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Chapter 1

Analytic Functions
We shall give a brief review of the basic results in complex functions
centred around Cauchy’s integral formula in its general form and its
immediate consequences.

1.1 Notations
C = {z = x+ iy : |x| <∞, |y| <∞, i2 = −1}:= complex plane;
Ĉ = C ∪ {∞}:= extended complex plane or Riemann sphere;
B(z0, r) = {z : |z − z0| < r}:= open disk;
B(z0, r) = {z : |z − z0| ≤ r}:= closed disk;
<(z):= real part of z;
=(z):= imaginary part of z.

Definition 1.1.1. 1. A set S ∈ C is connected if for any two points
lying in S, there exist a polygonal curve lying entirely in S and
connecting the points.

2. A region G ∈ C is an open connected set.
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1.2 Cauchy-Riemann Equations
Definition 1.2.1. Let G be an open set in C and f : G→ C. Then f
is differentiable at a ∈ G if the limit

lim
h→∞

f(a+ h)− f(a)
h

exists; the value of the limit is denoted by f ′(a) which is called the
derivative of f at a. If f is differentiable at each point of G, then we
say f is differentiable on G.

Definition 1.2.2. A function f : G→ C is analytic if f is continuously
differentiable on G i.e., f ′ is continuous at every point of G.

We shall show later (see Remark 1.11) that analyticity of f alone
(i.e., without the continuity assumption) implies the continuity of f ′
(in a neighbourhood). That is, the function must be continuously dif-
ferentiable. This is certainly not the case in real function theory; there
exist many real functions such that their derivatives are not continu-
ous. (e.g. |x|)

It is an easy exercise to show (from the definition) that if f(z) =
u(x, y) + iv(x, y) is analytic, then u and v satisfy the Cauchy-Riemann
equations at z:

∂u

∂x
= ∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Note that the partial derivatives are continuous and the converse
is also true.

Theorem 1.2.3. Let u and v be real-valued functions defined on a
region G and suppose that they have continuous derivatives there. Then
f : G → C, f = u + iv is analytic if and only if both u and v satisfy
the Cauchy-Riemann equations.

Proof. See Conway p.41-42.
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1.3 Line Integrals
Definition 1.3.1. A path in a region G ⊂ C is a continuous function
γ : [a, b]→ G (a < b). A path is smooth if γ′ exists and also continuous
on [a, b]. Let a = t0 < t1 < t2 < · · · < tn = b be a partition on [a, b],
then a path γ : [a, b] → G is piecewise smooth if it is smooth on each
subinterval [ti−1, ti], i = 1, . . . , n.

Remark. We note that if γ′(t) 6= 0 implies that γ has a tangent at t.
Some authors will simply assume, in addition to the existence and the
continuity for the smooth curve γ, to have γ′ 6= 0.

Definition 1.3.2. We define the length of a piecewise smooth curve
to be

l(γ) =
∫ b
a
|γ′(t)| dt.

This is clearly a well-defined number. Suppose that f : G → C is
continuous and γ[a, b] ⊂ G, we define the line integral along γ to be
the number ∫

γ
f =

∫ b
a
f dγ =

∫ b
a
f(γ(t))γ′(t) dt.

In fact, it can be shown that the integral always exists (see Conway
p.60-62) and it is independent of any particular parametrization (see
Conway p.63-64).

Definition 1.3.3. Let f and γ be defined as above. Then we define
the line integration of f along γ with respect to the arc length as

∫
γ
f |dz| =

∫ b
a
f(γ(t))|γ′(t)| dt. (1.1)

The integral clearly exists since f is continuous, and γ is piecewise
continuous. It is easy to verify that∣∣∣∣∣

∫
γ
f dz

∣∣∣∣∣ ≤
∫
γ
|f | |dz|.
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Remark. The (1.1) becomes l(γ) if f(t) ≡ 1.
Theorem 1.3.4. Let γ : [a, b] → G be a piecewise smooth path in a
region G with initial and end points α and β. Suppose f : G → C is
continuous with primitive F : G→ C (i.e. F ′ = f), then∫

γ
f = F (β)− F (α). (γ(a) = α, γ(b) = β)

Proof. By definition of line integral above,

∫
γ
f =

∫ b
a
f(γ(t))γ′(t) dt

=
∫ b
a
F ′(γ(t))γ′(t) dt

=
∫ b
a

(F ◦ γ)′(t) dt
= F (γ(b))− F (γ(a))
= F (β)− F (α).

by the Fundamental Theorem of Calculus.

Definition 1.3.5. A curve γ : [a, b]→ C is said to be closed if γ(a) =
γ(b).

