3.5 Boundary Correspondence of Conformal Mappings

Suppose f is a conformal mapping from the unit disc Δ to a simply connected domain D. We are concerned with under what circumstance that we could extend the f to the boundary |z| = 1.

Lemma 3.5.1. Let $f : \Delta \to \mathbb{C}$ be continuous, $f(\Delta) = D$. Suppose $\lim_{z\to\xi} f(z)$ exists for every ξ with $|\xi| = 1$. Then the function $\tilde{f} : \Delta \to \overline{\mathbb{C}}$ defined by

$$\tilde{f}(z) = \begin{cases} f(z), & |z| < 1, \\ \lim_{z \to \xi} f(z), & |\xi| = 1, \end{cases}$$

is the unique continuous extension of f to $|z| \leq 1$. Moreover, $f(\Delta) = \overline{D}$.

The lemma provides a way to define a possible meaning of a continuous extension of f to |z| = 1. Interested reader can consult Palka's book [7, Chap. XI] or Ahlfors' [1].

Definition 3.5.2. A plane domain/region G is finitely connected along its boundary if corresponding to each point z of ∂G and each r > 0, there exists an $s \in (0, r)$ such that $G \cap B(z, s)$ intersects at most finitely many components of the open set $G \cap B(z, r)$.

Theorem 3.5.3 (Väisälä & Näkki). Let $f : \Delta \to \mathbb{C}$ be conformal. The f can be extended to a continuous mapping \tilde{f} of $\overline{\Delta}$ onto $\overline{f(\Delta)}$ if and only if $f(\Delta)$ is finitely connected along its boundary.

Definition 3.5.4. A plane domain/region G is *locally connected along its boundary* if corresponding to each point z of ∂G and each r > 0, there exists an $s \in (0, r)$ such that $G \cap B(z, s)$ intersects exactly one component of $G \cap B(z, r)$.

Theorem 3.5.5. Let $f : \Delta \to \mathbb{C}$ be conformal. Then f can be extended to a homeomorphism \tilde{f} of $\overline{f(\Delta)}$ if and only if $f(\Delta)$ is locally connected along its boundary.

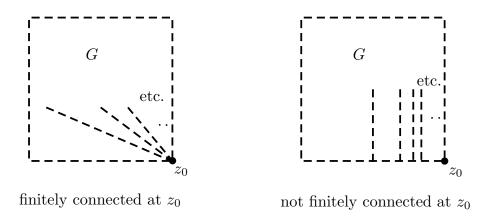


Figure 3.4: Finitely connectedness along different boundaries

Definition 3.5.6. A set J of points in \mathbb{C} is called a *Jordan curve* if J is the boundary of some simple closed path. (J is compact and hence bounded.)

Theorem 3.5.7 (Jordan Curve Theorem, Jordan 1887). The complement of a Jordan curve J has exactly two components, each having Jas its boundary. One of these components is a bounded set (the inside of J), while the other is unbounded (the outside of J).

Definition 3.5.8. A domain/region $G \subset \mathbb{C}$ with the property that ∂G is a Jordan curve is called a *Jordan domain*.

Theorem 3.5.9 (Caratheodory-Osgood Theorem). A conformal mapping f of Δ onto a domain D can be extended to a homeomorphism of $\overline{\Delta}$ onto $\overline{\Delta}$ if and only if D is a Jordan domain.

3.6 Space of Meromorphic Functions

Definition 3.6.1. Let $M(G) \subset C(G, \widehat{\mathbb{C}})$ denote the space of meromorphic functions on the region G.

Theorem 3.6.2. Let $\{f_n\} \subset M(G), f_n \to f \text{ in } C(G, \widehat{\mathbb{C}})$. Then either f is meromorphic or $f \equiv \infty$. If each $\{f_n\}$ is analytic or $f \equiv \infty$.

Corollary 3.6.2.1. $M(G) \cup \{\infty\}$ is a complete metric space. (w.r.t. spherical metric)

Corollary 3.6.2.2. $H(G) \cup \{\infty\}$ is closed in $C(G, \widehat{\mathbb{C}})$.

