo-periodicity
of ζ.
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Theorem 5.6.1. Let η1, η2 be defined by ηj = ζ(ωj) (j = 1, 2). Then

η1ω2 − η2ω1 = πi.

Proof. We consider a contour following the parallelogram defined by

P :=
[
− ω1

2 −
ω2

2 ,
ω1

2 −
ω2

2 ,
ω1

2 + ω2

2 , −
ω1

2 + ω2

2 , −
ω1

2 −
ω2

2
]

Because the ζ(z) has a residue 1 at the only simple pole z = 0 inside
the contour P , so Residue’s theorem implies

2πi =
∫
P
ζ(z) dz

=
∫

[−ω1
2 −

ω2
2 ,

ω1
2 −

ω2
2 ]
ζ(z) dz +

∫
[ω1

2 −
ω2
2 ,

ω1
2 +ω2

2 ]
ζ(z) dz

+
∫
[ω1

2 +ω2
2 , −

ω1
2 +ω2

2 ]
ζ(z) dz +

∫
[−ω1

2 +ω2
2 , −

ω1
2 −

ω2
2 ]
ζ(z) dz

=
∫

[−ω1
2 −

ω2
2 ,

ω1
2 −

ω2
2 ]
ζ(z) dz +

∫
[ω1

2 −
ω2
2 ,

ω1
2 +ω2

2 ]
ζ(z) dz

−
∫

[−ω1
2 +ω2

2 ,
ω1
2 +ω2

2 ]
ζ(z) dz −

∫
[−ω1

2 −
ω2
2 , −

ω1
2 +ω2

2 ]
ζ(z) dz

=
∫

[−ω1
2 −

ω2
2 ,

ω1
2 −

ω2
2 ]

[ζ(z)− ζ(z + ω2)] dz

+
∫
[ω1

2 −
ω2
2 ,

ω1
2 +ω2

2 ]
[ζ(z)− ζ(z − ω1)] dz

= (ω1)(−2η2) + (ω2)(2η1)

as required.

The above relationship

η1ω2 − η2ω1 = πi.

is known as Legendre’s relation.
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Pseudo-periodicity of Sigma function

It follows from integrating

ζ(z + ω1) = ζ(z) + 2η1,

that
σ(z + ω1) = Ae2η1zσ(z).

for some non-zero A. Putting z = −ω1
2 in the above equation yields

A = eη1ω1
ζ(ω1/2)
ζ(−ω1/2) = −eη1ω1

since σ(z) is an odd function. Hence

σ(z + ω1) = −eη1ω1e2η1zσ(z) = −eη1(ω1+2z)σ(z).

Similarly, we have

σ(z + ω2) = −eη2(ω2+2z)σ(z).

Exercise 5.6.1. Let ω3 be the period of ℘(z) defined by ω1 +ω2 +ω3 =
0. Show that

1. η1 + η2 + η3 = 0,

2. σ(z + ω3) = −eη3(ω3+2z)σ(z),

3. πi = η2ω3 − η3ω2 = η3ω1 − η1ω3 = η1ω2 − η2ω1.
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5.7 The differential equation satisfied by
℘(z)

We recall the following expansion

℘(z) = 1
z2 +

∞∑
k=0

akz
k = 1

z2 + a2z
2 + a4z

4 + · · ·

around the origin since ℘ is an even function, so there are no odd
coefficients in the Laurent expansion. Notice that for z sufficiently
small,

1
(z − ω)2 −

1
ω2 = 1

ω2(1− z/ω)2 −
1
ω2

= 1
ω2

∞∑
k=1

k
( z
ω

)k−1
− 1
ω2

= 2 z

ω3 + 3 z
2

ω4 + 4 z
3

ω5 + 5 z
4

ω6 + · · ·

(5.11)

This implies that

a2 = 3
∑
ω 6=0

1
ω4 , a4 = 5

∑
ω 6=0

1
ω6 ,

and so on. So
℘(z) = 1

z2 + a2z
2 + a4z

4 +O(z6)

where the O(z6) represents a function analytic at z = 0 with a zero of
order 6. Hence

℘′(z) = − 2
z3 + 2a2z + 4a4z

3 +O(z5).