We deduce immediately from the above theorem that∫
γ
f = 0

when γ is a closed piecewise smooth path and with f as in the above
theorem.
Remark. (i) All of the above definitions and results about piecewise

smooth paths can be generalized to rectifiable paths. We shall
restrict ourselves to piecewise smooth paths in the rest of the
course. See Conway for more details.

(ii) Although the treatment here (and in most books) about line in-
tegral is short, complex line integral is considered to be a very
important contribution from Cauchy (in a paper dated 1825).
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1.4 Local Cauchy Integral Formula
Theorem 1.4.1 (Local Cauchy Integral Formula). Let f : G → C be
analytic and that B(a, r) ⊂ G, γ(t) = a+ reit, t ∈ [0, 2π]. Then

f(z) = 1
2πi

∫
γ

f(w)
w − z

dw

for any z ∈ B(a, r).

To prove this theorem, we require

Proposition 1.4.2. Let ϕ : [a, b]×[c, d]→ C be a continuous function.
Define g : [c, d]→ C by

g(t) =
∫ b
a
ϕ(s, t) ds.

Then g is continuous. Moreover, if ∂ϕ
∂t

exists and is a continuous
function on [a, b]× [c, d], then g is continuously differentiable on [c, d]
and

g′(t) =
∫ b
a

∂ϕ

∂t
(s, t) ds. (1.2)

Proof. Since ϕ : [a, b] × [c, d] → C is continuous and hence it just be
uniformly continuous on its domain. It follows easily that g, as defined
above, must be continuous on [c, d]. In order to prove (1.2), it suffices
to show that

g(t)− g(t0)
t− t0

−
∫ b
a

∂ϕ

∂t
(s, t0) ds

can be made arbitrarily small.
Since ϕt(s, t) = ∂ϕ

∂t
(s, t) is continuous on [a, b] × [c, d], it must be

uniformly continuous there. Thus, given ε > 0, there exists a δ > 0
such that

|ϕt(s′, t′)− ϕt(s, t)| < ε
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whenever (s′ − s)2 + (t′ − t)2 < δ2. In particular,

|ϕt(s, t)− ϕt(s, t0)| < ε

if a ≤ s ≤ b and |t− t0| < δ. Hence for |t− t0| < δ, we have∣∣∣∣∣
∫ t
t0
ϕt(s, τ)− ϕt(s, t0) dτ

∣∣∣∣∣ < ε|t− t0|.

But the integrand of the last inequality equals, with a fixed s,

(ϕ(s, t)− tϕt(s, t0))− (ϕ(s, t0)− t0ϕt(s, t0))
= ϕ(s, t)− ϕ(s, t0)− (t− t0)ϕt(s, t0).

Hence
|ϕ(s, t)− ϕ(s, t0)− (t− t0)ϕt(s, t0)| < ε|t− t0|

whenever a ≤ s ≤ b and |t− t0| < δ. But this is precisely∣∣∣∣∣∣g(t)− g(t0)
t− t0

−
∫ b
a
ϕt(s, t0) ds

∣∣∣∣∣∣ < ε|b− a|

after integration with respect to s on both sides. This proves g′(t) =∫ b
a ϕt(s, t) ds. But ϕt is continuous and so g′ must also be continuous.

Example 1.4.3. Show that
∫ 2π

0

eis

eis − z
ds = 2π

whenever |z| < 1.

Solution. Since ϕ(s, t) = eis

eis − tz
, for 0 ≤ t ≤ 1, 0 ≤ s ≤ 2π, is

continuously differentiable, it follows from Prop 1.4.2 that

g(t) =
∫ 2π

0
ϕ(s, t) ds =

∫ 2π

0

eis

eis − tz
ds.
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But
∫ 2π

0

zeis

(eis − tz)2 ds = −iz
eis − tz

∣∣∣∣∣
2π

0
= −iz
e2πi − tz

− −iz
e0 − tz

= 0.

for all t ∈ [0, 1]. Hence g(t) = constant, and in particular,

g(0) =
∫ 2π

0

eis

eis − 0 ds = 2π.

For t = 1, we have the required equality.

Now, we are sufficiently prepared to prove Theorem 1.4.1.

Proof of Theorem 1.4.1. For any B(a, r) ⊂ G, we are required to show

f(z) = 1
2πi

∫
γ

f(w)
w − z

dw

where γ(t) = a+ reit, t ∈ [0, 2π].
Without loss of generality, it is clear that we may consider a = 0

and r = 1 only. Since the translation f(a + rz) will take that B(0, 1)
to any preassigned B(a, r). Thus we aim to show

f(z) = 1
2πi

∫
γ

f(w)
w − z

dw = 1
2π

∫ 2π

0

f(eis)eis
eis − z

ds, z ∈ B(0, 1).

