2.8 Orthogonal circles

We follow the ideas of Riemann and Klein to visualise the effects of conformal mappings. We use the toy models of Möbius transformations to allow us to have a glimpse.

Consider the map

$$w = h(z) = k \frac{z - a}{z - b},$$

where k is some non-zero constant to be chosen later. The map carries z = a to w = 0 and z = b to $w = \infty$. This means that any straightline passing through the origin in the w-plane has its preimage to pass through the points z = a and z = b, and this preimage must be a circle (may be a generalised circle, i.e., a straight-line) in the z-plane.

On the other hand, the circles centred at the orgin in the w-plane are of the form $|w| = \rho$ for some $\rho > 0$. That is,

$$\left|\frac{z-a}{z-b}\right| = \rho/|k|.$$

Hence the loci of the $h^{-1}\{|w| = \rho/|k|\}$, which must also be a circle, also lies on the z-plane. The relation

$$|z - a| = (\rho/|k|) |z - b|$$

describes the loci of the point z so that the distances of it to a and b are in a constant ratio. Such circles, denoted by C_2 , are called **Apollonius' circles** and the points a and b are called the **limit points**. It is clear that the family of concentric circles $|w| = \rho/|k|$ are always at right angles with any straight-line through the origin in the w-plane. So their preimages, denoted by C_1 are orthogonal to the Apollonius circles C_2 . In general, we denoted by C'_1 and by C'_2 the images of C_1 and Apollonius circles C_2 , respectively, under a Möbius transformation in the w-plane. Obviously, the C'_1 and C'_2 are orthogonal to each other at their intersections.

We have the following theorem.

Figure 2.6: Orthogonal circles

Theorem 2.8.1. Let a and b be two given points, C_1 and C_2 as defined above. Then

- (i) there is exactly one C_1 and one C_2 through each point in \mathbb{C} except at the limit point a and b in the z-plane;
- (ii) the tangent of each C_1 and that of each C_2 are orthogonal to each other at the points of intersections;
- (iii) reflection in C_1 transforms every C_2 into itself and every C_1 into another C_1 ;
- (iv) reflection in a C_2 transforms every C_1 into itself and every C_2 into another C_2 ;
- (v) the limit points are symmetric with respect to each C_2 , but not with respect to any other circle.

Proof. We consider the special case that a = 0 and b = 0 so that the circles passing through 0 and ∞ become straightlines passing through the origin in the z-plane. Then

- (i) it is clear since there is only one straightline passing through any non-zero finite point and the origin, and only one circle intersecting with the straightline and orthogonal to it at that point;
- (ii) follows since the C_2 are concentric circles;
- (iii) also follows since it is clearly that any reflection of a concentric circle C_2 with respect to any straight line passing through the origin remains unchange. Reflection of any C_1 (straightline) with respect to a C_1 is obviously another C_1 ;
- (iv) follows from Theorem 2.6.3 when considering symmetric points lying on a straightline is reflected upon each other lying on the same straightline with respect to a C_2 . So a C_1 is mapped onto itself with respect to any C_2 . Let C_2 reflect with respect to another C_2 . Then parts (i) and (ii) imply that each point of the image of C_2 upon reflection must be orthogonal to each C_1 and this implies the image must be a circle. The image circle C_2 must be different from its preimage except itself because of the symmetric principle Theorem 2.6.3;
- (v) this is obvious because of the choice.

Having established the special case a = 0 and b = 0, the general case (i-v) for arbitrary a and b follow since one can map a C_1 by a Möbius transformation to a straightline C'_1 passing through the origin and then each corresponding C_2 becomes a circle C'_2 centred at the origin so that C_2 must be orthogonal to C_1 because any Möbius transformation is conformal on \mathbb{C} .

Fixed points

The general Möbius transformation T that carries a to a' and b to b' can be written as

$$\frac{w-a'}{w-b'} = k \frac{z-a}{z-b}$$

which is an application of cross-ratios. Suppose we impose the requirement that a = a' and b = b'. That is, we assume that

$$z = T(z) = \frac{az+b}{cz+d},$$

which will have two fixed points Ta = a and Tb = b since we have a quadratic equation in z. In the exceptional circumstance, we have a double root from the quadratic equation so that we are left with one double root. The transformation T maps C_1 to C'_1 , C_2 to C'_2 and a, b to a', b'.

