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We prove that a strong form of converse of the above statement
also holds. Please note we could apply the Theorem 1.11.3 to prove
the theorem. But we prefer to apply the Rouché theorem instead.
Theorem 2.2.2. Let f(z) be an one-one analytic function on a domain
D. Then f ′(z) 6= 0 on D.

Proof. We suppose on the contrary that f ′(z0) = 0 for some z0 and we
write f(z0) = w0 . We first notice that f ′(z) 6≡ 0. For otherwise, f(z)
is identically a constant, contradicting to the assumption that f(z) is
one-one on D.
Since the zeros of f ′(z) are isolated , so there is a ρ > 0 such that
f ′(z) 6= 0 in {z : 0 < |z − z0| < ρ}. Because of the assumption that f
is one-one, so

f(z) 6= f(z0) on |z − z0| = ρ.

On the other hand, |f(z)| is continuous on the compact set |z−z0| = ρ
so that we can find a δ > 0 such that

|f(z)− f(z0)| ≥ δ > 0 on |z − z0| = ρ.

Let w′ be an arbitrary point in {w : 0 < |w′ − w0| < δ}. Then the
inequality

|f(z)− w0| ≥ δ > |w′ − w0|
holds, so that the Rouché theorem again implies that the function
f(z)− f(z0) = f(z)− w0 and the function

[f(z)− f(z0)] + [f(z0)− w′] = f(z)− w′

have the same number of zeros inside {z : |z−z0| < ρ}. But f ′(z0) = 0
so f(z) − f(z0) has at least two zeros (counting multiplicity). Hence
f(z) − w′ also has at least two zeros (counting multiplicity) in {z :
|z − z0| < ρ}. But f ′(z) 6= 0 in {z : 0 < |z − z0| < ρ}, so there are
at least two different zeros z1 and z2 in {z : |z − z0| < ρ} so that
f(z1) = w′ and f(z2) = w′, thus contradicting to the assumption that
f(z) is one-one.
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2.3 Angle preserving mappings
We consider geometric properties of an analytic function f(z) at z0
such that f ′(z0) 6= 0. Let γ = {γ(t) : a ≤ t ≤ b} a piece-wise smooth
path such that z0 = γ(t0) where a ≤ t0 ≤ b and z′(t0) 6= 0, and

Γ := {w = f(z(t)) : a ≤ t ≤ b}.

That is, Γ = f(γ).
It is clear that the assumption z′(t0) 6= 0 above means that the path γ
must have a tangent at t0. Thus,

df [z(t)]
dt

∣∣∣∣∣∣∣
t=t0

= df(z)
dz

∣∣∣∣∣∣∣
z=z0

· dz
dt

∣∣∣∣∣∣∣
t=t0

= f ′(z0) · z′(t0) 6= 0

since f ′(z0) 6= 0 and z′(t0) 6= 0. We deduce

Arg df [z(t)]
dt

∣∣∣∣∣∣∣
t=t0

= Arg df(z)
dz

∣∣∣∣∣∣∣
z=z0

+ Arg dz
dt

∣∣∣∣∣∣∣
t=t0

.

Let θ0 = z′(t0) denote the inclination angle of the tangent to γ at z0 and

positive real axis, and let ϕ0 := Arg df [z(t)]
dt

∣∣∣∣∣∣∣
t=t0

denote the inclination

angle of the tangent to Γ at w0 = f(z0). Thus

Arg f ′(z0) = ϕ0 − θ0.

Now let γ1(t) : z1(t) : a ≤ t ≤ b and γ2(t) : z2(t) : a ≤ t ≤ b be two
paths such that they intersect at z0. Then

ϕ1 − θ1 = Arg f ′(z0) = ϕ2 − θ2.

That is,
ϕ2 − ϕ1 = θ2 − θ1.

This shows that the difference of tangents of Γ2 = f(γ2) and Γ1 = f(γ1)
at w0 is equal to difference of tangents of γ2 and γ1 at z0.
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Figure 2.3: Conformal map at z0

Definition 2.3.1. An analytic f : D → C is called conformal at z0
if f ′(z0) 6= 0. f is called conformal in D if f is conformal at each
point of the domain D.

We call |f ′(z0)| the scale factor of f at z0.