Consider
ϕ(s, t) = f(z + t(eis − z))eis

eis − z
− f(z),

where t ∈ [0, 1], s ∈ [0, 2π], |z| < 1. Clearly ϕ is continuously differen-
tiable. Hence

g(t) =
∫ 2π

0
ϕ(s, t) ds
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is also continuously differentiable, and

g′(t) =
∫ 2π

0

∂

∂t

f(z + t(eis − z))eis
eis − z) − f(z)

 ds

=
∫ 2π

0

(eis − z)f ′(z + t(eis − z))eis
eis − z

ds

=
∫ 2π

0
f ′(z + t(eis − z))eis ds

= 1
it
f(z + t(eis − z))

∣∣∣∣∣
2π

0
= 0

for each t ∈ [0, 1]. Hence g(t) = constant. Then
∫ 2π

0

f(z)eis
eis − z

− f(z)
 ds = g(0) = g(1) =

∫ 2π

0

f(eis)eis
eis − z

− f(z)
 ds.

But
∫ 2π

0

f(z)eis
eis − z

− f(z)
 ds = f(z)

∫ 2π

0

 eis

eis − z
− 1

 ds = 0

by the Example 1.4.3 above. Hence g(1) = 0. And this is precisely

2πf(z) =
∫ 2π

0

f(eis)eis
eis − z

ds = 1
i

∫
γ

f(w)
w − z

dw.

The result follows.

1.5 Consequences
We now investigate some consequences of the local Cauchy Integral
formula.

Theorem 1.5.1. Let f be analytic on B(a,R). Then

f(z) =
∞∑
n=0

an(z − a)n
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for z ∈ B(a,R) where an = f (n)(a)
n! and the series has radius of con-

vergence at least R.

Proof. Let r > 0 such that B(a, r) ⊂ B(a, R). Suppose γ(t) = a+reit,
t ∈ [0, 2π]. Define M = maxz∈γ[0,2π] |f(z)| since γ[0, 2π] is compact and
f is continuous on γ[0, 2π]. By Theorem 1.4.1, we have

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ, ζ = γ(t) = a+ reit.

We claim that

f(z) = 1
2πi

∫
γ

f(ζ)
ζ − a+ a− z

dζ

= 1
2πi

∫
γ

f(ζ)
(ζ − a)

(
1− z−a

ζ−a

) dζ

= 1
2πi

∫
γ

f(ζ)
ζ − a

∞∑
k=0

(
z − a
ζ − a

)k
dζ

=
∞∑
k=0

(z − a)k · 1
2πi

∫
γ

f(ζ)
(ζ − a)k+1 dζ :=

∞∑
k=0

ak(z − a)k.

This is because
∣∣∣∣∣z − aζ − a

∣∣∣∣∣ < 1 and
∣∣∣∣∣∣ f(ζ)
ζ − a

(
z − a
ζ − a

)k∣∣∣∣∣∣ ≤ M

r

|z − a|
r

k .

So the series ∑ f(ζ)
ζ − a

(
z − a
ζ − a

)k
converges uniformly by applying M-test.

Thus we could interchange the integral and summation signs in the
above computation. But the series

f(z) =
∞∑
k=0

ak(z − a)k
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can be differentiated indefinitely within its radius of convergence, and
the derivatives are given by

f (n)(z) =
∞∑
k=0

n(n− 1) · · · (n− k + 1)ak(z − a)k−n, n = 1, 2, 3, · · ·

so that
f (n)(a) = n!an.

Hence
1

2πi
∫
γ

f(ζ)
(ζ − a)n+1 dζ = an = fn(a)

n!
for each n ≥ 0. This completes the proof.

We deduce immediately from the above theorem that

Theorem 1.5.2. Suppose f : G → C is analytic and B(a, r) ⊂ G.
Then

(i) f is infinitely differentiable; and

(ii)

f (n)(a) = n!
2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ, γ(t) = a+ reit.

The next theorem is another very important result in complex anal-
ysis. It will be derived from Theorem 1.5.1 above. However, some
authors prefer to derive it directly and deduce the Cauchy Integral
formula as a consequence.

Theorem 1.5.3. Let f be analytic on B(a,R) and suppose γ is any
closed piecewise smooth curve in B(a,R). Then f has a primitive and∫

γ
f = 0.
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Proof. Suppose z ∈ B(a,R) and f(z) = ∑∞
n=0 an(z − a)n by Theorem

1.5.1. It can be easily verified that the function defined by

F (z) =
∞∑
n=0

an
n+ 1(z − a)n+1

has the same radius of convergence as that of f(z). Clearly F is dif-
ferentiable, and F ′(z) = f(z). Hence, F is a primitive of f in B(a, R).