Example 3.6.3. $f_n(z) = n(z^2 - n)$ is analytic on \mathbb{C} for each n. The $f_n \to \infty$ uniformly on each compact subset of \mathbb{C} . While $\{f'_n(z)\} = \{2nz\}$ is not a normal family, since $f'_n(0) = 0$ and $f'_n(z) \to \infty$ for $z \neq 0$. So \mathcal{F} is normal $\neq \Rightarrow \mathbb{F}'$ is normal.

Definition 3.6.4. $\rho(f)(z) = \frac{2|f'(z)|}{1+|f(z)|^2}$ is called the *spherical derivative of f*. It is defined even at the poles of f.

Recall that the chordal distance under the stereographic projection is given by

$$d(f(z_1), f(z_2)) = \frac{2|f(z_1) - f(z_2)|}{\sqrt{(1 + |f(z_1)|^2)(1 + |f(z_2)|^2)}}$$
$$\sim \frac{2|f'(z_1)|dz}{1 + |f(z_1)|^2} \quad \text{as } z_2 \to z_1.$$

Let γ be the curve in \mathbb{C} . The length of $f(\gamma)$ under the stereographic projection on the Riemann sphere is given by

$$\int_{\gamma} \rho(f)(z) \, |dz|.$$

Theorem 3.6.5. $\mathcal{F} \subset M(G)$ is normal in $C(G, \widehat{\mathbb{C}})$ if and only if $\rho(f)(z)$ is locally bounded on \mathcal{F} .

3.7 Schwarz's reflection principle

Let $G \subset \mathbb{C}$ be a region, and $\overline{G} = \{\overline{z} : z \in G\}$. Clearly if a region G is symmetrical with respect to \mathbb{R} , then $\overline{G} = G$.

Theorem 3.7.1. Suppose $\overline{G} = G$. We denote $G_+ = \{z \in G : \Im z > 0\}$, $G_- = \{z \in G : \Im z < 0\}$ and $G_0 = G \cap \mathbb{R}$. Suppose $f : G_+ \cup G_0 \to \mathbb{C}$ is continuous, analytic on G_+ such that f is real on G_0 . Then

$$g(z) := \begin{cases} f(z) & z \in G_+ \\ \overline{f(\bar{z})} & z \in G_0 \cup G_- \end{cases}$$
(3.4)

is analytic on G.

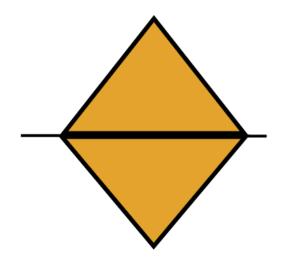


Figure 3.5: Schwarz's relfection along the \mathbb{R}

Remark. We note that if f is only defined on G_+ and continuous and real on G_0 , then we can use the above g to extend f across to G_- by reflection. By the identity theorem applied to \mathbb{R} , so that such an extension is unique.

Proof. It is clear that g is analytic on G_+ and G_- . It remains to consider if g is analytic on G_0 . That is, if g is analytic in a neighbourhood $B(x_0, r)$, where x_0 real and for every $x_0 \in G_0$ and a corresponding r > 0. We could achieve this by proving for each triangle T within $B(x_0, r)$ the integral $\int_T g \, dz = 0$. Then g is analytic in $B(x_0, r)$ by Morera's theorem. Thus, if the triangle T lies entirely in G_+ with no intersection with G_0 , then $\int_T f = 0$ since f is analytic there. Similarly if T lies entirely in G_- . So we assume that $T \cap G_0 \neq \emptyset$.

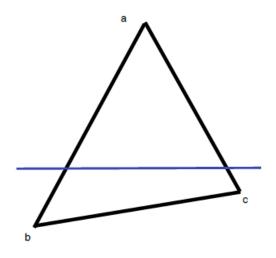


Figure 3.6: One triangle and one quadrilaterial

In general, either $T \cap G_0$ is a single point or it is a line segment. The former consideration obviously gives $\int_T f = \int_T g = 0$. The latter means that the G_0 deivdes the T into two pieces. Without loss of generality, we may assume that $G_+ \cup G_0$ contains the triangle T' = [a, b, c, a] part of T and [a, b] lies on G_0 , leaving the quadrilateral part in $G_- \cup G_0$.

