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3.5 Boundary Correspondence of Confor-
mal Mappings

Suppose f is a conformal mapping from the unit disc ∆ to a simply
connected domain D. We are concerned with under what circumstance
that we could extend the f to the boundary |z| = 1.

Lemma 3.5.1. Let f : ∆ → C be continuous, f(∆) = D. Suppose
limz→ξ f(z) exists for every ξ with |ξ| = 1. Then the function f̃ : ∆→
C defined by

f̃(z) =
f(z), |z| < 1,

limz→ξ f(z), |ξ| = 1,

is the unique continuous extension of f to |z| ≤ 1. Moreover, ¯f(∆) =
D̄.

The lemma provides a way to define a possible meaning of a con-
tinuous extension of f to |z| = 1. Interested reader can consult Palka’s
book [7, Chap. XI] or Ahlfors’ [1].

Definition 3.5.2. A plane domain/region G is finitely connected along
its boundary if corresponding to each point z of ∂G and each r > 0,
there exists an s ∈ (0, r) such that G∩B(z, s) intersects at most finitely
many components of the open set G ∩B(z, r).

Theorem 3.5.3 (Väisälä & Näkki). Let f : ∆→ C be conformal. The
f can be extended to a continuous mapping f̃ of ∆ onto f(∆) if and
only if f(∆) is finitely connected along its boundary.

Definition 3.5.4. A plane domain/region G is locally connected along
its boundary if corresponding to each point z of ∂G and each r > 0,
there exists an s ∈ (0, r) such that G ∩ B(z, s) intersects exactly one
component of G ∩B(z, r).

Theorem 3.5.5. Let f : ∆→ C be conformal. Then f can be extended
to a homeomorphism f̃ of f(∆) if and only if f(∆) is locally connected
along its boundary.
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Figure 3.4: Finitely connectedness along different boundaries

Definition 3.5.6. A set J of points in C is called a Jordan curve if J
is the boundary of some simple closed path. (J is compact and hence
bounded.)

Theorem 3.5.7 (Jordan Curve Theorem, Jordan 1887). The comple-
ment of a Jordan curve J has exactly two components, each having J
as its boundary. One of these components is a bounded set (the inside
of J), while the other is unbounded (the outside of J).

Definition 3.5.8. A domain/region G ⊂ C with the property that ∂G
is a Jordan curve is called a Jordan domain.

Theorem 3.5.9 (Caratheodory-Osgood Theorem). A conformal map-
ping f of ∆ onto a domain D can be extended to a homeomorphism of
∆ onto ∆ if and only if D is a Jordan domain.

3.6 Space of Meromorphic Functions
Definition 3.6.1. LetM(G) ⊂ C(G, Ĉ) denote the space of meromor-
phic functions on the region G.

Theorem 3.6.2. Let {fn} ⊂ M(G), fn → f in C(G, Ĉ). Then either
f is meromorphic or f ≡ ∞. If each {fn} is analytic or f ≡ ∞.
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Corollary 3.6.2.1. M(G) ∪ {∞} is a complete metric space. (w.r.t.
spherical metric)

Corollary 3.6.2.2. H(G) ∪ {∞} is closed in C(G, Ĉ).

Example 3.6.3. fn(z) = n(z2 − n) is analytic on C for each n. The
fn → ∞ uniformly on each compact subset of C. While {f ′n(z)} =
{2nz} is not a normal family, since f ′n(0) = 0 and f ′n(z) → ∞ for
z 6= 0. So F is normal 6=⇒ F′ is normal.

Definition 3.6.4. ρ(f)(z) = 2|f ′(z)|
1 + |f(z)|2 is called the spherical deriva-

tive of f . It is defined even at the poles of f .

Recall that the chordal distance under the stereographic projection
is given by

d(f(z1), f(z2) = 2|f(z1)− f(z2)|√
(1 + |f(z1)|2)(1 + |f(z2)|2)

∼ 2|f ′(z1)|dz
1 + |f(z1)|2

as z2 → z1.

Let γ be the curve in C. The length of f(γ) under the stereographic
projection on the Riemann sphere is given by∫

γ
ρ(f)(z) |dz|.