Suppose γ : [a, b]→ C is as in the assumption, then
∫
γ
f(z) dz =

∫ b
a
f(γ(t))γ′(t) dt

=
∫ b
a
F ′(γ(t)γ′(t) dt

=
∫ b
a

d

dt
F (γ(t)) dt

= F (γ(b))− F (γ(a))
= 0

since γ is closed.

1.6 Liouville’s Theorem
Definition 1.6.1. We say a function f that is analytic everywhere in
C an entire function.

Clearly, any entire function has the power series representation in
B(a, r) for any a ∈ C and any r > 0. So the power series must have
an infinite radius of convergence.

Proposition 1.6.2. Let G be an region. If f : G→ C is differentiable
with f ′(z) = 0 for all z ∈ G, then f is a constant on G.

Proof. Let z0 ∈ G and f(z0) = w0. Set

A = {z ∈ G : f(z) = w0} ⊂ G.
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We aim to show that A = G by proving that A is both open and
closed. Then a standard topological argument gives A = G. Hence, f
is constant on G.

Let {zn} be a sequence in A and zn → z as n → ∞. Then by the
continuity of f , we have

w0 = lim
n→∞ f(zn) = f( lim

n→∞ zn) = f(z).

Hence z belongs to A. This proves that A is closed.
Let a ∈ A, B(a, ε) ⊂ G and z ∈ B(a, ε). Let

g(t) = f(tz + (1− t)a), 0 ≤ t ≤ 1.

Then

g(t)− g(s)
t− s

= f(tz + (1− t)a)− f(sz + (1− s)a)
tz + (1− t)a− (sz + (1− s)a)

· tz + (1− t)a− (sz + (1− s)a)
t− s

→ f ′(sz + (1− s)a) · (z − a) (Chain rule)
= 0 · (z − a) = 0,

as t → s. That is g′(s) = 0. So f(z) = g(1) = g(0) = f(a) = w0.
Since z ∈ B(a, ε) is arbitrary, we conclude that B(a, ε) ⊂ A. Hence A
is open. This completes the proof.

Theorem 1.6.3 (Liouville’s Theorem). Any bounded entire function
must reduce to a constant. That is, there is no non-constant entire
function.

Proof. Let z ∈ B(z, r) ⊂ C. Then Theorem 1.5.2 implies

f ′(z) = 1
2πi

∫
γ

f(ζ)
(ζ − z)2 dζ, γ = z + reit, t ∈ [0, 2π]
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So

|f ′(z)| ≤ 1
2πi

∫
γ

|f(z)|
|ζ − z|2

|ireit| dt

≤ upper bound of |f |
r

→ 0 as r →∞.

Hence f ′(z) = 0 for every z ∈ C.

Alternatively,

|an| =
∣∣∣∣∣∣ 1
2πi

∫
γ

f(ζ)
(ζ − z)n+1 dζ

∣∣∣∣∣∣
≤ upper bound of |f |

rn
→ 0 as r →∞

for each n ≥ 1. Hence

f(z) =
∑
an(z − a)n = a0 = constant.

Definition 1.6.4. Let f : G→ C and a ∈ G such that f(a) = 0. Then
a is a zero of f with multiplicity m ≥ 1 if there is an analytic function
g such that f(z) = (z − a)mg(z) and g(a) 6= 0.

We deduce the following important theorem from the Louville The-
orem.

Theorem 1.6.5 (Fundamental Theorem of Algebra). Every polyno-
mial P (z) = anz

n + · · ·+ a0 can be factored as

P (z) = c(z − b1)k1 · · · (z − bm)km,

where c is a constant, b1, . . . , bm are the zeros of P and k1+· · ·+km = n.

Proof. It suffices to show that P has at least one zero if it is non-
constant, so that we have P (z) = (z − a)g(z), and then obtain the
general form via induction on the degree of P .
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So let us suppose that P (z) 6= 0 for all z ∈ C. Then

F (z) := 1
P (z)

is an entire function on C. But F (z) → 0 uniformly as z → ∞ along
all possible paths, so we can find an M ′ > 0 and R > 0 such that
|F (z)| < M for z ∈ C \B(0, R).

Notice that F is also continuous on B(0, R) since P has no zeros
there. Hence we may find a M ′′ > 0 such that |F | < M ′′ on B(0, R)
since the closed disk is a compact set and F is continuous on it.

Let M = max {M ′,M ′′}, we see that |F | < M for all z ∈ C. So
F , and hence P, must reduce to a constant by Louville’s theorem. It
contradicts to the assumption that P is an arbitrary polynomial.

