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Example 3.8.3. Construct a one-one conformal map from the upper
half-plane H+ to a rectangle with coordinates [−K, K, K+iK ′, −K+
iK ′] for some K > 0.

Figure 3.12: Elliptic function of the 1st kind

We recall that a slight variation of Riemann mapping theorem al-
lows us to assert tht there is a one-one conformal mapping from the
first quadrant of the z−plane to the rectangle with vertices [0, K, K+
iK ′, iK ′] such that the points 0, 1 and ∞ in the z−plane are mapped
onto the points 0, K, iK respectively. So we have the following corre-
spondences:

[0, 1] 7→ [0, K], [1, ∞) 7→ [K, K + iK ′] ∪ [K + iK ′, iK ′].

So there is a 0 < k < 1 so that the point z = 1/k > 1 is mapped onto
the point K + iK ′. This also implies that the positive imaginary axis
{z = iy : y > 0} is being mapped onto the line segment [0, iK ′].

So we obtain the desired mapping H+ → [−K, K, K + iK ′, −K +
iK ′] after reflecting the Riemann mapping obtained above with re-
spect to the imaginary axis, so that the real-axis R is mapped onto
[−K, K, K + iK ′, −K + iK ′], and the points −1/k,−1, 1, 1/k are
mapped onto the points −K+ iK ′, −K, K, K+ iK ′ respectively. The
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explicit formula is therefore given by

f(z) = α
∫ z
0

(
z + 1

k

) 1
2−1

(z − 1) 1
2−1(z + 1) 1

2−1
(
z − 1

k

) 1
2−1

+ β

= α′
∫ z
0

dz√
(1− z2)(1− k2z2)

+ β

Let z = 0 in the variable above. Then clearly β = 0. We choose the
branch of square root above in accord to positive value when z lies in
(0, 1). But f(1) = K. So

K = α′
∫ 1

0

dz√
(1− z2)(1− k2z2)

.

This allows us to determine the constant α′ > 0 provided we know the
value of k. Moreover, since f(1

k) = K + iK ′, so

K + iK ′ = α′
∫ 1/k

0

dz√
(1− z2)(1− k2z2)

= α′
∫ 1

0

dz√
(1− z2)(1− k2z2)

+ α′i
∫ 1/k

1

dz√
(z2 − 1)(1− k2z2)

since there is a change of arg(1 − z), amongst all the factors of (1 −
z2)(1− k2z2), by −π. It follows that

K ′ = α′
∫ 1/k

1

dz√
(z2 − 1)(1− k2z2)

.

Let
z = 1√

1− k′2t2

in the above integration, where k′2 = 1 − k2 and 0 < k′ < 1. It is
routine to check that the above substitution yields

K ′ = α′
∫ 1

0

dt√
(1− t2)(1− k′2t2)

.
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We therefore deduce the relationship:

K ′

2K =

∫ 1

0

dz√
(1− z2)(1− k′2z2)

2
∫ 1

0

dz√
(1− z2)(1− k2z2)

. (3.9)

We see that both the numerator and denominator have similar inte-
grands. As k increases from 0 to 1, the integral

∫ 1

0

dz√
(1− z2)(1− k′2z2)

increases from∫ 1

0

dz√
1− z2 = π

2 to
∫ 1

0

dz

1− z2 = +∞.

That is the interval (0, 1) is being mapped onto [π2 , +∞). While k
increases from 0 to 1, its complementary value k′ decreases from 1 to
0. So the numerator

2
∫ 1

0

dz√
(1− z2)(1− k2z2)

behaves in a similar behaviour but in the opposite direction, namely,
it decreases monotonically from +∞ to π. We deduce that the ratio
K ′/2K, increases monotonically, as a function of k, from 0 to +∞. So
there is a unique 0 < k < 1 such that (3.9) holds for a given K and
K ′. This allows us to compute an approximate (and hopefully to know
exactly) value of k, and hence α′.

Definition 3.8.4. The above integral where α′ = 1,

K(k) =
∫ z
0

dz√
(1− z2)(1− k2z2)

is called the (Legendre form) of complete elliptic integral of the
first kind.
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Figure 3.13: Modulus of an elliptic integral: Byrd and Friedman

Theorem 3.8.5 (Schwarz-Christoffel: second version). Let f be a one-
one conformal mapping that maps the upper half-plane H+ onto the
interior of the a polygon D = [w1, w2, · · ·wn] with the interior angles

0 < αkπ := (1− νk)π < 2π,

at each of the given vertex wk, k = 1, · · ·n. Suppose the corresponding
points −∞ < a1 < a2 < · · · < an−1 < ∞ are real numbers on R such
that f(ak) = wk, k = 1, · · ·n− 1, and an =∞, f(∞) = wn. Then f is
given by

f(z) = α
∫ z
0

dz

(z − a1)1−α1(z − a2)1−α2 · · · (z − an−1)1−αn−1
+ β (3.10)

where α, β are two integration constants.