Theorem 3.6.5. F ⊂ M(G) is normal in C(G, Ĉ) if and only if
ρ(f)(z) is locally bounded on F .
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3.7 Schwarz’s reflection principle
Let G ⊂ C be a region, and Ḡ = {z̄ : z ∈ G}. Clearly if a region G is
symmetrical with respect to R, then Ḡ = G.

Theorem 3.7.1. Suppose Ḡ = G. We denote G+ = {z ∈ G : =z > 0},
G− = {z ∈ G : =z < 0} and G0 = G ∩ R. Suppose f : G+ ∪ G0 → C
is continuous, analytic on G+ such that f is real on G0. Then

g(z) :=
f(z) z ∈ G+

f(z̄) z ∈ G0 ∪G−
(3.4)

is analytic on G.

Figure 3.5: Schwarz’s relfection along the R

Remark. We note that if f is only defined on G+ and continuous and
real on G0, then we can use the above g to extend f across to G−
by reflection. By the identity theorem applied to R, so that such an
extension is unique.
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Proof. It is clear that g is analytic on G+ and G−. It remains to con-
sider if g is analytic on G0. That is, if g is analytic in a neighbourhood
B(x0, , r), where x0 real and for every x0 ∈ G0 and a corresponding
r > 0. We could achieve this by proving for each triangle T within
B(x0, r) the integral ∫T g dz = 0. Then g is analytic in B(x0, r) by
Morera’s theorem. Thus, if the triangle T lies entirely in G+ with no
intersection with G0, then

∫
T f = 0 since f is analytic there. Similarly

if T lies entirely in G−. So we assume that T ∩G0 6= ∅.

Figure 3.6: One triangle and one quadrilaterial

In general, either T ∩G0 is a single point or it is a line segment. The
former consideration obviously gives ∫T f = ∫

T g = 0. The latter means
that the G0 deivdes the T into two pieces. Without loss of generality,
we may assume that G+∪G0 contains the triangle T ′ = [a, b, c, a] part
of T and [a, b] lies on G0, leaving the quadrilateral part in G− ∪G0.

Notice that g = f is uniformly continues on T ′ since T ′ is a compact
set. That is, given ε > 0, there is a δ > 0 such that if z, z′ ∈ T ′, and
|z − z′| < δ, then

|f(z)− f(z′)| < ε.

We construct a sub-triangle T ′′ = [α, β, c, α] of T ′ such that one of
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Figure 3.7: Integration along the quadrilaterial

the sides [α, β] is parallel and close to [a, b] and hence to the R. We
may parametrise the horizontal line segments [a, b] and [β, α] by

(1− t)ta+ tb, (1− t)α + tβ, (0 ≤ t ≤ 1).

So now with the given ε > 0, we choose δ > 0 so that

|α− a| < δ, |β − b| < δ (0 ≤ t ≤ 1),

hence

|(1− t)α + tβ − ((1− t)ta+ tb)| ≤ (1− t)|α− a|+ t|β − b|
≤ δ(1− t+ t)
= δ.

This implies

|f [(1− t)α + tβ]− f [(1− t)ta+ tb)]| < ε, (0 ≤ t ≤ 1).
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Thus∣∣∣∣ ∫[a, b]
f−

∫
[α, β]

∣∣∣∣
=
∣∣∣∣(b− a)

∫ 1

0
f [(1− t)ta+ tb)− (β − α)

∫ 1

0
f [(1− t)α + tβ] dt

∣∣∣∣
≤ |b− a|

∣∣∣∣ ∫ 1

0
f [(1− t)ta+ tb)− (β − α)

∫ 1

0
f [(1− t)α + tβ] dt

∣∣∣∣
+ |(b− a)− (β − α)|

∣∣∣∣ ∫ 1

0
f [(1− t)α + tβ] dt

∣∣∣∣
≤ |b− a| ε+ |(b− a)− (β − α)|M
≤ ε`(T ′) + |(b− a)− (β − α)|M
≤ ε`(T ′) + 2δM

where `(T ′) stands for the length of the parameter of T ′, and M =
max{|f(z)| : z ∈ T ′}. The estimates of the remaining integrals are
easy: ∣∣∣∣ ∫[a, α]

f
∣∣∣∣ ≤ |α− a|M ≤Mδ,

∣∣∣∣ ∫[b, β]
f
∣∣∣∣ ≤ |β − b|M ≤Mδ.

