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Hence∣∣∣∣∣∣F (z)− F (z0)
z − z0

− f(z0)
∣∣∣∣∣∣ ≤ sup

ζ∈[z,z0]
|f(ζ)− f(z0)| ·

∣∣∣∣∣ 1
z − z0

∣∣∣∣∣
∫
[z0,z]
|dζ|

= sup
ζ∈[z,z0]

|f(ζ)− f(z0)|

→ 0 as z → z0.

Hence, F ′(z0) = f(z0). But F must be infinitely differentiable, so
f is analytic on B(a,R).

1.10 Homotopy version of Cauchy’s The-
orem

Definition 1.10.1. Let γ0, γ1 : [0, 1] → G be two closed piecewise
smooth curves in a region G. Then we say that γ0 is homotopic to γ1
is there is a continuous function Γ : [0, 1]× [0, 1]→ G such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s), 0 ≤ s ≤ 1;

Γ(0, t) = Γ(1, t), 0 ≤ t ≤ 1.

γ1

γ0

Figure 1.2: γ0 is homotopic to γ1

Remark. (i) If we write Γ(s, t) = γt(s). Then the above definition
does not require γt(s) to be piecewise smooth.

(ii) If γ0 is homotopic to γ1, we write γ0 ∼ γ1. Note that ∼ defines
equivalent classes on closed piecewise smooth curves in G:
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(a) γ0 ∼ γ0 by the identity map,
(b) If γ0 ∼ γ1, then Λ(s, t) = Γ(s, 1− t) would give γ1 ∼ γ0,
(c) If γ0 ∼ γ1 and γ1 ∼ γ2 with homotopy Γ and Λ respectively,

then the homotopy Ψ : [0, 1]× [0, 1]→ G given by

Ψ(s, t) =
Γ(s, 2t), 0 ≤ t ≤ 1

2
Λ(s, 2t− 1), 1

2 < t ≤ 1

shows that γ0 ∼ γ1.

Definition 1.10.2. A closed piecewise smooth curve γ is said to be
homotopic to zero if γ is homotopic to a constant curve (written γ ∼ 0).
Definition 1.10.3. A region G is a-star shaped if the line segment
[a, z] lies entirely in G for each z ∈ G. We simply call G star shaped if
G is 0-star shaped.

a

z

Figure 1.3: a-star shaped

Example 1.10.4. LetG be an a-star shaped region. Then every closed
piecewise smooth curve γ in G is homotopic to the constant curve
γ0(t) = a.

Solution. Let

Γ(s, t) = tγ0(s) + (1− t)γ1(s)
= ta+ (1− t)γ1(s)

for 0 ≤ s, t ≤ 1.
It is easy to see that Γ is a homotopy between γ1 and γ0.
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Remark. A convex region is a-star shaped with respect to any a that
belongs to G.
Definition 1.10.5. If γ0, γ1 : [0, 1] → G are two piecewise smooth
curves in a region G such that γ0(0) = a = γ1(1), γ0(1) = b = γ1(1).
We say γ0 is (fixed end points) homotopic to γ1 (γ0 ∼ γ1) if there exists
a continuous map Γ : [0, 1]2 → G such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s), 0 ≤ s ≤ 1;

Γ(0, t) = a, Γ(1, t) = b, 0 ≤ t ≤ 1.

γt

γ1

a
b

γ0

γ0

γt

γ1

a = b

Figure 1.4: γ0 is (fixed end points) homotopic to γ1

Similarly, it can be verified that ∼ is an equivalence relation on the
piecewise smooth curves satisfying the above definition. (See Conway
p.93)

And note again that, the intermediate path γs(t) = Γ(s, t) for 0 ≤
s ≤ 1 and t fixed, need not be piecewise smooth.
Theorem 1.10.6 (Cauchy’s Theorem - Second version). Suppose f :
G→ C is analytic and γ is a closed piecewise smooth curve in G such
that γ ∼ 0, then ∫

γ
f = 0.