Theorem 2.8.2. Let w = T(z) be a Möbius transformation that satisfies,

$$\frac{w-a}{w-b} = k \frac{z-a}{z-b}.$$

Then

- (i) the whole circular net consists of C_1 and C_2 are mapped onto itself. That is, the union of C'_1 and C'_2 are the same as the union of C_1 and C_2 ;
- (ii) when the images C'_1 and C'_2 are plotted on the same graph as C_1 and C_2 , then
 - (a) the arg k represents the difference of the angle made by the tangents at the point of intersections between the circles C_1 and C'_1 ;
 - (b) the

$$|k| = \frac{|w - a|/|w - b|}{|z - a|/|z - b|}$$

measures the ratio of the above right-hand side concerning the Apollonius circles C_2 and C'_2 ,

(iii) $C_1 = C'_1$ if k > 0 (with orientation reversed if k < 0), where the points on Tz on C_1 flow toward b upon increasing the value of k, and we call T hyperbolic;

(iv) $C_2 = C'_2$ if |k| = 1, then as $\arg k$ increase, the Tz circulates along C_2 , and we call T elliptic.

Proof. Exercise.

Definition 2.8.3. If two fixed points of a Möbius transformation T coincide, then we call the transformation **parabolic**.

Rotations of the Riemann sphere

Let us consider a subgroup R of the set of all Möbius transformation that represent the rotation of the Riemann sphere S about its centre. Let us assume that the axis of rotation passes through the antipodal points Z_0 and Z_1 whose images on \mathbb{C} are z_0 and z_1 . Then we know that they are z_0 and $z_1 = -1/\bar{z_0}$ since $z_0\bar{z_1} + 1 = 0$.

Theorem 2.8.4. The Möbius transformation

$$\frac{w - z_0}{1 + \bar{z}_0 w} = k \frac{z - z_0}{1 + \bar{z}_0 z}, \quad k = \cos \alpha + i \sin \alpha \tag{2.13}$$

- (i) leaves the points z_0 and $-1/\bar{z}_0$ invariant;
- (ii) leaves the points Z_0 and Z_1 corresponding to z_0 and $-1/\bar{z}_0$ respectively, on the Riemann sphere S invariant;
- (iii) rotates the plane that intersects the S in a great circle passing through Z_0 and Z_1 by an angle of α .

Proof. The statements (i) and (ii) are clear. It remains to verify the (iii). It is left as an exercise for the reader to check that if Tz = w,

$$\left|\frac{w-z_0}{1+\bar{z}_0w}\right| = \left|\frac{z-z_0}{1+\bar{z}_0z}\right| = \rho > 0$$

then their chordal distance is

$$\chi(z, z_0) = \chi(w, z_0) = \frac{\rho}{\sqrt{1 + \rho^2}}$$

Let Z and W be the images of z and w respectively. Then it follows from (2.13) that the T is a rotation of the Riemann sphere S through the plane containing the great circle passing through the points Z_0 , Z and Z_1 to the plane containing the great circle Z_0 , W and Z_1 .

2.9 Extended Maximum Modulus Theorem

Let us recall some knowledge about metric spaces. Let (X, d) be a metric space. Then $F \subset X$ is *closed* if $X \setminus F$ is open. Let $A \subset X$ be a subset, the *closure* \overline{A} of A is defined by

 $\cap \{F : F \text{ is closed and } A \supset F\}.$

The boundary ∂A of A is defined by $\partial A = \overline{A} \cap \overline{(X \setminus A)}$. Let G be a subset of $\widehat{\mathbb{C}}$. We write

$$\partial_{\infty}G = \begin{cases} \partial G & \text{if } G \text{ is bounded;} \\ \partial G \cup \{\infty\} & \text{if } G \text{ is unbounded.} \end{cases}$$

to be the extended boundary of G in $\widehat{\mathbb{C}}$. If $a = \infty$, then the B(a, r) is understood in terms of chordal metric.

Example 2.9.1. Let $G = \{z : |\arg z| < \frac{\pi}{2}\}$. Then

$$\partial G = \{ z = x + iy : x = 0 \}, \qquad \partial_{\infty} G = \partial G \cup \{ \infty \}.$$

Figure 2.7: $G = \{z : |\arg z| < \frac{\pi}{2}\}$

Definition 2.9.2. Let $G \subset \mathbb{C}$ and $f : G \to \mathbb{R}$ be continuous. Suppose $a \in \partial_{\infty}G$, then we define

$$\limsup_{z \to a} f(z) = \lim_{r \to 0} \left(\sup_{z} \{ f(z) : z \in G \cap B(a, r) \} \right) = L$$

and

$$\liminf_{z \to a} f(z) = \lim_{r \to 0} \left(\inf_{z} \{ f(z) : z \in G \cap B(a, r) \} \right) = l.$$

If $a \neq \infty$, the above definition can be written as: Given $\epsilon > 0$, there exists r > 0 such that

$$L - \epsilon < \sup_{z} \{ f(z) : z \in G \cap B(a, r) \} < L + \epsilon.$$

In particular, $f(z) < L + \epsilon$ for all $z \in G \cap B(a, r)$.