We finally deduce∣∣∣∣ ∫
T
f
∣∣∣∣ =

∣∣∣∣ ∫
T ′
f +

∫
[a, b, β, α, a]

f
∣∣∣∣

=
∣∣∣∣ ∫[a, b, β, α, a]

f
∣∣∣∣

=
∣∣∣∣ ∫[a, b]

f −
∫
[α, β]

∣∣∣∣ + ∣∣∣∣ ∫[a, α]
f
∣∣∣∣ + ∣∣∣∣ ∫[b, β]

f
∣∣∣∣

≤ ε `(T ′) + 4δM
≤ ε (`(T ′) + 4M)

since we may choose δ < ε. This shows that ∫T ′ f = 0. We conclude
that f is analytic in B(x0, r). Hence g is analytic on G.

The above is called Schwarz’s1 reflection principle. We can map the
above upper half-plane onto a circle and the real-axis R to |z− a| = r.

1 H. A. Schwarz (1843-1921): advisor Karl Weierstrass

https://en.wikipedia.org/wiki/Hermann_Schwarz
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Theorem 3.7.2 (Schwarz reflection principle: second version). Let
G1 denote a simply-connected domain interior to Ca := {z : |z − a| =
r} with an arc γ on Ca such that every point of int(γ) has a semi-
circular neighbourhood in B(a, r) ∩ γ. Let f : G1 → C be analytic
and continuous on G1 ∪ γ. Suppose f(γ) = Γ consists of an arc of the
circle Cb := {w : |w − b| = R}. Then we can extend f to the region
G2, obtained by reflecting G1 with respect to Ca, mapping every z ∈ G1
to

z∗ = a+ r2

z̄ − ā
being the symmetric (inverse) point of z in G1, and

f(z∗) = b+ R2

f(z)− b̄
,

in G2 so that the new function is analytic in G = G1 ∪ γ ∪G2.

Proof. Let z ∈ G1. Then we recall that the symmetric point z∗ with
respect to the circle Ca is given by

z∗ = a+ r

z̄ − ā
.

Let MCa be the Möbius transformation that maps the circle onto R
with the notaton z 7→ Z. We also denote the inverse point of w = f(z)
with respect to the circle|w − b| = R to be

w∗ = b+ R

f(z)− b̄
.

We also denote the Möbius transformation that maps the circle
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|w − b| = R onto R by MCb with the notaton w 7→ W . Then we have

f(z∗) = f ◦MCa(Z∗)
= F (Z∗) = F (Z̄)
= F (Z̄)
= W (= W ∗)
= MCb(w∗)
= MCb(f(z)∗)

= b+ R2

f(z)− b̄
,

where F = f ◦MCa.

Figure 3.8: Schwarz reflection with respect to circles

One can achieve a more general reflection below.

Theorem 3.7.3. Let G1 and G2 be two simply-connected domains such
that

1. G1 ∩G2 = ∅;
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2. Ḡ1 ∩ Ḡ2 = γ where γ is a smooth curve such that every interior
point int(γ) of γ has a neighbourhood lying entirely inside G :=
G1 ∪ int(γ) ∪G2.

Let fj(z) be analytic in Gj, continuous in Gj ∪ γ, j = 1, 2 such that
for every point ξ ∈ γ

lim
D13z→ξ

f1(z) = h(ξ) = lim
D23z→ξ

f2(z)

for some complex-valued function h : γ → C. Then there exists an
analytic function f in G such that f(z) = fj(z) for each z ∈ Gj,
j = 1, 2.

3.8 Schwarz-Christoffel formulae
The Riemann mapping theorem that we discussed is an existence re-
sult. It is rather difficult to construct explicit formulae that actually re-
alise the theorem for reasonable shape simple-connected regiona given
simply connected can be approximated by polygons, so it becomes of
interest to find explicit formulae for conformal of polygons.
Theorem 3.8.1 (Schwarz (1869), Christoffel (1867)). Let f be a one-
one conformal mapping that maps the upper half-plane H+ onto the
interior of the a polygon D = [w1, w2, · · ·wn] with the interior angles