Notice that,
℘3(z) = 1

z6 + 3 a2

z2 + 3a4 +O(z2)

℘′(z)2 = 4
z6 −

8az
z2 − 16a4 +O(z2)
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so that

℘′(z)2 − 4℘3(z) = −20a2

z2 − 28a4 +O(z2)

= −20a2℘(z)− 28a4 +O(z2).

This shows that the function

Φ(z) := ℘′(z)2 − 4℘3(z) + 20a2℘(z) + 28a4

has a double zero around the origin z = 0 and hence analytic there.
Moreover, the construction of the function Φ asserts that it is also an
elliptic function with periods ω1 and ω2. That is, the Φ(z) is analytic
at every ω which are the only potential singularities. So the Φ(z) is
an entire function in C. So it must reduce to a constant which mush
equals to 0 (because the function has a double zero at z = 0.).

Let us summarise the above discussion into a theorem.

Theorem 5.7.1. The elliptic function ℘(z) with periods ω1 and ω2
satisfies the differential equation

y′(z)2 = 4y3(z)− g2y(z)− g3 (5.12)

where
g2 := 20a2 = 60

∑
ω 6=0

1
ω4 , g3 = 28a4 = 140

∑
ω 6=0

1
ω6 .

We actually can have

Theorem 5.7.2. ℘(z) has Laurent expansion of the form

℘(z) = 1
z2 +

∞∑
k=1

(2k + 1)G2k+2z
2k,

where
Gk =

∑
ω 6=0

1
ωk
, k ≥ 3

is called the Eisenstein series of order n.
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Proof. Exercise.

That is, g2 = 60G4 and g3 = 140G6.

Exercise 5.7.1. Show that

1.
℘′′(z) = 6℘2 − 1

2g2.

2.
℘(3) = 12℘℘′

3.
℘(4) = 120℘3 − 18g2℘− 12g3.

Exercise 5.7.2. Recall the Taylor expansion

℘(z)− 1
z2 =

∞∑
k=1

c1z
2 + c2z

4 + · · ·+ cnz
2n + · · · .

Show that

(n− 2)(2n+ 3)cn = 3(c1cn−2 + c2cn−3 + · · · cn−2c1), n ≥ 3.

Hence prove that each cn is a polynomial in g2 and g3 with positive
rational coefficients.

Exercise 5.7.3. Show that

1. σ(λz |λω1, λω2) = λσ(z |ω1, ω2),

2. ζ(λz |λω1, λω2) = λ−1ζ(z |ω1, ω2),

3. ℘(λz |λω1, λω2) = λ−2℘(z |ω1, ω2).
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Three roots of ℘′(z)

We shall revisit the differential equation

℘′(z)2 = 4℘3(z)− g2℘(z)− g3

obtained above.
We also recall that

℘′(z) = −2
∑
ω

1
(z − ω)3 ,

and it is therefore clear that the ℘′ is an odd elliptic function. Hence

℘′(ω1/2) = ℘′(−ω1/2) = −℘′(ω1/2)

and this immediately implies that ℘′(ω1/2) = 0. Similarly,

℘′(ω2/2) = 0.

Notice that

℘′(ω1/2 + ω2/2) = ℘′(−ω1/2− ω2/2) = −℘′(ω1/2 + ω2/2).

Hence ℘′(ω1/2 + ω2/2) = 0. Recall that ω1 + ω2 + ω3 = 0. Then

−℘′(ω3/2) = ℘′(−ω3/2) = ℘′(ω1/2 + ω2/2) = 0.

Since the ω3/2 are incongruent module to ω1/2 and ω2/2 within a
period parallelogram, so we have shown that all the three simple roots
of ℘′(z) there (since ℘′ has order 3 there).

Let
℘(ω1/2) = e1, ℘(ω2/2) = e2, ℘(ω3/2) = e3.

Since ℘′(ω1/2) = 0, so the elliptic function ℘(z) − e1, which is of
order 2, has a double root at ω1/2. So it cannot vanish at any other
point in the period parallelogram. This implies that e1 6= e2, and
e1 6= e3. Similarly, e2 6= e3 so that all three numbers e1, e2, e3 are
distinct. It follows that

℘′(z)2/[(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)]
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has no zero in any period parallelogram and hence in C. Thus the
quotient is a constant C, say. Hence

℘′(z)2 = C(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Comparing with the lowest term above with that in (5.12) implies that
C = 4 which gives the desired

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Moreover, the e1, e2, e3 are three roots of the algebraic equation
y2 = 4x3 − g2x− g3.