Theorem 2.3.2. Let f(z) be analytic at z0 and that f ′(z0) 6= 0. Then

1. f(z) preserves angles (i.e., isogonal) and its sense at z0;

2. f(z) preserves scale factor, i.e., a pure magnification at z0 in the
sense that it is independent of directions of approach to z0.

We consider a converse to the above statement.

Theorem 2.3.3. Let w = f(z) = f(x + iy) = u(x, y) + iv(x, y) be
defined in a domain D with continuous ux, uy, vx, vy such that they do
not vanish simultaneously. If either

1. f is isogonal (preserve angles) at every point in D,

2. or f is a pure magnification at each point in D,
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then either f or f̄ is analytic in D.

Proof. Let z = z(t) be a path passing through the point z0 = z(t0) in
D. We write w(t) = f(z(t)). Then

w′(t0) = ∂f

∂x
x′(t0) + ∂f

∂y
y′(t0),

That is,

w′(t0) = 1
2

∂f
∂x
− i∂f

∂y

 z′(t0) + 1
2

∂f
∂x

+ i
∂f

∂y

 z′(t0). (2.6)

That is,
w′(t0)
z′(t0)

= ∂f

∂z
(z0) + ∂f

∂z̄
(z0) ·

z′(t0)
z′(t0)

where we have adopted new notation

∂f

∂z
:= 1

2

∂f
∂x
− i∂f

∂y

, ∂f

∂z̄
:= 1

2

∂f
∂x

+ i
∂f

∂y

.

If f is isogonal, then the arg w′(t0)
z′(t0) is independent of arg z′(t0) in the

above expression. This renders the expression (2.6) to be independent
of arg z′(t0). Therefore, the only way for this to hold in(2.6) is that

0 = ∂f

∂z̄
:= 1

2

∂f
∂x

+ i
∂f

∂y

,
which represent the validity of the Cauchy-Riemann equations at z0.
Thus f is analytic at z0. This establishes the first part.

We note that the right-hand side of (2.6) represents a circle of
radius ∣∣∣∣12

(∂f
∂x

+ i
∂f

∂y

)∣∣∣∣
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centered at ∂f/∂z. Suppose now that we assume that f is a pure
magnification. Then the (2.6) representation this circle must either
have its radius vanishes which recovers the Cauchy-Riemann equations,
or the centre is at the origin, i.e.,

0 = ∂f

∂z
= 1

2

∂f
∂x
− i∂f

∂y


or the equivalently f(z) is analytic at z0 and hence over D.

Remark. If f(z) is analytic at z0, then it means that f preserves the
size of the angle but reverse its sense.

Example 2.3.4. Consider w = f(z) = ez on C. Clearly f ′(z) = ez 6= 0
so that the exponential function is conformal throughout C. Observe

w = ez = ex + eiy := Reiφ,

so that the line x = a in the is mapped onto the circle R = ea in the
w−plane, while the horizontal line y = b (−∞ < x < ∞) is mapped
to the line {Reib : 0 < R < +∞}. One sees that the lines x = a
and y = b are at right-angle to each other. Their images, namely the
concentric circles centred at the origin and infinite ray at angle b from
the x−axis from the origin are also at right angle at each other. The
infinite horizontal strip

G = {z = x+ iy : |y| < π, −∞ < x <∞}

is being mapped onto the slit-plane C\{z : z ≤ 0}. Moreover, the
image of any vertical shift of G by integral multiple of 2π under f
will cover the slit-plane again. So the f(C) will cover the slit-plane an
infinite number of times.
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Figure 2.4: Exponential map

2.4 Möbius transformations
We study mappings initiated by A. F. Möbius (1790–1868) on the C
that map C to C or even between Ĉ. Möbious considered

The mapping

w = f(z) = az + b

cz + d
, ad− bc 6= 0

is called a Möbius transformation, a linear fractional trans-
formation, a homographic transformation. In the case when
c = 0, then a Möbious transformation reduces to a linear function
f(z) = az+ b which is a combination of a translation f(z) = z+ b and
a rotation/magnification f(z) = az. If ad− bc = 0, then the mapping
degenerates into a constant.

We recall that a function f having a pole of order m at z0 is equiv-
alent to 1/f to have a zero of order m at z0 . Similarly, a function have
a pole of order m at ∞ means that 1/f(1

z) to have a zero of order m
at z = 0.