Similarly, given $\epsilon > 0$, there exists r > 0 such that

$$l - \epsilon < \inf_{z} \{ f(z) : z \in G \cap B(a, r) \} < l + \epsilon.$$

In particular, $f(z) > l - \epsilon$ for all $z \in G \cap B(a, r)$.

If $a = \infty$, we understand B(a, r) is with the chordal metric and the lim sup, lim inf have similar interpretations.

Note also that, it follows easily $\lim_{z\to a} f(z)$ exists if and only if $L = l \ (a \in \partial_{\infty} G)$.

Theorem 2.9.3 (Maximum Modulus Theorem - Extended version). Let $G \subset \mathbb{C}$ be a region and $f: G \to \mathbb{C}$ is analytic. Suppose $\limsup_{z \to a} |f(z)| \leq M$ for some M > 0 and all $a \in \partial_{\infty} G$. Then $|f(z)| \leq M$ for all $z \in G$. *Proof.* Let

$$H = \{ z \in G : |f(z)| > M + \delta \}$$

for a fixed $\delta > 0$. We aim to show that $H = \emptyset$. Since then $|f| \leq M$ because $\delta > 0$ is arbitrary. It follows from the elementary fact in real analysis that H is open because |f| is continuous. We next show that H has no intersection with a region near the ∞ and in particular $H \cap \partial_{\infty}G = \emptyset$, and hence H is a bounded set.

By the hypothesis $\limsup_{z\to a} |f(z)| \leq M$ for all $a \in \partial_{\infty} G$, for the above $\delta > 0$, there exists r > 0 such that

$$|f(z)| < M + \delta$$

for all $z \in G \cap B(a, r)$. Hence $\overline{H} \subset G$. This argument works whether G is bounded or unbounded, and $a = \infty$. Thus $H \cap \partial_{\infty} G = \emptyset$ and hence H is bounded. Therefore \overline{H} is a compact set.

Note that $|f(z)| = M + \delta$ when $z \in \partial H$ since $\overline{H} \subset \{z \in G : |f(z)| \ge M + \delta\}$. Thus either f is constant on H by Theorem 1.7.2 (hence f is constant on G by Identity theorem since H is open and non-empty) or $H = \emptyset$. But if f is constant on G, where $|f| = M + \delta$, then it contradicts the hypothesis that $|f| < M + \delta$ near $\partial_{\infty}G$. Thus $H = \emptyset$. This completes the proof.

We shall apply the maximum modulus theorem to characterize certain analytic map of unit disk. We first recall

Theorem 2.9.4 (Schwarz's Lemma). Let $\Delta = \{z : |z| < 1\}$ be the unit disk. Suppose $f : \Delta \to \mathbb{C}$ is analytic such that $|f(z)| \le 1$ for each $z \in \Delta$, and f(0) = 0. Then $|f(z)| \le |z|$ for all $z \in \Delta$ and $|f'(0)| \le 1$. Moreover, $f(z) = e^{i\theta}z$ for a fixed θ whenever |f'(0)| = 1 or |f(z)| = |z| for some $z \ne 0$.

Proof. Define

$$F(z) = \begin{cases} \frac{f(z)}{z}, & z \neq 0; \\ f'(0), & z = 0. \end{cases}$$

F is thus analytic on Δ .

Moreover, $|F(z) = \left|\frac{f(z)}{z}\right| \le \frac{1}{|z|} \to 1$ as $|z| \to 1$. It follows from Theorem 2.9.3 that $|F(z)| \le 1$.

If |F(z)| = 1 for some $z \in \Delta$ (i.e. either |f(z)| = |z| for some $z \neq 0$ or |f'(0)| = 1), then F is a constant $e^{i\theta}$ for some $\theta \in [0, 2\pi]$ by the maximum modulus theorem 1.7.2 since $|F| \leq 1$ for all $z \in \Delta$. And so $f(z) = e^{i\theta}z$.

Exercise. Suppose $\phi(z)$ is analytic on $|z| \leq R$, where $|\phi(z)| \leq 1$ and $\phi(0) = 0$. Show that $|\phi(z)| \leq \frac{r}{R}$ on |z| = r, where r < R.