Exercise 5.7.4. Verify

1. e1e2 + e2e3 + e3e1 = −1
4g2,

2. e1e2e3 = 1
4g3,

3. e2
1 + e2

2 + e2
3 = 1

2g2.

5.8 Elliptic integrals
The differential equation

℘′(z)2 = 4℘3(z)− g2℘(z)− g3

gives the solution w = ℘(z). We can invert the z by

z =
∫ w dw√

4w3 − g2w − g3
.

More precisely,

z − z0 =
∫ ℘(z)

℘(z0)

dw√
4w3 − g2w − g3

,

where the path of integration is the path of ℘ on a path from z0 to z
avoiding the zeros and poles of ℘′(z).
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There is already a similar elliptic integral we encountered earlier
under the conformal mapping of the upper half-plane H onto a rect-
angle:

f(z) = α
∫ z

0

dz√
(1− z2)(1− k2z2)

+ β.

The Jacobian sine elliptic function is w = sn(z) is the function behind.



Chapter 6

Modular functions
This chapter is a brief introduction to modular functions.

We recall that themodular group consists of the set of all Möbius
transformations of the from

τ ′ = aτ + b

cτ + d

where a, b, c, d are integers such that (WLOG) ad−bc = 1. This group
is denoted by Γ. Such a Möbius transformation can be represented in
a matrix form: a b

c d

 , ad− bc = 1.

Definition 6.0.1. An analytic function λ which satisfies

λ
(az + b

cz + d

)
= λ(z),

where the Möbius transformation belongs to the modular group is
called an automorphic function.

Recall that for a given Weierstrass elliptic function ℘(z), we have

e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘(ω3/2),

where ω1 + ω2 + ω3 = 0.

204
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6.1 The function λ(τ )
We observe that scaling of the periods ωk (k = 1, 2, 3) by tωk results
in

℘
(
t
ωk
2
)

= 1
t2
℘
(ωk

2
)

= 1
t2
ek, k = 1, 2, 3.

Thus the function
λ(τ) = e3 − e2

e1 − e2
, (6.1)

is a function of τ := ω2/ω1. Since the ej 6= ek whenever j 6= k, so
the λ(τ) is an analytic function in the upper half-plane =(τ) > 0.
Moreover,

λ(τ) 6= 0, 1
since e2 6= e3 and e1 6= e3 respectively.

Applying knowledge from theta function, one can actually write

λ(τ) = e3 − e2

e1 − e2
= 16q

∞∏
k=1

( 1 + q2k

1 + q2k−1

)8
,

where q = eiπτ .

Congruent subgroup of mod 2

Suppose our initial ω1, ω2 is replaced by

ω′2 = aω2 + bω1,

ω′1 = cω2 + dω1.
(6.2)

But since the ℘(z) is invariant with respect to any modular transfor-
mation, so it follows from the differential equation

℘′(z)2 = 4℘3(z)− g2℘(z)− g3

= (℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

the corresponding ek (k = 1, 2, 3) are permuted (and so changing the
value of λ) under a unimodular transformation.
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The identity map for the ek (k = 1, 2, 3) from the following uni-
modular transformation. If we choose the a, b, c, d such that a ≡ 1 ≡
d mod 2 and b ≡ 0 ≡ c mod 2, then this imply

ω′1
2 ≡

ω1

2 ,
ω′2
2 ≡

ω2

2 . mod M

So the ek (k = 1, 2, 3) remain fixed. We may rephrase the above by
writing

λ
(aτ + b

cτ + d

)
= λ(τ), when

a b
c d

 ≡
1 0

0 1

 mod 2. (6.3)

The collection of unimodular transformations can easily be seen
to form a group, called the congruence subgroup mod 2 of the
modular group. In general a function f that satisfies the equation
f(Mτ) = f(τ) is called automorphic. An automorphic function with
respect to a subgroup of the full modular group is called a (elliptic)
modular function.