The mapping w is defined on C except at z = −d/c, where f(x)
has a simple pole. On the other hand,

f(1/ζ) = a/ζ + b

c/ζ + d
= a+ bζ

c+ dζ
= a

c

https://en.wikipedia.org/wiki/August_Ferdinand_M%C3%B6bius
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when ζ = 0. That is, f(∞) = a/c. So f(z) is a one-one map between
Ĉ = C ∪ {∞}. One can easily check that the inverse f−1 of f is given
by

f−1(w) = −wd− b
cw − a

, w 6= a

c
.

Thus f−1 : a
c
7→ ∞, ∞ 7→ −d

c
(Since

f−1
(1
η

)
= −d/η − b

c/η − a
= −d− bη

c− aη
= −d

c

as η = 0. Thus f−1(∞) = −d
c
. Similarly, since

1
f−1(w)

∣∣∣∣
a/c

= −cw − a
dw − b

∣∣∣∣
w=a/c

= 0.

Thus f−1
(a
c

)
=∞.

)

Theorem 2.4.1. The above Möbius map is conformal on the Riemann
sphere.

Proof. Let c 6= 0. Then

f ′(z) = ad− bc
(cz + d)2 6= 0,

whenever z 6= −d
c . Hence f(z) is conformal at every point except per-

haps when z = −d/c where f has a simple pole. So we should check if
1

f(z) is conformal at z = −d/c. But

( 1
f(z)

)′∣∣∣∣
z=−d/c

= − f
′(z)

f(z)2

∣∣∣∣
−d/c

= ad− bc
(cz + d)2 ×

(cz + d

az + b

)2

= − ad− bc
(az + b)2

∣∣∣∣
−d/c

= −(ad− bc)c2

(ad− bc)2 = −c2

ad− bc
6= 0.



CHAPTER 2. CONFORMAL MAPPINGS 65

Hence f is conformal at −d/c, whenever c 6= 0.
Similarly, in order to check if f is conformal at ∞, we consider,

when c 6= 0
(
f
(1
ζ

))′
=
(a+ bζ

c+ dζ

)′
= bc− ad

(c+ dζ)2 = bc− ad
c2 6= 0

when ζ = 0 and whenever c 6= 0. Hence f is conformal at ∞ if c 6= 0.
If c = 0, then we consider f(z) = az + b

d
= αz + β instead. Since

f ′(z) = α 6= 0 for all z ∈ C, so f is conformal everywhere. It remains
to consider

1
f
(
1/ζ

) = 1
α/ζ + β

= ζ

α + βζ
.

Hence f(∞) =∞. We now consider the conformality at ∞:
( 1
f(1/ζ)

)′
ζ=0

= α

(α + βζ)2

∣∣∣∣
ζ=0

= 1
α
6= 0,

as required.

Exercise 2.4.1. Complete the above proof by considering the case
when c = 0.

Exercise 2.4.2. Show that

1. the composition of two Möbius transformations is still a Möbius
transformation.

2. For each Möbius transformation f , there is an inverse f−1.

3. If we denote I be the identity map, then show that the set of all
Möbius transformations M forms a group under composition.
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Theorem 2.4.2. Let w = f(z) = az + b

cz + d
. Then f(z) maps any circle

in the z−plane to a circle in the w−plane.

Remark. We regard any straight lines to be circles having infinite radii
(+∞).

Proof. We note that any az + b

cz + d
can be written as

w =a
c

[z + b/a

z + d/c

]
= a

c

[
1 + b/a− d/c

z + d/c

]

= a

c

[
1 +

(bc/a− d
1

) 1
cz + d

]

= a

c
+
(bc− ad

c

)( 1
cz + d

)
,

Showing that w can be decomposed by transformations of the basic
types:

1. w = z + b (translation),

2. w = eiθ0z (rotation),

3. w = kz (k > 0, scaling),

4. w = 1/z (inversion).

In fact, we can write the T (z) as a compositions of four consecutive
mappings in the forms

w1 = cz + d, w2 = 1
w1
, w3 =

(bc− ad
c

)
w2, w4 = a

c
+ w3,

From the geometric view point, the translation z + b or rotation w =
eiθ0z all presences circles (lines). So it remains to consider scaling
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w = kz (k > 0) and inversion w = 1/z.
Let us consider the circle equation (centred at z0 = (x0, y0) with radius
R). Then

(x− x0)2 + (y − y0)2 = R2.