1.7 Maximum Modulus Theorem
Theorem 1.7.1 (Isolated Zero Theorem). Let G be a region, f : G→
C be analytic. if the set Z := {z ∈ G : f(z) = 0} has a limit point in
G, then f ≡ 0 in G.

Proof. Let a be a limit point of Z := {z ∈ G : f(z) = 0}. Then we
can find a sequence {zn} in G, zn → a and f(zn) = 0. Since

0 = lim
n→∞ f(zn) = f(a),

so f(a) = 0. Theorem 1.5.1 implies that for some R > 0 such that
B(a, R) ⊂ G, we have

f(z) =
∞∑
k=0

ak(z − ak)k

Suppose that there is an integer N where 0 = a0 = a1 = · · · = aN−1
but aN 6= 0. Then we can write

f(z) = (z − a)Ng(z),
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in B(a, R) where g is analytic there and g(a) 6= 0. But since g is
analytic and hence continuous in B(a, R), we can find 0 < r < R such
that g(z) 6= 0 in B(a, r). But since a is a limit point, so there is a
b ∈ B(a, r) different from a such that 0 = f(b) = (b− a)Ng(b) 6= 0. A
contradiction. So no such integer N can be found. Thus, the set

A := {z ∈ G : f (n)(z) = 0 for all n ≥ 0}.

is non-empty.
We next show that A is both closed and open. Let z belongs to

the closure of A, and {zk} ⊂ A converges to z. Since each f (n) is
continuous, it follows that 0 = limk→∞ f

(n)(zk) = f (n)(z). Hence z ∈ A
and A is closed.

Let a ∈ A and B(a, R) ⊂ G. Then f(z) = ∑
ak(z−a)k in B(a, R),

and f (n)(a) = 0 for each n. So f(z) = 0 in B(a, R). Then clearly
B(a, R) ⊂ A. Hence A is open. Since A is non-empty, so A = G.

Corollary 1.7.1.1 (Identity Theorem). If f = g on a sequence of
points having a limit point in G, then f ≡ g on G.

Theorem 1.7.2 (Maximum Modulus Theorem). Let G be a region
and f : G → C is analytic. If there exists a point a ∈ G such that
|f(z)| ≤ |f(a)| for all z ∈ G, then f is constant.

Proof. Let z0 be an arbitrary point in G such that |f(z0)| = |f(a)|,
B(z0, r) ⊂ G, γ(t) = z0 + reit, t ∈ [0, 2π].

By Cauchy’s integral formula,

f(z0) = 1
2πi

∫
γ

f(ζ)
ζ − z0

dζ

= 1
2πi

∫ 2π

0

f(z0 + reit)
reit

ireit dt

= 1
2π

∫ 2π

0
f(z0 + reit) dt.
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We may suppose that |f | is non-constant on ∂B(z0, r) for some
r > 0. Hence, there exists a t0 ∈ [0, 2π] and δ > 0 such that

|f(z0 + reit)| < M = |f(a)| on [t0 − δ, t0 + δ].

Hence

M = |f(z0)| ≤
∣∣∣∣∣ 1
2π

∫
t∈[0,2π]\[t0−δ,t0+δ]

f(z0 + reit) dt
∣∣∣∣∣

+
∣∣∣∣∣ 1
2π

∫
t∈[t0−δ,t0+δ]

f(z0 + reit) dt
∣∣∣∣∣

<
M

2π (2π − 2δ) + M

2π2δ = M.

A contradiction since M ≮ M. Hence |f | ≡ M in B(z0, r), then f
is constant in B(z0, r) (Use f ′ = ux + ivx and Proposition 1.6.2). Now,
since B(z0, r) is non-empty open subset of G, then by the Identity
Theorem, f is constant on G.

Theorem 1.7.3 (Minimum Modulus Theorem). Let f : G → C be
analytic and G is a region. If there exists a ∈ G such that |f(z)| ≥
|f(a)| for all z ∈ G, then either f is a constant or f(a) = 0 i.e. a is
zero of f.

Proof. Exercise.

1.8 Branch of the Logarithm
Definition 1.8.1. Let G be a region and f : G → C is continuous.
We call f(z), a branch of the logarithm if ef(z) = z for every z ∈ G.

If ew = z, then we write w = log z = f(z). But ew+2πik = ew = z for
every integer k. Hence for each z, the equation ew = z has an infinite
number of solution for w = log |z| + i(arg z + 2πk). Let G = C \ {x :
x ≤ 0} and −π < arg z < π. The function

f(z) = log |z|+ i arg z, z ∈ G
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is called the principal branch of the logarithm. The other branches of
the logarithm are given by

fk(z) = log |z|+ i arg z

for (2k − 3)π < arg z < (2k − 1)π., k ∈ Z \ {1}. (Principal branch
f = f1, i.e. k = 1)

The principal branch of the logarithm is analytic on C\{x : x ≤ 0}.