Notice that g = f is uniformly continues on T' since T' is a compact set. That is, given $\varepsilon > 0$, there is a $\delta > 0$ such that if $z, z' \in T'$, and $|z - z'| < \delta$, then

$$|f(z) - f(z')| < \varepsilon.$$

We construct a sub-triangle $T'' = [\alpha, \beta, c, \alpha]$ of T' such that one of

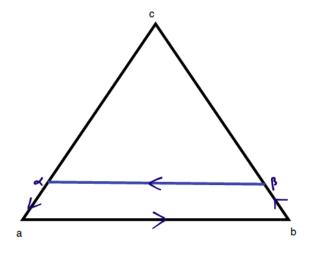


Figure 3.7: Integration along the quadrilaterial

the sides $[\alpha, \beta]$ is parallel and close to [a, b] and hence to the \mathbb{R} . We may parametrise the horizontal line segments [a, b] and $[\beta, \alpha]$ by

$$(1-t)ta+tb, \quad (1-t)\alpha+t\beta, \qquad (0 \le t \le 1).$$

So now with the given $\varepsilon > 0$, we choose $\delta > 0$ so that

$$|\alpha - a| < \delta, \quad |\beta - b| < \delta \qquad (0 \le t \le 1),$$

hence

$$|(1-t)\alpha + t\beta - ((1-t)ta + tb)| \le (1-t)|\alpha - a| + t|\beta - b|$$

$$\le \delta(1-t+t)$$

$$= \delta.$$

This implies

$$|f[(1-t)\alpha + t\beta] - f[(1-t)ta + tb)]| < \varepsilon, \qquad (0 \le t \le 1).$$

Thus

$$\begin{split} \left| \int_{[a,b]} f - \int_{[\alpha,\beta]} \right| \\ &= \left| (b-a) \int_0^1 f[(1-t)ta + tb) - (\beta - \alpha) \int_0^1 f[(1-t)\alpha + t\beta] dt \right| \\ &\leq |b-a| \left| \int_0^1 f[(1-t)ta + tb) - (\beta - \alpha) \int_0^1 f[(1-t)\alpha + t\beta] dt \right| \\ &+ \left| (b-a) - (\beta - \alpha) \right| \left| \int_0^1 f[(1-t)\alpha + t\beta] dt \right| \\ &\leq |b-a| \varepsilon + \left| (b-a) - (\beta - \alpha) \right| M \\ &\leq \varepsilon \ell(T') + \left| (b-a) - (\beta - \alpha) \right| M \\ &\leq \varepsilon \ell(T') + 2\delta M \end{split}$$

where $\ell(T')$ stands for the length of the parameter of T', and $M = \max\{|f(z)| : z \in T'\}$. The estimates of the remaining integrals are easy:

$$\left|\int_{[a,\alpha]} f\right| \le |\alpha - a|M \le M\delta, \quad \left|\int_{[b,\beta]} f\right| \le |\beta - b|M \le M\delta.$$

We finally deduce

$$\begin{split} \left| \int_{T} f \right| &= \left| \int_{T'} f + \int_{[a,b,\beta,\alpha,a]} f \right| \\ &= \left| \int_{[a,b,\beta,\alpha,a]} f \right| \\ &= \left| \int_{[a,b]} f - \int_{[\alpha,\beta]} \right| + \left| \int_{[a,\alpha]} f \right| + \left| \int_{[b,\beta]} f \right| \\ &\leq \varepsilon \, \ell(T') + 4\delta \, M \\ &\leq \varepsilon \, (\ell(T') + 4 \, M) \end{split}$$

since we may choose $\delta < \varepsilon$. This shows that $\int_{T'} f = 0$. We conclude that f is analytic in $B(x_0, r)$. Hence g is analytic on G.

The above is called Schwarz's¹ reflection principle. We can map the above upper half-plane onto a circle and the real-axis \mathbb{R} to |z-a| = r.