That is,
x2 + y2 − 2x0x− 2y0y + (x2

0 + y2
0 −R2) = 0.

Substituting z = x+ iy, z = x− iy

zz + −2
2 (z0 + z0)

1
2(z + z)− 2

2i(z0 − z0)
1
2i(z − z) + z0z0 −R2.

This can be rewritten as

zz +Bz +Bz +D = 0,

where B = −z0, D = x2
0 + y2

0 −R2.
Conversely, suppose B = −z0, |B|2 −D = R2 > 0, then the above

equation represents a circle equation centred at −B = z0 with radius

R =
√
|B|2 −D.

In fact, |z − (−B)| =
√
|B|2 −D. We consider the scaling : w = kz.

The circle equation becomes

1
k2 ww + B

k
w + B

k
w +D = 0.

Thus
ww + kBw + kBw + k2D = 0

Clearly, k2D is a real number, and
√
k2 |B|2 − k2D = k

√
|B|2 −D > 0.

Hence the above equation is a circle equation in the w−plane.
It remains to consider inversion w = 1/z. Then the equation becomes

1
ww

+ B

w
+ B

w
+D = 0,
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or
ww + B

D
w + B

D
w + 1

D
= 0.

clearly 1/D is a real number, and |B/D|2 − 1/D = 1
D2 (|B|2 −D) > 0.

So the equation is a circle equation in the w−plane.

2.5 Cross-ratios
Let

T (z) = az + b

cz + d
(2.7)

be a Möbius transformation, and let w1, w2, w3, w4 be the respectively
images of the points z1, z2, z3, z4. Then it is routine to check that

wj − wk = ad− bc
(czj + d)(czk + d)(zj − zk), j, k = 1, 2, 3, 4.

Then

(w1 − w3)(w2 − w4) = (ad− bc)2∏4
j=1(czj + d)(z1 − z3)(z2 − z4) (2.8)

Similarly, we have

(w1 − w4)(w2 − w3) = (ad− bc)2∏4
j=1(czj + d)(z1 − z4)(z2 − z3). (2.9)

Dividing the (2.8) by (2.9) yields

(w1 − w3)(w2 − w4)
(w1 − w4)(w2 − w3)

= (z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

. (2.10)

Definition 2.5.1. Let z1, z2, z3, z4 be four distinct numbers in C.
Then

(z1, z2, z3, z4) := (z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

= z1 − z3

z1 − z4
: z2 − z3

z2 − z4
(2.11)
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is called the cross-ratio of the four points. If, however, when any one
of z1, z2, z3, z4 is ∞, then the cross-ratio becomes

(∞, z2, z3, z4) := z2 − z4

z2 − z3
,

(z1, ∞, z3, z4) := z1 − z3

z1 − z4
,

(z1, z2, ∞, z4) := z2 − z4

z1 − z4
,

(z1, z2, z3, ∞) := z1 − z3

z2 − z3
,

respectively.

The equation (2.10) implies that we have already proved the fol-
lowing theorem.

Theorem 2.5.2. Let T be any Möbius transformation. Then

(Tz1, T z2, T z3, T z4) = (z1, z2, z3, z4). (2.12)

Remark. The above formula means that the cross-ratio of four points
is preserved under any Möbius transformation T (z).

Example 2.5.3. We note that the cross-ratio when written as

(z, z2, z3, z4) = (z − z3)(z2 − z4)
(z − z4)(z2 − z3)

= z − z3

z − z4
: z2 − z3

z2 − z4

is a Möbius transformation of z that maps the points z2, z3, z4 to
1, 0, ∞ respectively.

Theorem 2.5.4. Let z1, z2, z3 and w1, w2, w3 be two sets of three arbi-
trary complex numbers. Then there is a unique Möbius transformation
T (z) that satisfies T (zi) = wj, j = 1, 2, 3.
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Proof. The cross-ratio formula

w − w3

w − w4
: w2 − w3

w2 − w4
= z − z3

z − z4
: z2 − z3

z2 − z4

does the trick.

Example 2.5.5. Find a Möbius transformation w that maps −1, i, 1
to −1, 0, 1 respectively.
It follows that

w − 0
w − 1 : −1− 0

−1− 1 = z − i
z − 1 : −1− i

−1− 1 .

