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2.8 Orthogonal circles
We follow the ideas of Riemann and Klein to visualise the effects of
conformal mappings. We use the toy models of Möbius transformations
to allow us to have a glimpse.

Consider the map

w = h(z) = k
z − a
z − b

,

where k is some non-zero constant to be chosen later. The map carries
z = a to w = 0 and z = b to w = ∞. This means that any straight-
line passing through the origin in the w−plane has its preimage to pass
through the points z = a and z = b, and this preimage must be a circle
(may be a generalised circle, i.e., a straight-line) in the z−plane.

On the other hand, the circles centred at the orgin in the w−plane
are of the form |w| = ρ for some ρ > 0. That is,

∣∣∣∣z − a
z − b

∣∣∣∣ = ρ/|k|.

Hence the loci of the h−1{|w| = ρ/|k|}, which must also be a circle,
also lies on the z−plane. The relation

|z − a| = (ρ/|k|) |z − b|

describes the loci of the point z so that the distances of it to a and b are
in a constant ratio. Such circles, denoted by C2, are calledApollonius’
circles and the points a and b are called the limit points. It is clear
that the family of concentric circles |w| = ρ/|k| are always at right
angles with any straight-line through the origin in the w−plane. So
their preimages, denoted by C1 are orthogonal to the Apollonius circles
C2. In general, we denoted by C ′1 and by C ′2 the images of C! and
Apollonius circles C2, respectively, under a Möbius transformation in
the w−plane. Obviously, the C ′1 and C ′2 are orthogonal to each other
at their intersections.

We have the following theorem.

https://en.wikipedia.org/wiki/Circles_of_Apollonius
https://en.wikipedia.org/wiki/Circles_of_Apollonius
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Figure 2.6: Orthogonal circles

Theorem 2.8.1. Let a and b be two given points, C1 and C2 as defined
above. Then

(i) there is exactly one C1 and one C2 through each point in C except
at the limit point a and b in the z−plane;

(ii) the tangent of each C1 and that of each C2 are orthogonal to each
other at the points of intersections;

(iii) reflection in C1 transforms every C2 into itself and every C1 into
another C1;

(iv) reflection in a C2 transforms every C1 into itself and every C2
into another C2;

(v) the limit points are symmetric with respect to each C2, but not
with respect to any other circle.

Proof. We consider the special case that a = 0 and b = 0 so that the
circles passing through 0 and ∞ become straightlines passing through
the origin in the z−plane. Then
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(i) it is clear since there is only one straightline passing through any
non-zero finite point and the origin, and only one circle intersect-
ing with the straightline and orthogonal to it at that point;

(ii) follows since the C2 are concentric circles;

(iii) also follows since it is clearly that any reflection of a concentric
circle C2 with respect to any straight line passing through the
origin remains unchange. Reflection of any C1 (straightline) with
respect to a C1 is obviously another C1;

(iv) follows from Theorem 2.6.3 when considering symmetric points
lying on a straightline is reflected upon each other lying on the
same straightline with respect to a C2. So a C1 is mapped onto
itself with respect to any C2. Let C2 relfect with respect to
another C2. Then parts (i) and (ii) imply that each point of
the image of C2 upon reflection must be orthogonal to each C1
and this implies the image must be a circle. The image circle C2
must be different from its preimage except itself because of the
symmetric principle Theorem 2.6.3;

(v) this is obvious because of the choice.

Having established the special case a = 0 and b = 0, the general case
(i-v) for arbitrary a and b follow since one can map a C1 by a Möbius
transformation to a straightline C ′1 passing through the origin and then
each corresponding C2 becomes a circle C ′2 centred at the origin so that
C2 must be orthogonal to C1 because any Möbius transformation is
conformal on C.