¹ H. A. Schwarz (1843-1921): advisor Karl Weierstrass

Theorem 3.7.2 (Schwarz reflection principle: second version). Let G_1 denote a simply-connected domain interior to $C_a := \{z : |z - a| = r\}$ with an arc γ on C_a such that every point of $int(\gamma)$ has a semicircular neighbourhood in $B(a, r) \cap \gamma$. Let $f : G_1 \to \mathbb{C}$ be analytic and continuous on $G_1 \cup \gamma$. Suppose $f(\gamma) = \Gamma$ consists of an arc of the circle $C_b := \{w : |w - b| = R\}$. Then we can extend f to the region G_2 , obtained by reflecting G_1 with respect to C_a , mapping every $z \in G_1$ to

$$z^* = a + \frac{r^2}{\bar{z} - \bar{a}}$$

being the symmetric (inverse) point of z in G_1 , and

$$f(z^*) = b + \frac{R^2}{\overline{f(z)} - \overline{b}},$$

in G_2 so that the new function is analytic in $G = G_1 \cup \gamma \cup G_2$.

Proof. Let $z \in G_1$. Then we recall that the symmetric point z^* with respect to the circle C_a is given by

$$z^* = a + \frac{r}{\bar{z} - \bar{a}}.$$

Let M_{C_a} be the Möbius transformation that maps the circle onto \mathbb{R} with the notaton $z \mapsto Z$. We also denote the inverse point of w = f(z)with respect to the circle |w - b| = R to be

$$w^* = b + \frac{R}{\overline{f(z)} - \overline{b}}.$$

We also denote the Möbius transformation that maps the circle

|w-b| = R onto \mathbb{R} by M_{C_b} with the notation $w \mapsto W$. Then we have

$$f(z^*) = f \circ M_{C_a}(Z^*)$$

= $F(Z^*) = F(\bar{Z})$
= $\overline{F(\bar{Z})}$
= $\overline{W} (= W^*)$
= $M_{C_b}(w^*)$
= $M_{C_b}(f(z)^*)$
= $b + \frac{R^2}{\overline{f(z)} - \overline{b}},$

where $F = f \circ M_{C_a}$.

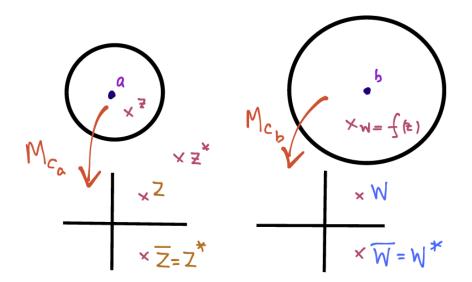


Figure 3.8: Schwarz reflection with respect to circles

One can achieve a more general reflection below.

Theorem 3.7.3. Let G_1 and G_2 be two simply-connected domains such that

1.
$$G_1 \cap G_2 = \emptyset;$$

2. $\bar{G}_1 \cap \bar{G}_2 = \gamma$ where γ is a smooth curve such that every interior point $int(\gamma)$ of γ has a neighbourhood lying entirely inside $G := G_1 \cup int(\gamma) \cup G_2$.

Let $f_j(z)$ be analytic in G_j , continuous in $G_j \cup \gamma$, j = 1, 2 such that for every point $\xi \in \gamma$

$$\lim_{D_1 \ni z \to \xi} f_1(z) = h(\xi) = \lim_{D_2 \ni z \to \xi} f_2(z)$$

for some complex-valued function $h : \gamma \to \mathbb{C}$. Then there exists an analytic function f in G such that $f(z) = f_j(z)$ for each $z \in G_j$, j = 1, 2.

3.8 Schwarz-Christoffel formulae

The Riemann mapping theorem that we discussed is an existence result. It is rather difficult to construct explicit formulae that actually realise the theorem for reasonable shape simple-connected regiona given simply connected can be approximated by polygons, so it becomes of interest to find explicit formulae for conformal of polygons.