Proposition 1.8.2. Let γ : [0, 1] → C be a closed piecewise smooth
curve and assume that a /∈ γ. Then

1
2πi

∫
γ

dζ

ζ − a
∈ Z.

This proposition seems trivial since
∫
γ

dζ

ζ − a
=
∫
γ
d(log(ζ − a)) =

∫
γ
d(log |ζ − a|) + i

∫
γ
d(arg(ζ − a)).

When γ has described a complete revolution, γ(t) returns to its initial
position, so the first integral ∫γ d(log |ζ − a|) = 0; and i ∫γ d(arg(ζ − a))
gives 2πik, where k is the number of the complete revolutions that γ
around a. However, the function arg(ζ−a) is not uniquely determined,
so the above argument is not precise.

Proof. One of the easiest proofs available is to consider the function

g(t) =
∫ t
0

ζ ′(t)
ζ(t)− a dt.

Note that
g(1) =

∫ 1

0

ζ(t)
ζ(t)− a dt =

∫
γ

dζ

ζ − a
.
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We aim to show that eg(t)

ζ(t)− a is constant on [0, 1]. Consider

d

dt

 eg(t)

ζ(t)− a

 = g′(t)eg
ζ(t)− a −

ζ ′(t)eg
(ζ(t)− a)2

= eg
 ζ ′(t)

(ζ(t)− a)2 −
ζ ′(t)

(ζ(t)− a)2


= 0

for t ∈ [0, 1]. Thus

eg(0)

ζ(0)− a = eg(1)

ζ(1)− a =⇒ eg(0) = eg(1).

But g(0) = 0, so eg(1) = 1.
Hence

g(1) =
∫ 1

0

ζ ′(t)
ζ(t)− a dt =

∫
γ

dζ

ζ − a
= 2πik

for some integer k. Then the result follows.

Definition 1.8.3. Let γ : [0, 1]→ C be a closed and piecewise smooth
curve, and a /∈ γ. We define

n(γ; a) = 1
2πi

∫
γ

dζ

ζ − a

to be the index of γ with respect to a or the winding number of γ around
a.

Suppose γ(t) : [0, 1] → C is a curve, we define −γ(t) = γ(1 − t).
If σ : [0, 1] → C is another curve such that γ(1) = σ(0), then γ + σ
means

(γ + σ)(t) =
γ(2t), 0 ≤ t ≤ 1

2
σ(2t− 1), 1

2 < t ≤ 1.
It is left as an exercise to verify that
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(i) n(−γ; a) = −n(γ; a)

(ii) n(γ + σ; a) = n(γ; a) + n(σ; a).
Proposition 1.8.4. Let γ : [0, 1]→ C be a closed and piecewise smooth
curve, and a /∈ γ. Then n(γ; a) is constant for any a belongs to a
bounded component of C \ γ, and zero for a belongs to the unbounded
component.
Remark. There is only one unbounded component since γ is a com-
pact set.
Proof. Let a and b belong to the same component D of C \ γ. Since
n(γ; a) and n(γ; b) both equal to some integers, it suffices to prove
n(γ; a) is continuous on D. (Then, n(γ;D) is connected, and since
n(γ;D) ⊂ Z, n(γ;D) is a constant integer only.)

Let d = minζ∈γ{|ζ − a|, |ζ − b|}. Then, by definition,

|n(γ; a)− n(γ; b)| =
∣∣∣∣∣ 1
2πi

∫
γ

( 1
ζ − a

− 1
ζ − b

)
dζ

∣∣∣∣∣
= 1

2π

∣∣∣∣∣∣
∫
γ

a− b
(ζ − a)(ζ − b) dζ

∣∣∣∣∣∣
≤ 1

2π
∫
γ

|a− b|
|(ζ − a)(ζ − b)| |dζ|

≤ |a− b|2πd2

∫
γ
|dζ|

= |a− b|2πd2 l(γ)→ 0,

as |a−b| → 0. Hence n(γ; a) is continuous on any components of C\γ.
For a belongs to the unbounded component of C \ γ, let d =

minζ∈γ{|ζ − a|} By the above argument, we have

|n(γ; a)| = 1
2π

∣∣∣∣∣
∫
γ

dζ

ζ − a

∣∣∣∣∣
≤ 1

2πdl(γ).
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But minζ∈γ{|ζ − a|} → ∞ as a → ∞. Hence, |n(γ; a)| → 0 as
a→∞. Since n(γ; a) is constant and so n(γ; a) = 0 in this unbounded
component because n(γ; a) was proved to be continuous.