Fixed points

The general Möbius transformation T that carries a to a′ and b to b′
can be written as

w − a′

w − b′
= k

z − a
z − b
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which is an application of cross-ratios. Suppose we impose the require-
ment that a = a′ and b = b′. That is, we assume that

z = T (z) = az + b

cz + d
,

which will have two fixed points Ta = a and Tb = b since we have
a quadratic equation in z. In the exceptional circumstance, we have a
double root from the quadratic equation so that we are left with one
double root. The transformation T maps C1 to C ′1, C2 to C ′2 and a, b
to a′, b′.

Theorem 2.8.2. Let w = T (z) be a Möbius transformation that sat-
isfies,

w − a
w − b

= k
z − a
z − b

.

Then

(i) the whole circular net consists of C1 and C2 are mapped onto
itself. That is, the union of C ′1 and C ′2 are the same as the union
of C1 and C2;

(ii) when the images C ′1 and C ′2 are plotted on the same graph as C1
and C2, then

(a) the arg k represents the difference of the angle made by the
tangents at the point of intersections between the circles C1
and C ′1;

(b) the

|k| = |w − a|/|w − b|
|z − a|/|z − b|

measures the ratio of the above right-hand side concerning
the Apollonius circles C2 and C ′2,

(iii) C1 = C ′1 if k > 0 (with orientation reversed if k < 0), where the
points on Tz on C1 flow toward b upon increasing the value of k,
and we call T hyperbolic;
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(iv) C2 = C ′2 if |k| = 1, then as arg k increase, the Tz circulates along
C2, and we call T elliptic.

Proof. Exercise.

Definition 2.8.3. If two fixed points of a Möbius transformation T
coincide, then we call the transformation parabolic.

Rotations of the Riemann sphere

Let us consider a subgroup R of the set of all Möbius transformation
that represent the rotation of the Riemann sphere S about its centre.
Let us assume that the axis of rotation passes through the antipodal
points Z0 and Z1 whose images on C are z0 and z1. Then we know
that they are z0 and z1 = −1/z̄0 since z0z̄1 + 1 = 0.

Theorem 2.8.4. The Möbius transformation

w − z0

1 + z̄0w
= k

z − z0

1 + z̄0z
, k = cosα + i sinα (2.13)

(i) leaves the points z0 and −1/z̄0 invariant;

(ii) leaves the points Z0 and Z1 corresponding to z0 and −1/z̄0 re-
spectively, on the Riemann sphere S invariant;

(iii) rotates the plane that intersects the S in a great circle passing
through Z0 and Z1 by an angle of α.

Proof. The statements (i) and (ii) are clear. It remains to verify the
(iii). It is left as an exercise for the reader to check that if Tz = w,

∣∣∣∣ w − z0

1 + z̄0w

∣∣∣∣ =
∣∣∣∣ z − z0

1 + z̄0z

∣∣∣∣ = ρ > 0
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then their chordal distance is

χ(z, z0) = χ(w, z0) = ρ√
1 + ρ2 .

Let Z and W be the images of z and w respectively. Then it follows
from (2.13) that the T is a rotation of the Riemann sphere S through
the plane containing the great circle passing through the points Z0, Z
and Z1 to the plane containing the great circle Z0, W and Z1.

2.9 Extended Maximum Modulus Theo-
rem

Let us recall some knowledge about metric spaces. Let (X, d) be a
metric space. Then F ⊂ X is closed if X \ F is open. Let A ⊂ X be
a subset, the closure A of A is defined by

∩{F : F is closed and A ⊃ F}.

The boundary ∂A of A is defined by ∂A = A ∩ (X \ A).
Let G be a subset of Ĉ. We write

∂∞G =
∂G if G is bounded;
∂G ∪ {∞} if G is unbounded.

to be the extended boundary of G in Ĉ. If a =∞, then the B(a, r) is
understood in terms of chordal metric.

Example 2.9.1. Let G = {z : | arg z| < π
2}. Then

∂G = {z = x+ iy : x = 0}, ∂∞G = ∂G ∪ {∞}.
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G

Figure 2.7: G = {z : | arg z| < π

2}

Definition 2.9.2. Let G ⊂ C and f : G→ R be continuous. Suppose
a ∈ ∂∞G, then we define

lim sup
z→a

f(z) = lim
r→0

(
sup
z
{f(z) : z ∈ G ∩B(a, r)}

)
= L

and
lim inf
z→a f(z) = lim

r→0

(
inf
z
{f(z) : z ∈ G ∩B(a, r)}

)
= l.