Theorem 1.10.7 (Cauchy’s Theorem - Third version). Suppose f :
G → C is analytic and γ0, γ1 : [0, 1] → G are two closed piecewise
smooth curves such that γ0 ∼ γ1, then∫

γ0
f =

∫
γ1
f.
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Proof. Let γ0 and γ1 be as in the hypothesis, and Γ : I2 → G (I =
[0, 1]) be the corresponding continuous function. Since I2 is compact,
Γ must be uniformly continuous on I2. Thus Γ(I2) is compact and is
a proper subset of G. Hence

d(Γ(I2),C \G) = inf{|x− y| : x ∈ Γ(I2), y ∈ C \G} = r > 0.

There exists an integer n > 0 such that

|Γ(s′, t′)− Γ(s, t)| < r

whenever |(s′, t′)− (s, t)|2 < 4
n2 and (s′, t′), (s, t) ∈ I2.

Set

Jjk = [ j
n
,
j + 1
n

]× [k
n
,
k + 1
n

] (0 ≤ j, k ≤ n− 1)

(this forms a partition of I × I) and

ζjk = Γ( j
n
,
k

n
) (0 ≤ j, k ≤ n).

As the diameter (= diagonal) of Jjk is
√ 1
n2 + 1

n2 =
√

2
n

<
2
n
, we

must have Γ(Jjk) ⊂ B(ζjk, r) for 0 ≤ j, k ≤ n− 1. (∪jkB(ζjk, r) forms
an open cover of Γ(I2); also it is a proper subset of G by the choice of
r > 0.)

Let
Qk = [ζ0k, ζ1k, . . . , ζnk]

be the closed polygon (since ζ0k = ζnk) for 0 ≤ k ≤ n.
We will first show that ∫

γ0
f =

∫
Q0
f

and ∫
Qn

f =
∫
γ1
f,
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then ∫
Qk

f =
∫
Qk+1

f (0 ≤ k ≤ n− 1).

Thus ∫
γ0
f =

∫
Q0
f = · · · =

∫
Qk

f = · · · =
∫
Qn

f =
∫
γ1
f.

Let
Pjk = [ζjk, ζj+1,k, ζj+1,k+1, ζj,k+1, ζjk]

be a closed polygon. (See Figure 1.5)

Pjk

ζj,k+1

ζj+1,k+1

ζjk
ζj+1,k

b

b
b

b

Figure 1.5: Pjk

But Γ(Jjk) ⊂ B(ζjk, r), hence Pjk ⊂ B(ζjk, r) in which f is analytic.
So ∫

Pjk

f = 0 (0 ≤ j, k ≤ n− 1)

by Theorem 1.5.3.
We now show ∫

γ0 f = ∫
Q0 f , where

Q0 = [ζ00, ζ10, . . . , ζn0].

Let σj(s) = γ0(s) for j
n
≤ s ≤ j + 1

n
, (0 ≤ j ≤ n− 1). (See Figure

1.6)
Clearly σj+[ζj+1,0, ζj0] is a closed piecewise smooth curve inB(ζj0, r)

and so ∫
σj+[ζj+1,0,ζj0]

f = 0.
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σj(s)
ζj,0

ζj+1,0

Q0

γ0

Figure 1.6: σj(s)

That is ∫
σj

f = −
∫
[ζj+1,0,ζj0]

f =
∫
[ζj0,ζj+1,0]

f

So ∫
γ0
f =

n−1∑
j=0

∫
σj

f =
n−1∑
j=0

∫
[ζj0,ζj+1,0]

f =
∫
Q0
f.

Similarly, we can prove ∫
γ1 f = ∫

Qn
f. Finally, we show ∫

Qk
f =∫

Qk+1 f (0 ≤ k ≤ n− 1). Clearly we have 0 = ∑n−1
j=0

∫
Pjk
f.