Theorem 3.8.1 (Schwarz (1869), Christoffel (1867)). Let f be a oneone conformal mapping that maps the upper half-plane \mathbb{H}^+ onto the interior of the a polygon $D = [w_1, w_2, \cdots , w_n]$ with the interior angles

$$0 < \alpha_k \pi := (1 - \nu_k)\pi < 2\pi,$$

at each of the vertex $w_k k = 1, \dots n$. Suppose $-\infty < a_1 < a_2 < \dots < a_n < \infty$ are real numbers on \mathbb{R} such that $f(a_k) = w_k, k = 1, \dots n$. Then f is given by

$$f(z) = \alpha \int_0^z \frac{dz}{(z - a_1)^{1 - \alpha_1} (z - a_2)^{1 - \alpha_2} \cdots (z - a_n)^{1 - \alpha_n}} + \beta$$

= $\alpha \int_0^z \frac{dz}{(z - a_1)^{\mu_1} (z - a_2)^{\mu_2} \cdots (z - a_n)^{\mu_n}} + \beta$ (3.5)

where α , β are two integration constants, where the ν_k , $k = 1, \dots, n$ are the corresponding exterior angles. We recall that from elementary geometry that if the above polygon D is convex, that is, $0 < \nu_k < 1$, then

$$\sum_{k=1}^{n} \nu \pi_k = 2\pi.$$

Proof. Since the boundary of the proposed polygon D is certainly a Jordan curve, we immediately deduce from Theorem 3.5.9 that there is a conformal mapping f from the upper half-plane \mathbb{H}^+ onto the D such that f can be extended continuously to the real-axis \mathbb{R} and $f(\mathbb{R}) = \partial D$. Let us label

$$f(a_k) = w_k, \quad k = 1, \cdots, n$$

 $w_{n+1} = w_1$ that are the vertices of the polygon D. Let us denote $f(a_k, a_{k+1}) = L_k, \ k = 1, \dots n$. Then we can apply Schwarz's reflection principle (Theorem 3.7.2) to a chosen $\mathbb{H}^+ \cup (a_k, a_{k+1})$ for some $k \in$ $\{1, \dots, n\}$ and reflect along (a_k, a_{k+1}) to continue f to the lower halfplane \mathbb{H}^- . But this corresponds to a reflection image D' obtained from D after a reflection of D along its side L_k . In fact, the $D' = f(\mathbb{H}^-)$. where we have reused the notation for the extension of f onto the domain $\mathbb{H}^+ \cup (a_k, a_{k+1}) \cup \mathbb{H}^-$. But the Riemann mapping theorem again asserts that there is a one-one conformal mapping \hat{f} that maps \mathbb{H}^- onto D'. So we may apply the Schwarz reflection principle (Theorem 3.7.2) again to reflect \mathbb{H}^- along one of the other intervals $(a_{k+1}, a_{k+2})^2$ say, to the upper half-plane \mathbb{H}^+ . This again corresponds to the reflection of D' along its side L_{k+1} to a symmetrical region. The resulting image, which we denote by D'' is of identical shape as D where we started off, but located in a different position. The Riemann mapping theorem again implies that there is a \tilde{f} that maps the upper half-plane \mathbb{H}^+ onto the D''. Since we can superimpose the D to D'' by a translation and a rotation, so we have

$$\tilde{f}(z) = Af(z) + B \tag{3.6}$$

in \mathbb{H}^+ for some constants A, B^3 .

 $^{^{2}}$ Any other side will do.

³In fact, $A = e^{i\theta_k}$.

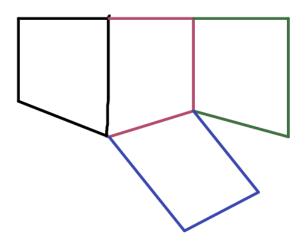


Figure 3.9: Even number of reflections

We deduce

$$\tilde{f}'(z) = Af'(z) \neq 0$$

throughout the \mathbb{H}^+ since f is conformal there. Moreover,

$$g(z) := \frac{\tilde{f}''(z)}{\tilde{f}'(z)} = \frac{f''(z)}{f'(z)}$$
(3.7)

in \mathbb{H}^+ . This shows that the function g is analytic in \mathbb{H}^+ . A similar consideration leads to a similar conclusion that g is analytic in \mathbb{H}^- , and hence on

 $\mathbb{H}^+ \cup_{k=1}^n (a_k, a_{k+1}) \cup \mathbb{H}^-$

by the Schwarz reflection principle. Hence g is analytic on \mathbb{C} except perhaps at a_k , $k = 1, \dots n$. Let us investigate what happens at these a_k . Let us consider the behaviour of f when z changing from the line segment (a_{k-1}, a_k) to (a_k, a_{k+1}) . We have

$$f(z) = f(a_k) + (z - a_k)^{\alpha_k} h(z)$$

where h is analytic in a neighbourhood at $z = a_k$ and $h(a_k) \neq 0$ (imagine that z lies on a line segment slight above the \mathbb{R} . Thus f(z) – $f(a_k)$ changes an angle $\alpha_k \pi$ from L_{k-1} to L_k when z "passes through" a_k .