If a 6=∞, the above definition can be written as:
Given ε > 0, there exists r > 0 such that

L− ε < sup
z
{f(z) : z ∈ G ∩B(a, r)} < L+ ε.

In particular, f(z) < L+ ε for all z ∈ G ∩B(a, r).
Similarly, given ε > 0, there exists r > 0 such that

l − ε < inf
z
{f(z) : z ∈ G ∩B(a, r)} < l + ε.

In particular, f(z) > l − ε for all z ∈ G ∩B(a, r).

If a =∞, we understand B(a, r) is with the chordal metric and the
lim sup, lim inf have similar interpretations.

Note also that, it follows easily limz→a f(z) exists if and only if
L = l (a ∈ ∂∞G).

Theorem 2.9.3 (Maximum Modulus Theorem - Extended version).
Let G ⊂ C be a region and f : G→ C is analytic. Suppose lim supz→a |f(z)| ≤
M for some M > 0 and all a ∈ ∂∞G. Then |f(z)| ≤M for all z ∈ G.
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Proof. Let
H = {z ∈ G : |f(z)| > M + δ}

for a fixed δ > 0. We aim to show that H = ∅. Since then |f | ≤ M
because δ > 0 is arbitrary. It follows from the elementary fact in
real analysis that H is open because |f | is continuous. We next show
that H has no intersection with a region near the ∞ and in particular
H ∩ ∂∞G = ∅, and hence H is a bounded set.

By the hypothesis lim supz→a |f(z)| ≤ M for all a ∈ ∂∞G, for the
above δ > 0, there exists r > 0 such that

|f(z)| < M + δ

for all z ∈ G ∩ B(a, r). Hence H ⊂ G. This argument works whether
G is bounded or unbounded, and a = ∞. Thus H ∩ ∂∞G = ∅ and
hence H is bounded. Therefore H is a compact set.

Note that |f(z)| = M + δ when z ∈ ∂H since H ⊂ {z ∈ G :
|f(z)| ≥ M + δ}. Thus either f is constant on H by Theorem 1.7.2
(hence f is constant on G by Identity theorem since H is open and
non-empty) or H = ∅. But if f is constant on G, where |f | = M + δ,
then it contradicts the hypothesis that |f | < M + δ near ∂∞G. Thus
H = ∅. This completes the proof.

We shall apply the maximum modulus theorem to characterize cer-
tain analytic map of unit disk. We first recall

Theorem 2.9.4 (Schwarz’s Lemma). Let ∆ = {z : |z| < 1} be the
unit disk. Suppose f : ∆→ C is analytic such that |f(z)| ≤ 1 for each
z ∈ ∆, and f(0) = 0. Then |f(z)| ≤ |z| for all z ∈ ∆ and |f ′(0)| ≤ 1.

Moreover, f(z) = eiθz for a fixed θ whenever |f ′(0)| = 1 or |f(z)| =
|z| for some z 6= 0.

Proof. Define

F (z) =


f(z)
z
, z 6= 0;

f ′(0), z = 0.
F is thus analytic on ∆.
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Moreover, |F (z) =
∣∣∣∣∣∣f(z)
z

∣∣∣∣∣∣ ≤ 1
|z|
→ 1 as |z| → 1. It follows from

Theorem 2.9.3 that |F (z)| ≤ 1.
If |F (z)| = 1 for some z ∈ ∆ (i.e. either |f(z)| = |z| for some z 6= 0

or |f ′(0)| = 1), then F is a constant eiθ for some θ ∈ [0, 2π] by the
maximum modulus theorem 1.7.2 since |F | ≤ 1 for all z ∈ ∆. And so
f(z) = eiθz.