Pjk

Pj+1,k

ζj+1,k+1

ζj+2,k+1

ζj+2,k

ζj+1,k

ζjk

ζj,k+1

Figure 1.7: Pjk and Pj+1,k

It follows from the Figure 1.7 that∫
[ζj+1,k,ζj+1,k+1]

f
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of
∫
Pjk

f cancels the ∫
[ζj+1,k+1,ζj+1,k]

f

of
∫
Pj+1,k

f . Thus

0 =
n−1∑
j=0

∫
Pjk

f =
∫
Qk

f −
∫
Qk+1

f.

Theorem 1.10.8. Let γ be a closed piecewise smooth curve in G with
γ ∼ 0. Then n(γ; a) = 0 for all a ∈ C \G.

Proof. The proof follows from Theorem 1.10.6. Since 1
z − a

is analytic
on G if a ∈ C \G,

n(γ; a) = 1
2πi

∫
γ

1
ζ − a

dζ = 0.

We note that the converse of Theorem 1.9.8 is not true. That is,
there exist a γ such that n(γ; a) = 0 for all a ∈ C \G but it is not true
that γ ∼ 0. (See exercise). Thus Theorem 1.9.2 and 1.9.3 are more
general than Theorem 1.10.6 and 1.10.7.

Theorem 1.10.9. If γ0 and γ1 are two piecewise smooth curves joining
a to b and γ0 ∼ γ1, then ∫

γ0
f =

∫
γ1
f.

Proof. Since γ0 ∼ γ1, so there exists a continuous map Γ : I2 → C
such that

Γ(s, 0) = γ0(s), Γ(s, 1) = γ1(s), 0 ≤ s ≤ 1;

Γ(0, t) = a, Γ(1, t) = b, 0 ≤ t ≤ 1.



CHAPTER 1. ANALYTIC FUNCTIONS 32

a b

γ1

γ0

Figure 1.8: γ0 ∼ γ1

Because γ0 − γ1 is a closed piecewise smooth curve, we define

γ(s) =



γ0(3s), 0 ≤ s ≤ 1
3

b,
1
3 < s ≤ 2

3
γ1(3− 3s), 2

3 < s ≤ 1.

Next we show γ ∼ 0 by claiming that Λ : I2 → G is a suitable
function:

Λ(s, t) =



Γ(3s(1− t), t), 0 ≤ s ≤ 1
3

Γ(1− t, 3s− 1 + 2t− 3st), 1
3 < s ≤ 2

3
γ1((3− 3s)(1− t)), 2

3 < s ≤ 1.

Note that

Λ(s, t) = γt(s), Λ(s, 0) = γ0 − γ1, Λ(s, 1) = a = b.

It is easy to see that Λ is continuous at s = 1
3 ; and at s = 2

3 because
Γ(1− t, 1) = γ1(1− t). So, Λ is continuous on I2.

Hence
0 =

∫
γ
f =

∫
γ0
f −

∫
γ1
f.

Definition 1.10.10. An open set G is called simply connected if it
is connected and every closed curve in G is homotopic to zero (i.e.,
γ ∼ 0).
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a b

γ1

γ0

γ

t

s

1

1
0

t

(1− t, 1)

(1− t, t)

1− t

For a fixed t

Figure 1.9: Λ(s, t) and [0, 1− t]× [t, 1]

So we have the following version of Cauchy’s Theorem.

Theorem 1.10.11 (Cauchy’s Theorem - Fourth version). If G is sim-
ply connected, then ∫

γ f = 0 for every closed piecewise smooth curve
and every analytic f .

The notion of simply connected region lies much deeper than it
appears. We shall study this in a more detailed way in a later chapter
(pending). Here we chiefly want to prove some immediate consequences
of analytic function defined on simply connected region.

Theorem 1.10.12. Suppose the region G is simply connected, and
f : G→ C is analytic. Then f has a primitive on G.