Incongruent subgroup of mod 2

It is sufficient to considera b
c d

 ≡
1 1

0 1

 or
0 1

1 0

 mod 2 (6.4)

since the other ones can be composed from these two. The equation
(6.3) would therefore be violated. Indeed, in the first case above

ω′2
2 ≡

ω1 + ω2

2 ,
ω′1
2 ≡

ω1

2 , mod M

we have, so that e2 ↔ e3 (they are interchanged), e1 remains fixed. We
have the λ(τ) becomes

λ(τ) = e3 − e2

e1 − e2
7−→ λ(τ)

λ(τ)− 1 = e2 − e3

e1 − e3
.
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But the corresponding unimodular transformation is τ → τ+1. Hence

λ(τ + 1) = λ(τ)
λ(τ)− 1 .

This is called Jacobi’s imaginary transformation. The second
transformation corresponds to

ω′2
2 ≡

ω1

2 ,
ω′1
2 ≡

ω2

2 , mod M (6.5)

so that e1 ↔ e2 and e3 remains unchanged. We see that

λ(τ) = e3 − e2

e1 − e2
7−→ 1− λ(τ) = e3 − e1

e2 − e1

the corresponding unimodular transformation is τ → −1/τ . Hence

λ
(
− 1
τ

)
= 1− λ(τ).1

Remark. We note that the choice of the matrices representations (6.4)
are far from unique. For example, if we rewrite (6.5) with

ω′2
2 ≡

ω1

2 ,
ω′1
2 ≡ −

ω2

2 , mod M (6.6)

then we would have matrix representation0 −1
1 0

 mod 2

instead of 0 1
1 0

 mod 2.

1This formula is called Jacobi’s imaginary transformation formula (1828).
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6.2 Growth properties of λ(τ )
We normalise the choice ω1 = 1 and ω2 = τ for ease of later discussion.
We observe that

Theorem 6.2.1. The elliptic modular function (6.1) λ(τ) is real when
τ is purely imaginary.

Proof. This essentially follows from the definition of the ek, namely

e3 − e2 =
∞∑

m,n=−∞

( 1
(m− 1

2 + (n− 1
2)τ)2 −

1
(m+ (n− 1

2)τ)2

)
,

and

e1 − e2 =
∞∑

m,n=−∞

( 1
(m− 1

2 + nτ)2 −
1

(m+ (n− 1
2)τ)2

)
,

where the double series are absolutely convergent. If τ = it (t > 0),
then clearly, the above sums remain unchanged with τ is replaced by
−τ = τ̄ . This establishes the theorem.

Theorem 6.2.2. The elliptic modular function (6.1) λ(τ) satisfies

1. λ(τ)→ 0 as =(τ)→ +∞ uniformly with respect to the <(τ),

2. more precisely,

λ(τ)/eiπτ → 16, =(τ)→ +∞, (6.7)

3. λ(τ)→ 1 as τ → 0 along the imaginary axis.

Proof. Let us quote the elementary Mittag-Leffler expansion formula:

π2

sin2 πz
=

∞∑
m=−∞

1
(z −m)2 .
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Applying this expansion in the definition of ek summing first over m
yields

e3 − e2 = π2
∞∑

n=−∞

( 1
cos2 π(n− 1

2)τ −
1

sin2 π(n− 1
2)τ

)

and
e1 − e2 = π2

∞∑
n=−∞

( 1
cos2 πnτ

− 1
sin2 π(n− 1

2)τ
)
.

Notice that the terms | sinnπτ | and | cosnπτ | are comparable to e|n|π=(τ)

so that the above sums are uniformly convergent as n → ±∞ when
=(τ) ≥ δ > 0 (for some δ > 0). This also means that we could take
limit on individual terms of the above sum as =(τ)→ +∞. This yields

e3 − e2 → 0, e1 − e2 → π2, =(τ)→ +∞,

and hence λ(τ) → 0 as =(τ) → +∞ as asserted. If we let τ → 0
along the imaginary axis, then we easily deduce from the equation
λ(−1/τ) = 1− λ(τ) that λ(τ)→ 1.

We note that the leading terms (i.e., n = 0, 1) of the above sum
for e3 − e2 are given by

2π2
( 4eπiτ

(1 + eπiτ)2 + 4eπiτ
(1− eπiτ)2

)
.

This concludes the part (2).