So
2w
w − 1 = z − i

z − 1
( 1

1 + i

)
.

Hence
w = 1 + iz

i+ z
.

Arrangements

The above arrangement of the four points z1, z2, z3, z4 in the construc-
tion of our cross-ratio is not special. One can try the remaining twenty
three different permutations of z1, z2, z3, z4 in the construction. How-
ever, we note that

λ := (z1, z2, z3, z4) = (z2, z1, z4, z3) = (z3, z4, z1, z2) = (z4, z3, z2, z1)

so that the list reduces to six only. They are given by

(z2, z3, z1, z4) = λ− 1
λ

, (z3, z1, z2, z4) = 1
1− λ

(z2, z1, z3, z4) = 1
λ
, (z3, z2, z1, z4) = λ

λ− 1 , (z1, z3, z2, z4) = 1−λ.
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The above list contains all six distinct values for the cross-ratio for dis-
tinct z1, z2, z3, z4. If, however, two of the points z1, z2, z3, z4 coincide,
then the list of values will reduce further. More precisely, if λ = 0 or
1, then the list reduces to three, namely 0, 1, ∞. If λ = −1, −1/2 or
2, then the list reduces to three again with values −1, 1/2, 2. There is
another possibility that

λ = 1± i
√

3
2 .

See exercise.
Moreover, if we put z2 = 1, z3 = 0, z4 = ∞, then the cross-ratio

becomes
(λ, 1, 0, ∞) = λ,

which means that λ is a fixed point of the map.

Theorem 2.5.6. Let z1, z2, z3, z4 be four distinct points in Ĉ. Then
their cross-ratio (z1, z2, z3, z4) is real if and only if the four points lie
on a circle (including a straight line).

Proof. Let Tz = (z1, z2, z3, z).
We first prove that if z1, z2, z3, z4 lie on a circle/straight-line in Ĉ,

then Tz is real. But by the fundamental property that T is the unique
Möbius map that maps z1, z2, z3 onto 0, 1, ∞. Hence T is real on
T−1R. It remains to show that the whole circle/straight-line passing
through z1, z2, z3 has Tz real.

If Tz is real, then we have Tz = Tz. Hence

aw + b

cw + d
= āw̄ + b̄

c̄w̄ + d̄
.

Cross multiplying yields

(ac̄− cā)|w2|+ (ad̄− cb̄)w + (bc̄− dā)w̄ + bd̄− db̄ = 0
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which is a straight-line if ac̄−cā = 0 (and hence ad̄−cb̄ 6= 0). Moreover,
in the case when ac̄− cā 6= 0, the above equation can be written in the
form ∣∣∣∣w + ād− c̄b

āc− c̄a

∣∣∣∣ =
∣∣∣∣ad− bc
āc− c̄a

∣∣∣∣,
which is an equation of a circle.

Exercise 2.5.1. Verify that

(λ, 1, 0, ∞) = λ.

Then use this identity to give a different proof of the above theorem:
(z1, z2, z3, z4) is real if and only if the four points z1, z2, z3, z4 lie on
a circle.

Exercise 2.5.2. Show that if one of z2, z3, z4 is∞, the corresponding
cross-ratio still maps the triple onto 1, 0, ∞. Namely the

(z, ∞, z3, z4) := z − z3

z − z4
,

(z, z2, ∞, z4) := z2 − z4

z − z4
,

(z, z2, z3, ∞) := z − z3

z2 − z3
,

2.6 Inversion symmetry
We already know that the point z and its conjugate z̄ are symmetrical
with respect to the real-axis. If we take the real-axis into a circle C by
a Möbius transformation T , then we say that the points w = Tz and
w∗ = T z̄ are symmetric with respect to C. Since the symmetry is a
geometric property, so the w and w∗ are independent of T . For suppose
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there is another Möbius transformation that maps the real-axis onto
the C, then the composite map S−1T maps the R onto itself. Thus the
images,

S−1w = S−1Tz, S−1w∗ = S−1T z̄

are obviously conjugates. Hence we can define

Definition 2.6.1. Two points z and z∗ are said to be symmetrical with
respect to the circle C passing through z1, z2, z3 if and only if

(z∗, z1, z2, z3) = (z, z1, z2, z3).

In order to see what is the relationship between z and z∗, we con-
sider the following special case.