Proof. Let a ∈ G and γ : [0, 1] → G be a piecewise smooth curve (if
closed, then by Theorem 1.5.3 immediately) in G where γ(0) = a.

b

b

b

G

a

γ0

γ1

z0
z

Figure 1.10: γ0 − γ1
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Define an expression F (z) =
∫
γ
f(ζ) dζ. We first verify that F is

well-defined.
Since γ0 − γ1 ∼ 0, Cauchy’s Theorem implies that∫

γ0−γ1
f dζ =

∫
γ0
f dζ −

∫
γ1
fdζ = 0.

Hence F is independent on the choice of γ. Thus F is a well-defined
function.

To show F is analytic and F ′ = f , we consider r > 0 so small such
that B(z0, r) ⊂ G. Replace γ by γ + [z0, z] in F :

F (z) =
∫
γ+[z0,z]

f.

Then we have

F (z)− F (z0)
z − z0

− f(z0) = 1
z − z0

∫
[z0,z]

(f(ζ)− f(z0)) dζ.

By the similar argument in the proof of Morera’s Theorem, we can
deduce that F ′ = f and F is analytic.

The next result lies deeper.

Theorem 1.10.13. Let G be simply connected and f : G → C be an
analytic function such that f(z) 6= 0 for any z ∈ G. Then there is
an analytic function g : G → C such that f(z) = eg(z). If z0 ∈ G
and ew0 = f(z0), then we may choose g such that g(z0) = w0. So
simply connected region implies every non-vanishing analytic function
can have a logarithm.

Proof. Since f has no zeros, and f ′

f
is analytic on G. By Theorem

1.10.12, we let g to be a primitive of f
′

f
. Consider

d

dz

(
f

eg

)
= f ′ − g′f

eg
= 0.
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Thus f = (constant)eg = eg+c, where c is a constant.
So, if z0 ∈ G and ew0 = f(z0), we may find a suitable integer k such

that w0 = g(z0) + c + 2πk. Now define g̃ = g + c + 2πk, which is the
required function.

Remark. The converse of the above statement also hold, namely that,
G is a simply connected region if every non-vanishing analytic function
f can be represented as f = eg for same analytic function g on G. We
refer to [1] or [2] for the detail.

1.11 Open Mapping Theorem
Definition 1.11.1. If γ is a closed piecewise smooth curve in G such
that n(γ;w) = 0 for each w ∈ C \ G. We call such curve homologous
to zero (γ ≈ 0).

The following contour shows that although γ ∼ 0 implies γ ≈ 0,
the converse is not true. One can verify that following figure has γ ≈ 0
but γ 6∼ 0 since n(γ; a) = 0 = n(γ; b). The contour was first written
down independently by C. Jordan (1887) and L. Pochhammer (1890).

Figure 1.11: Pochhammer contour

Remark. The Beta function is defined by the integral

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt, (1.3)
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where <(x) and <(y) > 0 so that the integral converges. However, if
we remove the restriction<(x) and <(y) > 0, then we can still compute
the beta function via Pochhammer contour to

B(x, y) =
∫ (1+, 0+, 1−, 0−)

(Pochhammer)
tx−1(1−t)y−1 dt = −eπi(x+y)4π2

Γ(1− x)Γ(1− y)Γ(x+ y) dt.

(1.4)
See [6] for the detail.

By using Cauchy’s Theorem, we shall see below some topological
results of different natures.

Theorem 1.11.2. Let G be a region and f : G→ C analytic on G with
zeros a1, . . . , am (counted with multiplicity). If γ is a closed piecewise
smooth curve in G such that ak 6∈ γ for each k, and if γ ≈ 0 in G, then

1
2πi

∫
γ

f ′

f
(ζ) dζ =

m∑
k=1

n(γ; ak).

Proof. According to previous discussion,

f(z) = (z − a1) · · · (z − am)g(z), g(z) 6= 0, z ∈ G.

Then for z 6= a1, . . . , am, we have

f ′

f
(z) = 1

z − a1
+ · · ·+ 1

z − am
+ g′

g
.