1.9 Cauchy’s Theorem
We next prove the general Cauchy’s Integral formula and Cauchy’s the-
orem. In particular, we give conditions on n(γ; a) so that the Cauchy’s
theorem holds.
Proposition 1.9.1. Let γ be a piecewise smooth curve and ϕ is a
function continuous on γ. For each m ≥ 1, define, for z /∈ γ

Fm(z) =
∫
γ

ϕ(ζ)
(ζ − z)m dζ.

Then, Fm is analytic on C \ γ and F ′m = mFm+1.

Proof. We first show that Fm is continuous on C\γ. Since γ is compact
and ϕ is continuous on γ, we may let M = maxz∈γ |ϕ(z)|.

Let a and b belong to the same component (if any) of C \ γ. Then,
as in the proof for n(γ; a),

|Fm(a)− Fm(b)| =
∣∣∣∣∣∣
∫
γ

 ϕ(ζ)
(ζ − a)m −

ϕ(ζ)
(ζ − b)m

 dζ

∣∣∣∣∣∣
≤M

∫
γ

∣∣∣∣∣∣ 1
(ζ − a)m −

1
(ζ − b)m

∣∣∣∣∣∣ · |dζ|.
So, it remains to estimate the function inside the integrand: Since

Am −Bm = (A−B)(Am−1 + Am−2B + · · ·+ ABm−2 +Bm−1).

Putting A = 1
ζ − a

and B = 1
ζ − b

, and let d = minζ∈γ{|ζ−a|, |ζ−
b|}, gives

|Fm(a)− Fm(b)| ≤ mM
|a− b|
dm+1 l(γ)→ 0 as a→ b.
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Hence, Fm is continuous on C \ γ.
Let a, b ∈ C \ γ and A, B as defined above. Then

Fm(a)− Fm(b)
a− b

= 1
a− b

∫
γ
ϕ(ζ)(A−B)(Am−1 + Am−2B + · · ·+ ABm−2 +Bm−1) dζ

= 1
a− b

∫
γ
ϕ(ζ)(a− b)AB(Am−1 + Am−2B + · · ·

+ ABm−2 +Bm−1) dζ
=
∫
γ
ϕ(ζ)(AmB + Am−1B2 + · · ·+ ABm) dζ

−→
∫
γ
ϕ(ζ)(Bm+1 +Bm+1 + · · ·+Bm+1) dζ

= m
∫
γ
ϕ(ζ)Bm+1 dζ

= m
∫
γ

ϕ(ζ)
(ζ − b)m+1 dζ

= F ′m(b)

as a→ b.
Hence, Fm is analytic with its derivative, which is given at the end

in the above expression.

Theorem 1.9.2 (Cauchy’s Integral Formula - First version). Let G
be an open subset of C and f : G → C be analytic. If γ is a closed
piecewise smooth curve in G such that n(γ;w) = 0 for all w ∈ C \ G,
then for a ∈ G \ γ,

n(γ; a)f(a) = 1
2πi

∫
γ

f(ζ)
ζ − a

dζ.

Proof. Define ϕ : G×G→ C by

ϕ(z, w) =


f(z)− f(w)

z − w
, if z 6= w

f ′(z), if z = w.

(Exercise: Show ϕ is continuous and z 7→ ϕ(z, w) is analytic.)
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Let H = {w ∈ C : n(γ;w) = 0}. Then H is open since n(γ;w) is
continuous on C \ γ and integer-valued i.e. {0} is open in Z. From the
definition of G and H, we deduce that C = G ∪ H and G ∩ H 6= ∅.
Define g : C→ C by

g(z) =


∫
γ ϕ(z, ζ) dζ, if z ∈ G∫
γ
f(ζ)
ζ − z

dζ, if z ∈ H.

Next, we verify that g is well-defined on G ∩H.

∫
γ
ϕ(z, ζ) dζ =

∫
γ

f(z)− f(ζ)
z − ζ

dζ

=
∫
γ

f(ζ)− f(z)
ζ − z

dζ

=
∫
γ

f(ζ
ζ − z

dζ − f(z) · 2πi n(γ; z)

=
∫
γ

f(ζ)
ζ − z

dζ ∵ z ∈ G ∩H

Hence, g is a well-defined function on C.
It follows from Proposition 1.9.1 that g is an entire function, and

from Proposition 1.8.4, H must contain the unbounded component of
C \ γ (because if n(γ;w) = 0, then w ∈ H). For z belongs to the
unbounded component, we have

lim
z→∞ g(z) = lim

z→∞

∫
γ

f(ζ)
ζ − z

dζ =
∫
γ
f(ζ) lim

z→∞
1

ζ − z
dζ = 0

since f is bounded on γ and limz→∞
1

ζ − z
= 0 uniformly.