6.3 Covering property of λ(τ )
Let

Ω :=
{
z : 0 < <(z) < 1, =(z) > 0

}
\
{
z : |z − 1| ≥ 1/2

}
(6.8)

We are ready to deal with
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Theorem 6.3.1. The modular function

λ(τ) = e3 − e2

e1 − e2

is a one-one conformal mapping λ : Ω → H. Moreover, the mapping
extends continuously to the boundary of Ω so that

1. the image of ∂Ω is real-valued; and

2. the boundary points τ = 0, 1, ∞ correspond to λ = 1, ∞, 0;

3. the λ(τ) is monotone on ∂Ω so that λ(∂Ω) = (−∞, ∞) in such
a way that

• λ : −∞ ↑ 0 over [1, 1 + i∞);
• λ : 0 ↑ 1 = λ(0) over (i∞, 0];
• λ : 1 ↑ +∞ over 1

2 + 1
2e
iθ where θ : −π ↑ π.

Proof. We first investigate the behaviour of λ(τ) on the boundary of Ω.
We recall from Theorem 6.2.2 that λ(z) is real on imaginary axis. So
the transformation τ + 1 maps the imaginary axis onto the <(τ) = 1.
So

λ(it+ 1) = λ(it)
1− λ(it)

is therefore real for all t > 0. Moreover, the map 1/τ maps the <(τ) =
1, i.e., τ = 1 + it (t > 0) onto the circle |τ − 1

2| =
1
2

2 Let τ ′ = 1
2 + 1

2e
iθ.

Let
τ = 1

1− τ ′ , τ ′ = 1− 1
τ
,

and
τ = 1 + i

sin θ
1 + cos θ , <(τ) = 1.

2
∣∣1− 1

τ −
1
2
∣∣2 =

∣∣1− 1
1+it −

1
2
∣∣2 = ( 1

2 )2.
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Then the image of λ on |τ − 1
2| = 1

2 can “pull-back” by the transfor-
mation:

λ(τ ′) = λ
(
1− 1

τ

)
= λ(−1/τ)

1− λ(−1/τ) = 1− λ(τ)
1− (1− λ(τ))

= 1
λ(τ) − 1,

hence showing that λ (where τ lies on the <(τ) = 1) is again real on
|τ − 1

2 | = 1
2 by the first case. Hence we have established that λ(τ) is

real-valued on the whole boundary of Ω.
Since our aim is to prove λ : Ω → H is a one-one conformal map,

so we choose an arbitrary point w0 in H. Then Theorem 6.2.2 (1)
guarantees that there exists a number t0 > 0 so that

w0 6= λ(τ) = λ(s+ it)

for t ≥ t0.
Let us consider the images of the horizontal line segment

L0 := {s+ it0 : 0 ≤ s ≤ 1}

under the modular transformations λ:

1. −1/τ : L0 is mapped onto a circle C0 tangent to the point τ = 0
in the upper half-plane. Clearly, the “smaller” the circle is when
the larger the t0 > 0 is chosen;

2. 1−1/τ : L0 is mapped onto a circle C1 tangent to the point τ = 1
in the upper half-plane. Clearly, the “smaller” the circle is when
the larger the t0 > 0 is chosen again.

We recall that the region of Ω is a “triangle” with all three angles
zero (one at ∞). Let us “cut off the three angles” by removing the
portions

• =(τ) > t0;
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• the whole disc filled from C0 tangent at τ = 0 constructed above;

• the whole disc filled from C1 tangent at τ = 1 constructed above.

We write Ω0 to denote the remaining region of Ω. Since λ(τ) → 1
as τ → 0 (Theorem 6.2.2 (1)), so λ(−1/τ) ≈ 1 uniformly on C0 as
t0 → +∞.

Figure 6.1: Non-Euclidean triangle with three angles 0

On the other hand, Theorem 6.2.2 (2) asserts that when τ ′ is close
to C1 when τ ′ ≈ 1,

λ(τ ′) = λ(1− 1/τ) = 1− 1/λ(τ)

≈ 1− 1
16e

−iπ(s+it0)

= 1 + 1
16e

πt0+iπ(1−s),

for 0 ≤ s ≤ 1, so that this is approximately a semi-circle in the upper
half-plane. This together with earlier analysis shows that in the limit
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as Ω0 → Ω as t0 → +∞ that

n
(
λ(∂Ω); w0

)
= 1

2πi
∫
λ(∂Ω)

dλ

λ− w0

= 1
2πi

∫
∂Ω

λ′(T )
λ(T )− w0

dT

= 1.