So
1

2πi
∫
γ

f ′

f
(ζ) dζ = 1

2πi
∫
γ

dζ

ζ − a1
+ · · ·+ 1

2πi
∫
γ

dζ

ζ − am
+
∫
γ

g′

g
dζ

= n(γ; a1) + · · ·+ n(γ; am) +
∫
γ

g′

g
dζ.

Since γ ≈ 0 and g′

g
is analytic on G, by the Cauchy Theorem - First

version, we have ∫γ g′
g
dζ = 0. This completes the proof.
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Corollary 1.11.2.1. Let f , G and γ be as in the preceding theorem
except that a1, . . . , am are the roots of f(z) = α (counted according to
multiplicity). Then

1
2πi

∫
γ

f ′(ζ)
f(ζ)− α dζ =

m∑
k=1

n(γ; ak).

We next prove the important Open Mapping Theorem. But we
first need the following theorem.

Theorem 1.11.3. Let f : G→ C be analytic where f(a) = α. Suppose
f − α has a zero of multiplicity m. Then we can find an ε > 0 and a
δ > 0 such that for all ξ in 0 < |ζ − a| < δ, the equation f(z) = ξ has
exactly m simple roots in 0 < |z − a| < ε. (A simple root of f(z) = ξ
is a zero of f − ξ with multiplicity 1.)

×

bc
bc

bc
b b

b
b

bc

ǫ < d
2

γ = ∂B(a, ǫ)

a

f
×
b

ζ

α

δ

σ = f(γ)

Figure 1.12: f : G→ C, f(a) = α

Proof. Let
d = inf

w∈C\G
{|a− w|}.

Since the zero a of f − α is isolated, we may choose ε < d

2 such
that f(z)− α 6= 0 in 0 < |z − a| < ε. Then we have the representation

F (z) = f(z)− α = (z − a)mg(z)
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over the disk B(a, ε), where g is analytic and g 6= 0 there.
Let γ be the boundary of B(a, ε), and write σ = f(γ). Since C \ σ

is open, we can find a component of C \ σ containing α, and a number
δ > 0 such that B(α, δ) is a proper subset of this component.

Consider

n(σ;α) = 1
2πi

∫
σ

dw

w − α

= 1
2πi

∫
γ

F ′(ζ)
F (ζ) dζ

= 1
2πi

∫
γ

m

ζ − a
dζ + 1

2πi
∫
γ

g′(ζ)
g(ζ) dζ

= m+ 0 = m

since γ is closed and g 6= 0 on B(a, ε). (So g
′

g
has a primitive.)

According to Proposition 1.8.4, n(σ; ζ) is a constant on this com-
ponent for each ξ ∈ B(α, δ) \ {α}. Theorem 1.11.2 gives

n(σ; ξ) = 1
2πi

∫
σ

dw

w − ξ

= 1
2πi

∫
γ

f ′(ζ)
f(ζ)− ξ dζ

=
n∑
k=1

n(γ; ak)

where ak for k = 1, . . . , n are the zero of f − ξ in B(a, ε). But γ is a
circle, so n(γ; ak) = 1 for 1 ≤ k ≤ n. But then we must have m = n.
Theorem 1.11.2 again implies that each of these zeros ak is a simple
root of f − ξ. This completes the proof.

We deduce immediately the following important result.

Theorem 1.11.4 (Open Mapping Theorem). Let f be a non-constant
analytic function defined on a region G. Then f is an open mapping,
i.e. f maps open sets onto open sets.
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Proof. Suppose U ⊂ G is open. To show f(U) is open, it suffices to
find a δ > 0 for each ξ ∈ f(U) such that B(ξ, δ) ⊂ f(U). But this
follows easily from Theorem 1.11.3 that there exist ε, δ > 0 such that
B(a, ε) ⊂ U , B(α, δ) ⊂ f(B(a, ε)). In fact, only part of the conclusion
in Theorem 1.11.3 is used.

We now can give a second proof for the maximummodulus theorem.