Example 2.6.2. When z3 =∞. Then the symmetry yields

z∗ − z2

z − z4
= z̄2 − z̄4

z̄1 − z̄4
.

That is,
|z∗ − z2| = |z − z2|

first showing that the z and z∗ are equal distances to z2 (which is
arbitrary on C). And

=
(z∗ − z2

z1 − z2

)
= −=

( z − z2

z1 − z2

)

finally showing that the z and z∗ are on different sides of C.

Theorem 2.6.3. Let z and z∗ be symmetrical with respect to a circle
C of radius R and centred at a. Then

z∗ = R2

z̄ − ā
+ a.
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Proof. We note that

(zj − a)(zj − a) = R2, j = 1, 2, 3.

Thus we have

(z, z1, z2, z3 = (z − a, z2 − a, z3 − a, z3 − a)

=
(
z̄ − ā, R2

z1 − a
,

R2

z2 − a
,

R2

z3 − a
,
)

=
( R2

z − a
, z1 − a, z2 − a, z3 − a

)

=
( R2

z − a
+ a, z1, z2, z3,

)
:= (z∗, z2, z3, z3)

as required.

We deduce immediately that

Theorem 2.6.4. A Möbius transformation carries a circle C1 into a
circle C2 also transforms any pair of symmetric points of C1 into a
pair of symmetric points of C2.

Remark. 1. (z∗ − a)(z̄ − ā) = R2,

2. The symmetry point a∗ =∞ for the centre a above.

3. The expression

z∗ − a
z − a

= R2

(z̄ − ā)(z − a) > 0

implying that z and z∗ lie on the same half-line from a.

We briefly mention the issue of orientation. Suppose we have a
circle C. Then there is an analytic method to distinguish the in-
side/outside of the circle by the cross-ratio. Since the cross-ration



CHAPTER 2. CONFORMAL MAPPINGS 75

Figure 2.5: Inversion: z and z∗

is invariant with respect to any Möbius transformation, so it is suffi-
cient to consider the inside/outside issue of the real-axis R since we
can always map the circle C onto the R. Let us write

(z1, z2, z3, z) = az + b

cz + d

where a, b, c, d are real coefficients (since z1, z2, z3 ∈ R). Then

=(z, z1, z2, z3) = ad− bc
|cz + d|2

=z.

Suppose we choose z1 = 1, z2 = 0 and z3 = ∞. Then a previous
formulai

(z, 1, 0, ∞) = z

implies that =(z, 1, 0, ∞) = =z, so that =(i, 1, 0, ∞) > 0 and
=(−i, 1, 0, ∞) < 0. The ordered triple, namely 1, 0, ∞ clearly indi-
cates that the point i is on the right of R (in that order) and the other
point −i is on the left of R (in that order). But any circle C can be
brought to the real-axis R while keeping the cross-ratio unchanged. So
we have

Definition 2.6.5. Let C be a given circle in Ĉ. An orientation of C
is determined by the direction of a triple z1, z2, z3 (i.e., z1 7→ z2 7→ z3
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) lying on C. Let z 6∈ C. The point z is said to lie on the right of C
if =(z, z1, z2, z3) > 0 of the oriented circle. The point z is said to lie
on the left of C if =(z, z1, z2, z3) < 0 of the oriented circle.

Definition 2.6.6. We define an absolute orientation for each finite
circle with respect to∞ in the sense that the∞ is on its right (we call
this outside), otherwise, on its left (we call this inside).

2.7 Explicit conformal mappings
Example 2.7.1. Find a Möbius mapping that maps the upper half-
plane H onto itself.
Suppose f(z) = az + b

cz + d
maps the upper half-plane onto itself.

Then f(z) must map any three points {x1, x2, x3} on the x-axis in
the order x1 < x2 < x3 respectively to three points u1 < u2 < u3 on
real-axis. It follows that is “no turning" on the real-axis, thus implying
that

arg f ′(x1) = 0 or f ′(x1) > 0.
But

f ′(x1) = ad− bc
(cx1 + d)2 > 0,

implying that ad− bc > 0. Moreover, one can solve for the coefficients
a, b, c and d by solving

ui = axi + b

cxi + d
, i = 1, 2, 3.