Proof. The transformation

z = a− 1
ζ

(i.e., ζ = −1/(z − a)), a < a1

transforms the upper half-plane H+ onto itself such that the a1 < · · · <
an−1 are mapped onto b1 < · · · < bn−1 and an = ∞ to bn = 0. Hence



CHAPTER 3. RIEMANN MAPPING THEOREM 140

we may apply (3.5) to

F (ζ) = f
(
a− 1

ζ

)

and this yields

F (ζ) = α′
∫ ζ
0

dζ

(ζ − b1)1−α1 · · · (ζ − bn−1)1−αn−1ζαn−1 + β′

= α′
∫ ζ
0

n−1∏
k=1

(ζ − bk)αk−1ζαn−1 dζ + β′.

Hence

f(z) = F (ζ) = α′
∫ z
z0

n−1∏
k=1

( −1
z − a

+ 1
ak − a

)αk−1( −1
z − a

)αn−1
ζ2 dz + β′

= α′
∫ z
z0

n−1∏
k=1

( ak − z
(z − a)(ak − a)

)αk−1( −1
z − a

)αn−1 dz

(z − a)2 + β′

= α′′
∫ z
z0

n−1∏
k=1

(z − ak)αk−1 1
(z − a)

∑
αk−n+2 dz + β′

= α′′
∫ z
0

n−1∏
k=1

(z − ak)αk−1 dz + β′′

since ∑n
k=1 αk = n− 2.

Example 3.8.6. Let us apply the above formula to obtain an equilat-
eral triangle of side length `. That is, we may assume the three points
on the real axis are

a1 = 0, a2 = 1, a3 =∞.

Then αk = π/3, k = 1, 2, 3. The formula (3.10) yields

f(z) = α
∫ z
0

dz

(z − 1) 2
3 z

2
3

+ β.
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The side length ` can be expressed as integration of arc-lenght:

` = |α|
∫ 1

0
|f ′(z)| |dz|

= |α|
∫ 1

0
|z

1
3−1(z − 1) 1

3−1||dz|

= |α|
∫ 1

0
t

1
3−1(t− 1) 1

3−1 dt

= |α|Γ(1
3)Γ(1

3)
Γ(1

3 + 1
3) = |α|Γ(1

3)2

Γ(2
3) ,

where Γ(z) denotes the Euler-Gamma function (see later) and it is
known that

B(α, β) =
∫ 1

0
tα−1(1− t)β−1 dt = Γ(α)Γ(β)

Γ(α + β) ,

provided that <α > −1 and <β > −1.

Example 3.8.7. In general, if we consider the image of 0, 1, ∞ to
be the general triangle ABC with angles απ, βπ, γπ with side lengths
a, b, c respectively, then we have the Schwarz-Christoffel map to be

f(z) =
∫ a
0
zα−1(1− z)β−1 dz

where we have chosen C1 = 1 and C2 so that f(0) = 0. Then we can
compute the side length of, say,

c =
∫ 1

0
|f ′(z)| |dz| = Γ(α)Γ(β)

Γ(α + β) .

But since Γ(x)Γ(1− x) = π

sin πx , so

c = Γ(α)Γ(β)
Γ(1− γ) = 1

π
sin(γπ) Γ(α) Γ(β) Γ(γ)

since α + β + γ = 1. Similarly, the side lengths of the other two sides
are given by

a = 1
π

sin(απ) Γ(α) Γ(β) Γ(γ)
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and
b = 1

π
sin(βπ) Γ(α) Γ(β) Γ(γ).

Example 3.8.8. Apply a SC-formula to show that the conformal map-
ping f that maps H+ onto the half vertical strip:

−π2 < <(w = f(z)) < π

2 ; =(w) > 0.

such that −1 7→ −π2 , 1 7→ π

2 , ∞ 7→ ∞ is given by

f(z) =
∫ z
0

dz√
1− z2 = sin−1 z.

Exercise 3.8.2. Show that the formula

f(z) =
∫ z
0

dz√
z(1− z2)

maps the upper half-plane H+ onto the interior of a square of side
length

1
2
√

2π
Γ
(1

4
)2
.

Exercise 3.8.3. Given a polygon D with vertices w1, · · · , wn and in-
terior angles αk k = 1, · · · , n, has one of its angles, α2 = 0, say. See
the figure below. Derive a Schwarz-Christoffel formula mapping the
upper half-plane to this polygon. (Hint: Consider the polygon with
n + 1 sides constructed from that of the original polygon with a line
segment drawn from new vertices w21 and w22 each on the parallel
sides of D with α2 = 0 and perpendicular to the parallel sides. Use the
Schwarz-Christoffel formula of this polygon to approximate the desired
mapping).
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Figure 3.14: The second angle is 0
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