Theorem 1.11.5 (Maximum Modulus Theorem). Let G be a region
and f : G → C is analytic. If there exists a point a in G such that
|f(z)| ≤ |f(a)| for all z ∈ G, then f is constant.

Second proof (Topological argument). Suppose α ∈ f(G) and f(a) =
α, a ∈ G. Then we can find a δ > 0 such that B(α, δ) ⊂ f(G) by open
mapping theorem. Hence there exist points in B(α, δ) with modulus
strictly longer than |α|. Hence max |f(z)| cannot occur at an interior
of G.

We now consider the definition of an analytic function. Since the
main result we use is Morera’s Theorem, we could do this immediately
after the proof of Morera’s Theorem.

Recall that f : G → C is analytic on G if f is continuously differ-
entiable.

Theorem 1.11.6. Let G be an open set and f : G → C is differen-
tiable. Then f must be analytic on G. That is, f is differentiable if
and only if f is continuous differentiable.

Proof. According to the statement of the theorem, it suffices to show f ′

is continuous. But by using Morera’s Theorem, we can show that f is
analytic directly. See, for examples, [1], [2], [3] for a proof of Goursat’s
Theorem.

Remark. It follows from Theorem 1.11.6 that we could define analytic
function simply that f is merely differentiable (without continuity) at
each point of an open set G.
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1.12 Isolated Singularities
We have proved that every zero of an analytic function must be iso-
lated; and as indicated that this property is not shared by real func-
tions. The next natural question is about the singularities of analytic
functions, i.e., the nature of points a such that f(a) undefined, such
as f(a) =∞. The following is a list of examples:

1. √
z − 1

has a (square-root) branch point at z = 1.

2.
ln(z − 1)

has a logarithmic branch point at z = 1.

3.
e1/(z−1)

has an essential singularity at z = 1 (see below).

4.
tan[ln(z − 1)]

has a non-isolated essential singularity at z = 1 (see below).

We can deal with a small selection of singularities in this course. In
the case where f(a) =∞, the standard way to investigate the problem
is to consider F (z) = 1

f
at a i.e. F (a) = 1

∞
= 0. Since any zeros

are isolated, we may assume F has no zeros in 0 < |z − a| < δ for
some δ > 0. So F has only one zero at a i.e. any singularities of f
with f(a) = ∞ must be isolated (just like the zeros). It turns out
that there are only a few types of singularities for analytic functions,
and the easiest way to study them is by considering the power series
expansions of the functions around the singularities.
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Theorem 1.12.1 (Laurent Series, 1843). Let f(z) be analytic function
in an annulus Γ(a;R1, R2) = {z : R1 < |z − a| < R2}. Then

f(z) =
∞∑

n=−∞
an(z − a)n

and the series converges uniformly in Γ(a;R1, R2) = {z : R1 < |z−a| <
R2}. The coefficients an are given by the formula

an = 1
2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ

where γ is any circle in Γ(a;R1, R2) centred at a, and for all integers
n.

Proof. Let r1 and r2 be two real numbers such that R1 < r1 < r2 < R2,
and σ be a straight line segment joining the boundary of Γ(a; r1, r2)
and passing through a. Let γ1(t) = a + r1e

it, and γ2(t) = a + r2e
it for

t ∈ [0, 2π], then any closed curve inside γ := γ2 +σ− γ1−σ is ∼ 0. By
Cauchy’s formula we obtain, for z ∈ Γ(a; r1, r2),

b
a

R1

γ1 γ2

R2

σ

Figure 1.13: γ := γ2 + σ − γ1 − σ
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f(z) = 1
2πi

∫
γ

f(ζ)
ζ − z

dζ

= 1
2πi

(∫
γ2

+
∫
σ
−
∫
γ1
−
∫
σ

)
f(ζ)
ζ − z

dζ

= 1
2πi

∫
γ2

f(ζ)
ζ − z

dζ − 1
2πi

∫
γ1

f(ζ)
ζ − z

dζ

= 1
2πi

∫
γ2

f(ζ)
(ζ − a)