One notices that a, b, c and d are therefore all real constants. Since f
must map Ĉ one-one onto Ĉ, the upper half-plane onto itself. Thus we
deduce that

f(z) = az + b

cz + d
, ad− bc > 0.
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Conversely, suppose
w = f(z) = az + b

cz + d
,

where a, b, c and d are real and ad− bc > 0. Then for all real x,

f ′(x) = ad− bc
(cx+ d)2 > 0, and arg f ′(x) = 0.

That is, there is “no turning" on the real-axis. Therefore w must map
the real-axis onto the real-axis, and hence Therefore w must map the
upper half-plane onto upper half-plane.

Exercise 2.7.1. Prove directly, that is without applying f ′, that it is
necessary sufficient that ad− bc > 0 for

1. f maps H into H;

2. that the above map is “onto".

Example 2.7.2. Construct a Möbius mapping f that maps upper half-
plane into upper half-plane such that 0 7→ 0 and i 7→ 1 + i.
According to the last example, we must have

f(z) = az + b

cz + d
, ad− bc > 0,

where a, b, c and d are real. Since f(0) = 0 implying that b = 0. On
the other hand,

1 + i = f(i) = ai

ci+ d
= i

ei+ f
,

say. That is, e− f = 0 and e+ f = 1, or e = f = 1
2. Hence

w = 2z
z + 1 .
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Example 2.7.3. Show that a Möbius mapping f that maps the upper
half-plane H onto 4 = {z : |z| < 1} if and only if

w = f(z) = eiθ0
z − α
z − α

, =α > 0, θ0 ∈ R.

Suppose f : H→4. It follows that f must map the x−axis onto |w| =

1. Let us consider the images of z = 0, 1 and∞. Since f(z) = az + b

cz + d
,

ad− bc 6= 0. Thus 1 = |f(0)| =
∣∣∣ b
d

∣∣∣, implying |b| = |d| . We also require
f(∞) to lie on |w| = 1 which is necessary finite. But we know from a
previous discussion that

|f(∞)| =
∣∣∣∣∣f
(1
ζ

)∣∣∣∣∣
ζ=0

=
∣∣∣∣∣a+ bζ

c+ dζ

∣∣∣∣∣
ζ=0

=
∣∣∣∣∣ac
∣∣∣∣∣ = 1,

implying that |a| = |c| . So

w = az + b

cz + d
= a

c
× z + b/a

z + d/c
= a

c

z − z0

z − z1

where |z0| = |b/a| = |d/c| = |z1| . Since |a/c| = 1, so there exists a real
θ0 such that a

c = eiθ0. Thus

w = eiθ0
z − z0

z − z1
, |z0| = |z1| .

Consider
1 = |f(1)| =

∣∣∣∣∣z − z0

z − z1

∣∣∣∣∣
implying |z − z0| = |z − z1| or

(1− z1)(1− z1) = (1− z0)(1− z0).

Notice that |z1| = |z0| . Hence

1− z1 − z1 + |z1|2 = 1− z0 − z0 + |z0|2.
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Thus
2<(z1) = z1 + z1 = z0 + z0 = 2<(z0)

or <(z1) = <(z0). Hence z1 = z0 or z1 = z0. We must have z1 = z0,
for if z1 = z0, then f(z) is identically a constant. Thus

f(z) = eiθ0
(z − z0

z − z0

)
.

Since f(z0) = 0 so =(z0) > 0.
Conversely, suppose

f(z) = eiθ
(z − α
z − α

)
, z ∈ H.

Then |w| < |f | =
∣∣∣∣z − α
z − α

∣∣∣∣ < 1. If z lies on the lower half-plane, then

|w| < |f | =
∣∣∣∣z − α
z − α

∣∣∣∣ > 1. If z lies on the real axis, then |w| =
∣∣∣∣z − α
z − α

∣∣∣∣ =

1. Since f maps Ĉ to Ĉ in a one-one manner, so f must maps the H
onto |w| < 1.

Remark. If =(z0) = =(α) < 0, then f maps the upper half-plane onto
the lower half-plane.

Exercise 2.7.2. Find a Möbius transformation w : H → 4, i 7→ 0.
So

w = f(z) = eiθ0
(z − i
z + i

)
.

Exercise 2.7.3. Let 4 = {z : |z| < 1}. Show that a Möbius transfor-
mation f that f : 4 → 4 if and only if there exists θ0, |α| < 1 such
that

w = f(z) = eiθ0
z − α
1− αz .
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