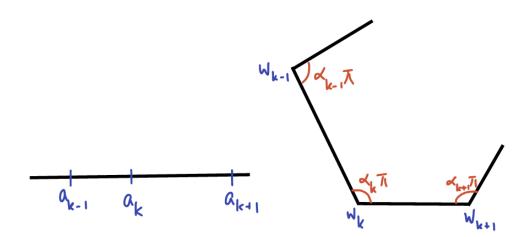


Figure 3.10: "Opening" an angle

Hence

$$f'(z) = \alpha_k (z - a_k)^{\alpha_k - 1} h(z) + (z - a_k)^{\alpha_k} h'(z)$$

= $(z - a_k)^{\alpha_k - 1} [\alpha_k h(z) + (z - a_k) h'(z)]$ (3.8)
:= $(z - a_k)^{\alpha_k - 1} \phi(z),$

where $\phi(z)$ is analytic at a_k and $\phi(a_k) \neq 0$. Thus,

$$\frac{f''(z)}{f'(z)} = \frac{\alpha_k - 1}{z - a_k} + \frac{\phi'(z)}{\phi(z)}.$$

This shows that the function g defined above is analytic in \mathbb{C} except at the $a_k, k = 1, \dots, n$ where it has a residue $\alpha_k - 1$ at each simple pole a_k . Thus the function

$$\frac{f''(z)}{f'(z)} - \sum_{k=1}^{n} \frac{\alpha_k - 1}{z - a_k}$$

is an entire function, and in fact including $z = \infty$. To see this we note that f and its analytic continuation are bounded at ∞ , that is, we have the Laurent expansion at ∞ :

$$f(z) = f(\infty) + O\left(\frac{1}{z^m}\right), \quad z \to \infty$$

for some integer $m \ge 1$. We deduce that g has a simple pole at ∞ . This shows that

$$\frac{f''(z)}{f'(z)} - \sum_{k=1}^{n} \frac{\alpha_k - 1}{z - a_k} \equiv 0$$

by Liouville's theorem. The above formula implies that

$$f'(z) = \alpha \prod_{k=1}^{n} (z - a_k)^{\alpha_k - 1}.$$

integrating the above formula from 0 to z yields the desired formula.

Remark. We can continue the above reflection along one (a_k, a_{k+1}) from \mathbb{H}^+ to \mathbb{H}^- and then from \mathbb{H}^- to \mathbb{H}^+ via another interval (a_j, a_{j+1}) any number of times for different k and j in the above construction. The upshoot is that every time we complete a cycle we end up with a different function valued at the same point in the upper half-plane and similarly in the lower half-plane. This suggests that we should consider that these different values from different "reflected values" to be different branches of an analytic function w = F(z) defined on $\mathbb{C} \setminus \bigcup_{k=1}^{n} (a_k, a_{k+1})$. The above proof shows that the g = f''/f'(z) so constructed is independent of the branches chosen. In fact, we have shown that it is globally defined in $\hat{\mathbb{C}}$.

Remark. The reader may notice that we did not discuss the actual locations of the real numbers $-\infty < a_1 < a_2 < \cdots < a_n < \infty$ and the constants α , β in the Schwarz-Christoffel formula above. This turns out to be a difficult unsolved problems. However, we can still prescribe a_1, a_2, a_n to w_1, w_2, w_n say after a suitably chosen Möbius transformation. However, given a polygon with more than three vertices, it becomes a non-trivial problem to determine the other points a_4, \cdots, a_n

on the real axis. This is partly due to the fact that the Schwarz-Christoffel formula only precribed the angles α_k , but not the length of (a_k, a_{k+1}) (recall that conformal map does not preserve lengths in general). The remaining unknowns are a_4, \dots, a_n real numbers and two complex numbers α and β . We deduce from the formula (3.5) that when $z = x > a_n$, then