(
1− z−a

ζ−a

) dζ − 1
2πi

∫
γ1

f(ζ)
(z − a)

(
1− ζ−a

z−a

) dζ
=
∞∑
n=0

(z − a)n 1
2πi

∫
γ2

f(ζ)
(ζ − a)n+1 dζ

+
∞∑
n=0

(z − a)−n+1 1
2πi

∫
γ1
f(ζ)(ζ − a)n dζ

=
∞∑
n=0

an(z − a)n +
−1∑
−∞

(z − a)n 1
2πi

∫
γ1
f(ζ)(ζ − a)−n−1 dζ

=
∞∑
n=0

an(z − a)n +
−1∑
−∞

an(z − a)n (uniform convergence)

where
an = 1

2πi
∫
γ1

f(ζ)
(ζ − a)n+1 dζ for n ≥ 0

and
an = 1

2πi
∫
γ2

f(ζ)
(ζ − a)n+1 dζ for n ≤ −1.

Let γ = a + reit for t ∈ [0, 2π] and R1 < r1 < r < r2 < R2. By
constructing suitable contours involving γ, we may bring the above
two line integrals over γ2 and γ1 respectively to the common curve γ.
Thus we obtain the formula for an as stated in the theorem.

Remark. We remark that Laurent expansion of an analytic function
in a punctured disk gives a beautiful generalization of Taylor expansion
of analytic function.
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Looking at the Laurent expansion of the functions in the above
theorem, there are several possibilities:

(i) ak = 0 for all k ≤ −n for some integer n > 0; the point a is called
a pole of order n;

(ii) there are infinitely many ak 6= 0, k ≤ −1; the point a is called an
essential singularity of f at a;

(iii) ak = 0 for all k ≤ −1, then a is called a removable singularity of
f at a.

• If f has a pole of order n, then

f(z) =
n∑
k=1

ak
(z − a)k +

∞∑
k=0

ak(z − a)k

where the sum ∑n
k=1 ak/(z − a)k is called the principal part of f

at a, and |f | → ∞ in the manner of O(|z − a|−n) as z → a.

• If f has a removable singularity at a, then f(z) = ∑∞
k=0 ak(z−a)k

in 0 < |z − a| < δ (some δ > 0). But we clearly have f → a0 as
z → a, thus we may define a new function at a by g(z) = f(z)
for 0 < |z− a| < δ and g(z) = a0 at z = a. Then g is an analytic
function in |z − a| < δ. Thus f is almost analytic at a if it has
a removable singularity at a and so from this point of view, this
case is less interesting.

We shall discuss the implication of pole later. The behaviour of
f near an essential singularity is very different. It is not true that
|f | → ∞ as z → a.

Example 1.12.2. 1. The sin z/z has a removable singularity at z =
0.

2. The Euler-Gamma function Γ(z) has simple poles at each of neg-
ative integers (see a later chapter).
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3. The Weierstrass function ℘(z) has double poles at the vertices of
its fundamental period parallelograms (see a later chapter).

4. The e1/z, sin
(
1/z) and cos(1/z) all have an essential singularity

at z = 0.

5. Show the following Laurent expansion

e
1
2 (z−1/z) =

∞∑
−∞

akz
k,

where
ak = 1

2π
∫ 2π

0
cos(kθ − sin θ) dθ.

Theorem 1.12.3 (Casorita-Sokhotskii-Weierstrass-1864). Suppose f
has an essential singularity at a. Then for every δ > 0, f(Γ(a; 0, δ)) =
C.

The statement of this theorem is equivalent to given any ρ, ε > 0
and any c ∈ C, there is a point z inside 0 < |z − a| < ρ in which
|f(z)− c| < ε. That is to say, given any c, f tends to c as the limit as
z tends to a through a suitable sequence of complex numbers.

Proof. We first show that f is unbounded on any punctured disks
Γ(a; 0, δ).