Exercise. Suppose φ(z) is analytic on |z| ≤ R, where |φ(z)| ≤ 1 and
φ(0) = 0. Show that |φ(z)| ≤ r

R
on |z| = r, where r < R.

Proposition 2.9.5. Suppose |a| < 1, then

ϕa(z) = z − a
1− az

is a conformal map mapping ∆ onto ∆, ∂∆ to ∂∆. Moreover, ϕ−1
a =

ϕ−a, ϕ′a(0) = 1− |a|2 and ϕ′a(a) = (1− |a|2)−1.

Proof. Since |a| < 1, ϕa is clearly analytic. In fact, ϕa is conformal
(Exercise). We only show

|ϕa(eiθ)| =
∣∣∣∣∣∣ e

iθ − a
1− aeiθ

∣∣∣∣∣∣
=
∣∣∣∣∣∣eiθ · e

iθ − a
e−iθ − a

∣∣∣∣∣∣
= |eiθ − a|
|e−iθ − a|

= 1.

Hence ϕa(∂∆) = ∂∆. The remaining conclusion is left as an exercise.

Proposition 2.9.6. Suppose f : ∆ → ∆ is analytic and f(a) = α.
Then

|f ′(a)| ≤ 1− |α|2
1− |a|2 . (max. value of |f ′(a)|)

Moreover, equality occurs if and only if f(z) = ϕ−α(cϕa(z)), |c| = 1.
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Remark. We may assume |α| < 1. Otherwise f is a constant.

Proof. Define g = ϕα◦f ◦ϕ−a, Then g(∆) ⊂ ∆, and g(0) = ϕα(f(a)) =
ϕα(α) = α− α

1− αα = 0. Clearly g is analytic and thus |g(z)| ≤ |z| and
|g′(0)| ≤ 1 by Schwarz’s Lemma. But

g′(0) = 1− |a|2
1− |α|2f

′(a).

Thus
|f ′(a)| ≤ 1− |α|2

1− |a|2 . (2.14)

Equality will occur if and only if there exists a c such that |g′(0)| =
|c| = 1 and g = cz.

We can now prove the converse of Proposition 2.9.5.
Theorem 2.9.7. Let f : ∆ → ∆ be an one-to-one analytic function
onto ∆. Suppose f(a) = 0. Then there is a c such that |c| = 1 and

f = cϕa = c
z − a
1− az .

Proof. Since f is bijective, we let g : ∆→ ∆ to be f−1. So g(f(z)) = z
for all z ∈ ∆.We apply (2.14) to both f and g to derive the inequalities:

|f ′(a)| ≤ 1
1− |a|2 and |g′(0)| ≤ 1− |a|2.

On the other hand, 1 = g′(0)f ′(a). Thus, |f ′(a)| = (1−|a|2)−1 since
1

1− |a|2 ≤ |f
′(a)| ≤ 1

1− |a|2 .

Then, since ϕ0(z) = z, Proposition 2.9.6 gives f = cϕa for some c with
|c| = 1.

Remark. A simple consequence of the maximum modulus of entire
functions is that the function M(r) = M(r, f) = max|z|=r |f(z)| is an
increasing function of r, i.e. M(r1) ≤M(r2) if r1 ≤ r2.



Bibliography
[1] L. V. Ahlfors, Complex Analysis, 3rd Ed., McGraw-Hill, 1979.

[2] J.B. Conway, Functions of One Complex Variable, 2nd Ed.,
Springer-Verlag, 1978.

[3] F. T.-H. Fong, Complex Analysis, Lecture notes for MATH 4023,
HKUST, 2017.

[4] E. Hille, Analytic Function Theory, Vol. I, 2nd Ed., Chelsea Publ.
Comp., N.Y., 1982

[5] E. Hille, Analytic Function Theory, Vol. II, Chelsea Publ. Comp.,
N.Y., 1971.

[6] E. T. Whittaker & G. N. Watson, A Course of Modern Analysis,
4th Ed., Cambridge Univ. Press, 1927

90