Hence each w0 in H has been “taken” once and once only by λ(τ) inside
Ω, and none of those points with =(w0) < 0 are taken by λ in Ω. It is
clear that λ(0) = 1, λ(1) =∞ and λ(∞) = 0.

The above analysis shows that λ : Ω → H is a one-one conformal
map also implies that λ(τ) is monotone on ∂Ω. For suppose not, then
there would be a boundary point a on ∂Ω at which λ′(a) = 0. But
then, in a neighbourhood of a in Ω, we have

λ(z) = λ(a) + λ(k)(a)
k! (z − a)k[1 +O(z − a)],

where k ≥ 2, so it is evident that the image of such neighbourhood
could not lie entirely within H. A contradiction.

Corollary 6.3.1.1. Let Ω′ denote the region that is the mirror image of
Ω reflected along the imaginary axis in H. Then the modular function
maps the Ω′ onto the lower half-plane, and λ(Ω̄ ∪ Ω′) = C\{0, 1}.

Remark. We call the modular function λ a universal cover of C\{0, 1}.

Exercise 6.3.1. Show that if τ ′ = 1
2 + 1

2e
iθ, τ ′ = 1− 1

τ , then

τ = 1 + i
sin θ

1− cos θ .
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Figure 6.2: D is the “Right-half” of FR, D′ its mirror-image. The
figure shows regions that are reflections of D and D′

It is routine to check that the six shaded regions in the above
figure are images of the Fundamental Region D under the following
transformations:

τ, −1
τ
, τ − 1, 1

1− τ ,
τ − 1
τ

,
τ

1− τ . (6.9)

which we denote by S1, S2, · · · , S6. They form a complete set of incon-
gruent unimodular transformations (i.e., members of modular group)
mod 2, in the sense that each unimodular transformation is congruent
mod 2 to one of the Sk. Let we denote S−1

k (k = 1, · · · , 6) to denote
the corresponding inverses. Then it can be checked that they map the
region D′ (the “left-half” of the FD) onto the unshaded regions of the
above figure. One see immediately that the union of 12 images of D̄
and D̄′ covers Ω̄ ∪ Ω̄′ (here the closure refers to the H only).

Let Ω′ be the mirror image of Ω reflected along the imaginary axis.
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Theorem 6.3.2. Every point τ in the upper half-plane H is equivalent
under the congruence subgroup mod 2 to exactly one point in Ω̄∪Ω′.

Proof. Let τ be an arbitrary point in H. Then according to Theorem
5.3.2 that there is a unimodular transformation S such that Sτ in D,
say. But there is a S−1

k such that S ≡ S−1
k mod 2, i.e., T = SkS ≡ I

mod 2. But then Tτ = Sk(Sτ) belongs to one of 12 regions and hence
in Ω̄∪Ω̄′. A similar reasoning also applies if Sτ ∈ D′. Hence Tτ ∈ Ω̄∪Ω̄′
in either cases. Hence Tτ ∈ Ω̄ ∪ Ω′.

The uniqueness follows from the fact that the S1, · · · , S6 as well as
S−1

1 , · · · , S−1
6 are incongruent mod 2.

Figure 6.3: Taken from page 426 of E. T. Copson



Chapter 7

Picard’s theorem

7.1 Monodromy
The terminologies below are used to handle multi-valued functions.

An analytic function f defined on a region Ω that constitute (f, Ω)
is called a function element. A global analytic function is a
collection of function elements (f, Ω). Two function elements (f1, Ω1),
(f2, Ω2) are direct analytic continuations of each other if Ω1∩Ω2 6=
∅ and f1(z) = f2(z) over Ω1 ∩ Ω2. There need not be any direct
analytic continuation of f1 from Ω1 to Ω2. But the continuation must
be unique if there is such a continuation (by the identity theorem since
Ω1 ∩ Ω2 6= ∅).

Suppose the chain (f1, Ω1), (f2, Ω2), · · · (fn, Ωn) are analytic con-
tinuations of each other so that Ωk−1∩Ωk 6= ∅ for each k. Then we say
(fn, Ωn) is an analytic continuation of (f1, Ω1). This is an equiv-
alence relation. The equivalence classes are called global analytic
functions. We label the global analytic determined by the function
element by f. However, a global analytic function f can have many
function element (f, Ω) on Ω. In fact, we call each function element
(f, Ω) a branch of f.