Suppose |f(z)| ≤ M for all z ∈ Γ(a; 0, δ). Let γ(t) = a + Reit,
t ∈ [0, 2π], then

|an| =
∣∣∣∣∣∣ 1
2πi

∫
γ

f(ζ)
(ζ − a)n+1 dζ

∣∣∣∣∣∣ for n ≤ −1

= 1
2π

∣∣∣∣∣∣
∫ 2π

0

f(a+Reit)
(Reit)n+1 iReit dt

∣∣∣∣∣∣
≤MR−n

→ 0 as R→ 0.
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Hence an = 0 for all n ≤ −1 and f has a removable singularity at
most. A contradiction.

Let us now assume that δ > 0 is chosen so small that f − c has
no zero in Γ(a; 0, δ). Then the function φ(z) = 1

f − c
is analytic in

Γ(a; 0, δ). We claim that φ has an essential singularity at a. For if φ
has a pole at a, then f = 1

φ
+ c would be analytic at a; while if φ has

a removable singularity, then f either has pole or analytic at a. This
is a contradiction.

We now apply the result obtained above to φ i.e. φ is unbounded
on Γ(a; o, δ), so |f − c| = 0 on Γ(a; 0, δ). That is, given ε > 0, there
exists z ∈ Γ(a; 0, δ) such that

|φ(z)| > 1/ε,

i.e.,
|f(z)− c| = |1/φ(z)| < ε.

So we could find a sequence εn = 1/n and {δn} such that δn → 0 and
zn ∈ Γ(a; 0, δn) so that zn → a for and f(zn)→ c. This completes the
proof.

1.13 Rouché’s theorem
This is an application of the argument principle discussed earlier.

Theorem 1.13.1 (E. Rouché). Let f(z) and g(z) be analytic in the
domain D containing the closed, piece-wise smooth curve γ. Suppose

|f(z)| > |g(z)|, for all z ∈ γ.

Then f(z) and f(z) + g(z) have the same number of zeros, counting
multiplicity, in the domain enclosed by γ.
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Proof. It is evident from the assumption that |f(z)| > |g(z)|, for all
z ∈ γ that both f(z) and f(z) + g(z) do not have zeros on γ.
The argument principle assets that

∆γ arg
(
f(z) + g(z)

)
= ∆γ arg

[
f(z)

(
1 + g(z)

f(z)
)]

= ∆γ arg f(z) + ∆γ arg
(
1 + g(z)

f(z)
)
.

But since
1 >

∣∣∣∣∣∣g(z)
f(z)

∣∣∣∣∣∣ =
∣∣∣∣∣∣
(g(z)
f(z) + 1

)
− 1

∣∣∣∣∣∣ ,
on γ. It follows that 1 + g(z)

f(z) can never circle around w = 0. Hence

∆γ arg(f + g) = ∆γ arg f(z) + 0.

Thus

Nf+g = 1
2πi

∫
γ

(f + g)′(z)
f(z) + g(z) dz = 1

2πi
∫
γ

f ′(z)
f(z) dz = Nf

inside γ, as required.

Example 1.13.2. If f(z) has zero of order two at a, and a pole of
order 3 at b, where both a and b are inside γ, then

∆γ arg f(z) = 2π(2− 3) = −2π.

Example 1.13.3. Determine the number of roots of

z7 − 4z3 + z − 1 = 0

in |z| < 1.
On |z| = 1, we write

f(z) = −4z3, g(z) = z7 + z − 1.
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Then |f(z)| = 4 and |g(z)| ≤ |z|7 + |z| + 1 = 3 Hence |f(z)| > |g(z)|
on |z| = 1. Thus Rouché’s theorem asserts that f + g has the same
number of zeros as that of f = −4z3 in |z| < 1. Thus there are 3 zeros
inside |z| < 1.

Exercise 1.13.1. Prove the open mapping theorem for analytic func-
tion by applying Rouché’s theorem.

See next chapter for an hint.