0 < αkπ := (1− νk)π < 2π,

at each of the vertex wk k = 1, · · ·n. Suppose −∞ < a1 < a2 < · · · <
an < ∞ are real numbers on R such that f(ak) = wk, k = 1, · · ·n.
Then f is given by

f(z) = α
∫ z
0

dz

(z − a1)1−α1(z − a2)1−α2 · · · (z − an)1−αn
+ β

= α
∫ z
0

dz

(z − a1)µ1(z − a2)µ2 · · · (z − an)µn
+ β

(3.5)

where α, β are two integration constants, where the νk, k = 1, · · · , n
are the corresponding exterior angles.

https://en.wikipedia.org/wiki/Elwin_Bruno_Christoffel
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We recall that from elementary geometry that if the above polygon
D is convex, that is, 0 < νk < 1, then

n∑
k=1

νπk = 2π.

Proof. Since the boundary of the proposed polygon D is certainly a
Jordan curve, we immediately deduce from Theorem 3.5.9 that there is
a conformal mapping f from the upper half-plane H+ onto the D such
that f can be extended continuously to the real-axis R and f(R) = ∂D.
Let us label

f(ak) = wk, k = 1, · · · , n
wn+1 = w1 that are the vertices of the polygon D. Let us denote
f(ak, ak+1) = Lk, k = 1, · · ·n. Then we can apply Schwarz’s reflection
principle (Theorem 3.7.2) to a chosen H+ ∪ (ak, ak+1) for some k ∈
{1, · · · , n} and reflect along (ak, ak+1) to continue f to the lower half-
plane H−. But this corresponds to a reflection image D′ obtained from
D after a reflection of D along its side Lk. In fact, the D′ = f(H−).
where we have reused the notation for the extension of f onto the
domain H+∪(ak, ak+1)∪H−. But the Riemann mapping theorem again
asserts that there is a one-one conformal mapping f̂ that maps H− onto
D′. So we may apply the Schwarz reflection principle (Theorem 3.7.2)
again to reflect H− along one of the other intervals (ak+1, ak+2)2 say,
to the upper half-plane H+. This again corresponds to the reflection
of D′ along its side Lk+1 to a symmetrical region. The resulting image,
which we denote by D′′ is of identical shape as D where we started off,
but located in a different position. The Riemann mapping theorem
again implies that there is a f̃ that maps the upper half-plane H+ onto
the D′′. Since we can superimpose theD to D′′ by a translation and a
rotation, so we have

f̃(z) = Af(z) +B (3.6)
in H+ for some constants A, B3.

2Any other side will do.
3In fact, A = eiθk .
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Figure 3.9: Even number of reflections

We deduce
f̃ ′(z) = Af ′(z) 6= 0

throughout the H+ since f is conformal there. Moreover,

g(z) := f̃ ′′(z)
f̃ ′(z)

= f ′′(z)
f ′(z) (3.7)

in H+. This shows that the function g is analytic in H+. A similar
consideration leads to a similar conclusion that g is analytic in H−,
and hence on

H+ ∪nk=1 (ak, ak+1) ∪H−

by the Schwarz reflection principle. Hence g is analytic on C except
perhaps at ak, k = 1, · · ·n. Let us investigate what happens at these
ak. Let us consider the behaviour of f when z changing from the line
segment (ak−1, ak) to (ak, ak+1). We have

f(z) = f(ak) + (z − ak)αkh(z)

where h is analytic in a neighbourhood at z = ak and h(ak) 6= 0
(imagine that z lies on a line segment slight above the R. Thus f(z)−
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f(ak) changes an angle αkπ from Lk−1 to Lk when z “passes through"
ak.

Figure 3.10: “Opening" an angle

Hence

f ′(z) = αk(z − ak)αk−1h(z) + (z − ak)αkh′(z)

= (z − ak)αk−1
[
αkh(z) + (z − ak)h′(z)

]
:= (z − ak)αk−1φ(z),

(3.8)

where φ(z) is analytic at ak and φ(ak) 6= 0. Thus,

f ′′(z)
f ′(z) = αk − 1

z − ak
+ φ′(z)
φ(z) .