We now replace a region Ω by a single pont ζ, and we say that two
function elements (f1, ζ1) and (f2, ζ2) are equivalent if and only if
ζ1 = ζ2 and f1 = f2 in a neighbourhood of ζ1 (= ζ2). This is again

216
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an equivalence relation. In this case, the equivalence classes are called
germs or germs of analytic functions. Each germ determines a
unique ζ, called the projection of the germ, which we denote by fζ .
Thus a function element (f, Ω) gives raise to a germ fζ for each z ∈ Ω.

Theorem 7.1.1 (Monodromy theorem). If the two arcs γ1, γ2 are
homotopic in a region Ω, and if a given germ f at the initial point can
be continued along all arcs in Ω, then the continuations of this germ
along γ1 and γ2 lead to the same germ at the end point.

We refer the reader to Ahlfors for its proof.

7.2 Picard’s theorem
A value a ∈ C is called a lacunary value of an analytic function f if
f(z) 6= a for all z in the region Ω where f is defined. The exponential
function ez has z = 0 as the only lacunary value.

Theorem 7.2.1 (Picard (1879)). An entire function that has at least
two finite lacunary values reduces to a constant.

Proof. WLOG, we may assume that f has two lacunary values a, b
and that a = 0 and b = 1. For we could consider the function

F (z) = f(z)− a
b− a

,

otherwise. The main idea is to construct a global analytic function h
such that its function elements (h, Ω) satisfies

=(h(z)) > 0, λ(h(z)) = f(z), z ∈ Ω,

where λ(z) is the elliptic modular function constructed in the last
chapter. Then we want to show that h can be continued to along all
paths. Since the C is simply connected, so the monodromy theorem
asserts that h defines an entire function.
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Theorem 6.3.1 asserts that there is a τ0 ∈ Ω such that

λ(τ0) = f(0).

Since the λ(τ) is conformal, so λ′(τ0) 6= 0. Therefore we can find a
local inverse λ−1

0 of λ over a neighbourhood ∆0 of f(0) where

λ(λ−1
0 (w)) = w, w ∈ ∆0

and
λ−1

0 (f(0)) = τ0.

By continuity there is a neighbourhood Ω0 of z = 0 where f(z) ∈ ∆0.
Hence we can define

h(z) = λ−1
0 (f(z)), z ∈ Ω0.

Hence we have a function element (h, Ω0). We next show that the
germ h that the function element determines can be continued in all
possible ways to become an entire function and that the continuation
of (h, Ω0) has

=(h(z)) > 0
throughout the continuation. If this continuation is not possible, then
we can find a path γ[0, t1] such that h can be continued and =(h)
remains positive up the t < t0, where
• either the h cannot be continued to t1 (which is not possible),

• or
=(h(z))→ 0, t→ t1.

Let us take a closer look at t = t1. Then there is a τ1 ∈ H and
λ(τ1) = f(γ(t1)). There is a local inverse λ−1

1 over a neighbourhood
∆1 of f(γ(t1)) such that

λ−1
1 (f(γ(t1)) = τ1.

Let Ω1 be a neighbourhood of γ(t1) (in the z−plane) so that f(z) ∈ ∆1
when z ∈ Ω1.

Let t2 < t1 be so chosen that γ(t2) ∈ Ω1 for t ∈ [t2, t1]. But
λ(τ2) = f(γ(t2)) can simultaneously be computed by
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•
τ = h(γ(t2))

• and
τ = λ−1

1 f(γ(t2))

indicating that the τ is “pull-back” from two different branches of h. So
Theorem 6.3.2 asserts that there is an elliptic modular transformation
S that belongs to congruence subgroup mod 2 such that

S[λ−1
1 f(γ(t2))] = h(γ(t2)).

Thus we could define a continuation function element (h1, Ω1) by

h1(z) = S[λ−1
1 f(z))], z ∈ Ω1

so that h1 and hence h can be continued to γ(t1) with

λ(h1(z)) = f(z), =(h1)(z) > 0.

As we have anticipated that we have constructed a global analytic
function h so that

λ(h(z)) = f(z)
for all function element (h, Ω). Now consider the funcion

eih(z),

which is an entire function with |eih| ≤ 1 bounded since =(h) > 0.
Liouville’s theorem implies that the h in

λ(h(z)) = f(z)

is a constant. Hence f must also reduce to a constant.
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