$$\arg f'(x) = \arg \alpha,$$

and the line segment (a_n, a_1) (via $\hat{\mathbb{C}}$) corresponds to the side $L_n = [w_n, a_1]$ of the polygon D. But $\arg f'(x) = \arg \alpha$ corresponds to the angle that L_n makes with the real-axis \mathbb{R} . This shows that $\arg \alpha$ is known. On the other hand, putting $z = a_1$ in (3.5) yields $f(a_1) = \beta$. This implies $\beta = w_1$ is therefore also known. We are left with n - 2 real unknown constants

$$a_4, \cdots, a_n, |\alpha|$$

to be determined. On the other hand, we have a further n-2 equations

$$\ell([w_k, w_{k+1}]) = |\alpha| \int_{a_k}^{a_{k+1}} \left| \prod_{k=1}^n (z - a_k)^{\alpha_k - 1} \right| |dz|$$

 $k = 4, \dots, n$ (with $a_{n+1} = a_n$) that can be used to compute the $a_4, \dots, a_n, |\alpha|$. But it is generally difficult in not impossible.

Example 3.8.2. Find a conformal mapping from the upper half-plane onto an equilateral triangle of side lenght ℓ .

That is the three angels of the triangle are all equal to $\alpha_k \pi = \pi/3$, k = 1, 2, 3. According to the last remark, the Schwarz-Christoffel formula completely determine the a_j , $w_j = f(a_j)$, k = 1, 2, 3. So let us choose

 $a_1 = -1, a_2 = 0, a_3 = 1.$

Then the SC-formula (3.5) yields

$$w = f(z) = \alpha \int_0^z \frac{dt}{(t - (-1))^{1 - 1/3} t^{1 - 1/3} (t - 1)^{1 - 1/3}} + \beta,$$

Without loss of generality, we may choose $f(a_2) = f(0) = 0$. Hence $\beta = 0$. Moreover, we have

$$\ell = \Big| \alpha \int_0^1 \frac{dt}{\sqrt[3]{t^2(t^2 - 1)}} \Big|,$$

implying that

$$\alpha = \frac{\ell}{\int_0^1 \frac{dt}{\sqrt[3]{t^2(1-t^2)}}}.$$

Hence

$$f(z) = \ell \frac{\int_0^z \frac{dt}{\sqrt[3]{t^2(t^2 - 1)}}}{\int_0^1 \frac{dt}{\sqrt[3]{t^2(1 - t^2)}}}$$

is the desired mapping.

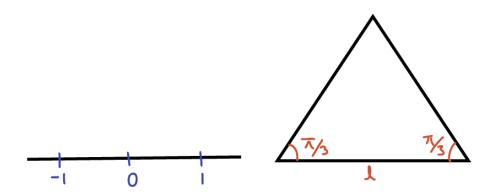


Figure 3.11: Schwarz equaliterial triangle

Exercise 3.8.1. Replace the above equilateral triangle with an isosceles right trangle with $\alpha_2 = \frac{1}{2}$, $\alpha_1 = \alpha_3 = \frac{1}{4}$, with the length of the hypotenuse ℓ .

Bibliography

- [1] L. V. Ahlfors, *Complex Analysis*, 3rd Ed., McGraw-Hill, 1979.
- [2] J.B. Conway, *Functions of One Complex Variable*, 2nd Ed., Springer-Verlag, 1978.
- [3] F. T.-H. Fong, *Complex Analysis*, Lecture notes for MATH 4023, HKUST, 2017.
- [4] E. Hille, Analytic Function Theory, Vol. I, 2nd Ed., Chelsea Publ. Comp., N.Y., 1982
- [5] E. Hille, Analytic Function Theory, Vol. II, Chelsea Publ. Comp., N.Y., 1971.
- [6] Z. Nehari, *Conformal Mapping*, Dover Publ. New York, 1952.
- [7] B. Palka, An Introduction to Complex Function Theory, Springer-Verlag, 1990.
- [8] E. T. Whittaker & G. N. Watson, A Course of Modern Analysis, 4th Ed., Cambridge Univ. Press, 1927