So, there exists an R > 0 such that |g(z)| ≤ 1 for |z| ≥ R, and since
g is bounded on the compact set B(0, R), then g is a bounded entire
function. Hence g is constant by Liouville’s Theorem. Thus, g(z) = 0
for all z ∈ C.
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That is, for a ∈ G \ γ,

0 = g(a) =
∫
γ

f(ζ)− f(a)
ζ − a

dζ

=
∫
γ

f(ζ)
ζ − a

− f(a) · 2πi n(γ; a).

This completes the proof.
Theorem 1.9.3 (Cauchy’s Integral Formula - Second version). Let G
be an open subset of C and f : G → C is an analytic function. If
γ1, . . . , γm are closed piecewise smooth curves in G such that

n(γ1;w) + · · ·+ n(γm;w) = 0

for all w ∈ C \G, then for all a ∈ G \ γ and γ = γ1 ∪ · · · ∪ γm,

f(a)
m∑
k=1

n(γk; a) =
m∑
k=1

1
2πi

∫
γk

f(ζ)
ζ − a

dζ.

Proof. The proof is similar to that of Theorem 1.9.2 except to define
suitable ϕ, H and g.
Theorem 1.9.4 (Cauchy’s Theorem - First version). Let G be an open
subset of C and f : G → C is an analytic function. If γ1, . . . , γm are
closed piecewise smooth curves in G such that

n(γ1;w) + · · ·+ n(γm;w) = 0

for all w ∈ C \G, then
m∑
k=1

∫
γk

f = 0.

Proof. Put f(z)(z−a) instead of f(z), and then apply Theorem 1.9.3.

Theorem 1.9.5 (Morera’s Theorem). Let G be a region and f : G→ C
be a continuous function such that∫

T
f = 0

for every closed triangular curve T in G, then f is analytic on G.
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Remark. A closed triangular curve is a closed three sides polygon.

Proof. It suffices to show that f has a primitive on each open disks in
G. In fact, we may assume G = B(a,R) since G is open.

Let z ∈ B(a,R) and define

F (z) =
∫
[a,z]

f.

Suppose z0 ∈ B(a,R), then

F (z) =
(∫

[a,z0
+
∫
[z0.z]

)
f.

b

b

b
a

z

z0

Figure 1.1: B(a,R)

So
F (z)− F (z0)

z − z0
= 1
z − z0

∫
[z0,z]

f

= 1
z − z0

∫
[z0.z]

(f(ζ)− f(z0)) dζ + f(z0).

Hence∣∣∣∣∣∣F (z)− F (z0)
z − z0

− f(z0)
∣∣∣∣∣∣ ≤ sup

ζ∈[z,z0]
|f(ζ)− f(z0)| ·

∣∣∣∣∣ 1
z − z0

∣∣∣∣∣
∫
[z0,z]
|dζ|

= sup
ζ∈[z,z0]

|f(ζ)− f(z0)|

→ 0 as z → z0.

Hence, F ′(z0) = f(z0). But F must be infinitely differentiable, so
f is analytic on B(a,R).
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1.10 Homotopy version of Cauchy’s The-
orem

Definition 1.10.1. Let γ0, γ1 : [0, 1] → G be two closed piecewise
smooth curves in a region G. Then we say that γ0 is homotopic to γ1
is there is a continuous function Γ : [0, 1]× [0, 1]→ G such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s), 0 ≤ s ≤ 1;

Γ(0, t) = Γ(1, t), 0 ≤ t ≤ 1.

γ1

γ0

Figure 1.2: γ0 is homotopic to γ1

Remark. (i) If we write Γ(s, t) = γt(s). Then the above definition
does not require γt(s) to be piecewise smooth.

(ii) If γ0 is homotopic to γ1, we write γ0 ∼ γ1. Note that ∼ defines
equivalent classes on closed piecewise smooth curves in G:

(a) γ0 ∼ γ0 by the identity map,
(b) If γ0 ∼ γ1, then Λ(s, t) = Γ(s, 1− t) would give γ1 ∼ γ0,
(c) If γ0 ∼ γ1 and γ1 ∼ γ2 with homotopy Γ and Λ respectively,

then the homotopy Ψ : [0, 1]× [0, 1]→ G given by

Ψ(s, t) =
Γ(s, 2t), 0 ≤ t ≤ 1

2
Λ(s, 2t− 1), 1

2 < t ≤ 1

shows that γ0 ∼ γ1.