Proposition 2.9.5. Suppose |a| < 1, then

$$\varphi_a(z) = \frac{z-a}{1-\overline{a}z}$$

is a conformal map mapping Δ onto Δ , $\partial \Delta$ to $\partial \Delta$. Moreover, $\varphi_a^{-1} = \varphi_{-a}, \ \varphi_a'(0) = 1 - |a|^2 \ and \ \varphi_a'(a) = (1 - |a|^2)^{-1}.$

Proof. Since |a| < 1, φ_a is clearly analytic. In fact, φ_a is conformal (Exercise). We only show

$$\begin{split} \varphi_a(e^{i\theta}) &= \left| \frac{e^{i\theta} - a}{1 - \overline{a}e^{i\theta}} \right| \\ &= \left| e^{i\theta} \cdot \frac{e^{i\theta} - a}{e^{-i\theta} - \overline{a}} \right| \\ &= \frac{|e^{i\theta} - a|}{|e^{-i\theta} - \overline{a}|} = 1 \end{split}$$

Hence $\varphi_a(\partial \Delta) = \partial \Delta$. The remaining conclusion is left as an exercise.

Proposition 2.9.6. Suppose $f : \Delta \to \Delta$ is analytic and $f(a) = \alpha$. Then

$$|f'(a)| \le \frac{1 - |\alpha|^2}{1 - |a|^2}$$
. (max. value of $|f'(a)|$)

Moreover, equality occurs if and only if $f(z) = \varphi_{-\alpha}(c\varphi_a(z)), |c| = 1.$

Remark. We may assume $|\alpha| < 1$. Otherwise f is a constant.

Proof. Define $g = \varphi_{\alpha} \circ f \circ \varphi_{-a}$, Then $g(\Delta) \subset \Delta$, and $g(0) = \varphi_{\alpha}(f(a)) = \varphi_{\alpha}(\alpha) = \frac{\alpha - \alpha}{1 - \overline{\alpha}\alpha} = 0$. Clearly g is analytic and thus $|g(z)| \leq |z|$ and $|g'(0)| \leq 1$ by Schwarz's Lemma. But

$$g'(0) = \frac{1 - |a|^2}{1 - |\alpha|^2} f'(a).$$

Thus

$$|f'(a)| \le \frac{1 - |\alpha|^2}{1 - |a|^2}.$$
(2.14)

Equality will occur if and only if there exists a c such that |g'(0)| = |c| = 1 and g = cz.

We can now prove the converse of Proposition 2.9.5.

Theorem 2.9.7. Let $f : \Delta \to \Delta$ be an one-to-one analytic function onto Δ . Suppose f(a) = 0. Then there is a c such that |c| = 1 and

$$f = c\varphi_a = c\frac{z-a}{1-\overline{a}z}$$

Proof. Since f is bijective, we let $g : \Delta \to \Delta$ to be f^{-1} . So g(f(z)) = z for all $z \in \Delta$. We apply (2.14) to both f and g to derive the inequalities:

$$|f'(a)| \le \frac{1}{1-|a|^2}$$
 and $|g'(0)| \le 1-|a|^2$.

On the other hand, 1 = g'(0)f'(a). Thus, $|f'(a)| = (1 - |a|^2)^{-1}$ since

$$\frac{1}{1-|a|^2} \le |f'(a)| \le \frac{1}{1-|a|^2}$$

Then, since $\varphi_0(z) = z$, Proposition 2.9.6 gives $f = c\varphi_a$ for some c with |c| = 1.

Remark. A simple consequence of the maximum modulus of entire functions is that the function $M(r) = M(r, f) = \max_{|z|=r} |f(z)|$ is an increasing function of r, i.e. $M(r_1) \leq M(r_2)$ if $r_1 \leq r_2$.

Bibliography

- [1] L. V. Ahlfors, *Complex Analysis*, 3rd Ed., McGraw-Hill, 1979.
- [2] J.B. Conway, *Functions of One Complex Variable*, 2nd Ed., Springer-Verlag, 1978.
- [3] F. T.-H. Fong, *Complex Analysis*, Lecture notes for MATH 4023, HKUST, 2017.
- [4] E. Hille, Analytic Function Theory, Vol. I, 2nd Ed., Chelsea Publ. Comp., N.Y., 1982
- [5] E. Hille, Analytic Function Theory, Vol. II, Chelsea Publ. Comp., N.Y., 1971.
- [6] E. T. Whittaker & G. N. Watson, A Course of Modern Analysis, 4th Ed., Cambridge Univ. Press, 1927