This shows that the function g defined above is analytic in C except
at the ak, k = 1, · · · , n where it has a residue αk − 1 at each simple
pole ak. Thus the function

f ′′(z)
f ′(z) −

n∑
k=1

αk − 1
z − ak
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is an entire function, and in fact including z =∞. To see this we note
that f and its analytic continuation are bounded at ∞, that is, we
have the Laurent expansion at ∞:

f(z) = f(∞) +O
( 1
zm

)
, z →∞

for some integer m ≥ 1. We deduce that g has a simple pole at ∞.
This shows that

f ′′(z)
f ′(z) −

n∑
k=1

αk − 1
z − ak

≡ 0

by Liouville’s theorem. The above formula implies that

f ′(z) = α
n∏
k=1

(z − ak)αk−1.

integrating the above formula from 0 to z yields the desired formula.

Remark. We can continue the above reflection along one (ak, ak+1)
from H+ to H− and then from H− to H+ via another interval (aj, aj+1)
any number of times for different k and j in the above construction.
The upshoot is that evey time we complete a cycle we end up with
a different function valued at the same point in the upper half-plane
and similarly in the lower half-plane. This suggests that we should
consider that these different values from different "reflected values" to
be different branches of an analytic function w = F (z) defined on
C\ ∪nk=1 (ak, ak+1). The above proof shows that the g = f ′′/f ′(z) so
constructed is independent of the branches chosen. In fact, we have
shown that it is globally defined in Ĉ.

Remark. The reader may notice that we did not discuss the actual
locations of the real numbers −∞ < a1 < a2 < · · · < an <∞ and the
constants α, β in the Schwarz-Christoffel formula above. This turns
out to be a difficult unsolved problems. However, we can still prescribe
a1, a2, an to w1, w2, wn say after a suitably chosen Möbius transforma-
tion. However, given a polygon with more than three vertices, it be-
comes a non-trivial problem to determine the other points a4, · · · , an



CHAPTER 3. RIEMANN MAPPING THEOREM 134

on the real axis. This is partly due to the fact that the Schwarz-
Christoffel formula only precribed the angles αk, but not the length
of (ak, ak+1) (recall that conformal map does not preserve lenghts in
general). The remaining unknowns are a4, · · · , an real numbers and
two complex numbers α and β. We deduce from the formula (3.5) that
when z = x > an, then

arg f ′(x) = argα,

and the line segment (an, a1) (via Ĉ) corresponds to the side Ln =
[wn, a1] of the polygon D. But arg f ′(x) = argα corresponds to the
angle that Ln makes with the real-axis R. This shows that argα is
known. On the other hand, putting z = a1 in (3.5) yields f(a1) = β.
This implies β = w1 is therefore also known. We are left with n − 2
real unknown constants

a4, · · · , an, |α|

to be determined. On the other hand, we have a further n−2 equations

`([wk, wk+1]) = |α|
∫ ak+1

ak

∣∣∣∣ n∏
k=1

(z − ak)αk−1
∣∣∣∣ |dz|

k = 4, · · · , n (with an+1 = an) that can be used to compute the
a4, · · · , an, |α|. But it is generally difficult in not impossible.

Example 3.8.2. Find a conformal mapping from the upper half-plane
onto an equilateral triangle of side lenght `.

That is the three angels of the triangle are all equal to αkπ =
π/3, k = 1, 2, 3. According to the last remark, the Schwarz-Christoffel
formula completely determine the aj, wj = f(aj), k = 1, 2, 3. So let
us choose

a1 = −1, a2 = 0, a3 = 1.
Then the SC-formula (3.5) yields

w = f(z) = α
∫ z
0

dt

(t− (−1))1−1/3t1−1/3(t− 1)1−1/3 + β,
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Without loss of generality, we may choose f(a2) = f(0) = 0. Hence
β = 0. Moreover, we have

` =
∣∣∣∣α ∫ 1

0

dt
3
√
t2(t2 − 1)

∣∣∣∣,
implying that

α = `∫ 1

0

dt
3
√
t2(1− t2)

.

Hence

f(z) = `

∫ z
0

dt
3
√
t2(t2 − 1)∫ 1

0

dt
3
√
t2(1− t2)

is the desired mapping.

Figure 3.11: Schwarz equaliterial triangle

Exercise 3.8.1. Replace the above equilateral triangle with an isosce-
les right trangle with α2 = 1

2 , α1 = α3 = 1
4 , with the length of the

hypotenuse `.
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