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Example 3.8.3. Construct a one-one conformal map from the upper
half-plane H" to a rectangle with coordinates [— K, K, K +iK', — K+
iK'] for some K > 0.

-KiiK iK' K+iK'

-1k -1 1 1k K K

Figure 3.12: Elliptic function of the 1st kind

We recall that a slight variation of Riemann mapping theorem al-
lows us to assert tht there is a one-one conformal mapping from the
first quadrant of the z—plane to the rectangle with vertices [0, K, K +
iK', iK'] such that the points 0, 1 and oo in the z—plane are mapped
onto the points 0, K, i K respectively. So we have the following corre-
spondences:

0, 1]+ [0, K], [1, 00) = [K, K +iK'|U[K + iK', iK').

So there is a 0 < k < 1 so that the point z = 1/k > 1 is mapped onto
the point K + ¢K’. This also implies that the positive imaginary axis
{#z =iy : y > 0} is being mapped onto the line segment [0, iK"].

So we obtain the desired mapping H™ — [-K, K, K +iK', —K +
iK'] after reflecting the Riemann mapping obtained above with re-
spect to the imaginary axis, so that the real-axis R is mapped onto
—K, K, K + iK', —K + 1K'], and the points —1/k,—1, 1, 1/k are
mapped onto the points —K +iK', —K, K, K + iK' respectively. The
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explicit formula is therefore given by
. z 1 %_1 %_1 %_1 1 %_1
fle)=a <z+k> (z— 1)+ 1) <z—k> +8
+ 5

, (7 dz
=o'}, JA— 21— k22)

Let z = 0 in the variable above. Then clearly 5 = 0. We choose the
branch of square root above in accord to positive value when z lies in

(0, 1). But f(1) = K. So

;1 dz
K=o | JO— 21— k22)

This allows us to determine the constant o > 0 provided we know the
value of k. Moreover, since f(3) = K + iK', so

1/k dz
\/(1 — 22)(1 — k22?)

, [l dz
=o'}, JI = 2)(1 - k222)
/1/k dz
L F DR

since there is a change of arg(1l — z), amongst all the factors of (1 —
22)(1 — k%2?), by —n. It follows that

K+z’K’:o//O

+ai

1/k dz
/1 V(2= 1)(1 — k222

K =d

Let
1

RV

in the above integration, where &> = 1 — k% and 0 < ¥ < 1. It is
routine to check that the above substitution yields

! a/ 1 dt
S )
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We therefore deduce the relationship:

1 dz
Kﬂ_%;ﬂ1—%x1—m%%
2K dz :

)(1 = k?2?)

(3.9)

- 1
2
/0 V(1 — 22
We see that both the numerator and denominator have similar inte-
grands. As k increases from 0 to 1, the integral

z

1 d
b

increases from

/1 dz _T to /1 dz = 400
0 /1—22 2 0 1—22 '

That is the interval (0, 1) is being mapped onto [J, +0c). While k
increases from 0 to 1, its complementary value &’ decreases from 1 to
0. So the numerator

1 dz
2/0 \/(1 — 22)(1 — k22?)

behaves in a similar behaviour but in the opposite direction, namely,
it decreases monotonically from +oo to m. We deduce that the ratio
K'/2K, increases monotonically, as a function of k, from 0 to +00. So
there is a unique 0 < k£ < 1 such that holds for a given K and
K'. This allows us to compute an approximate (and hopefully to know
exactly) value of k, and hence /.

Definition 3.8.4. The above integral where o/ =1,

z dz
K(k) = | JA = 2)(1 = k222)

is called the (Legendre form) of complete elliptic integral of the
first kind.
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Figure 3.13: Modulus of an elliptic integral: Byrd and Friedman

Theorem 3.8.5 (Schwarz-Christoffel: second version). Let f be a one-
one conformal mapping that maps the upper half-plane H' onto the
interior of the a polygon D = [wq, wa, - - - wy,| with the interior angles

0 < apm:= (1 — )7 < 2m,

at each of the given vertex wy, k =1,---n. Suppose the corresponding
points —oo < a1 < as < - < a1 < 00 are real numbers on R such
that f(ag) =w, k=1,---n—1, and a, = oo, f(co) =w,. Then f is
given by

Z dz
f(Z) = Oé/o (Z _ al)l_al(z _ a2)1—a2 - (Z — an_l)l—o4n71 + 6

(3.10)

where «, B are two integration constants.

Proof. The transformation
z=a— - (ie., (=—-1/(z—a)), a<a

transforms the upper half-plane H* onto itself such that the a; < - -+ <
a,_1 are mapped onto b; < --- < b,_1 and a,, = oo to b, = 0. Hence
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we may apply (3.5 to

and this yields

[ d¢
F(C) = /0 (C . 61)170‘1 L. (C _ bn_l)lfan_lcanfl

SN

+

Cnl -1 -1 /
)i+

P =FO=a [T (54— )" () e

0o \Z—a  ap—a z—a

Cenlap—z el —1 el dr
—a H(( & )> (—) + 8

202 Mz —a)(ap —a z—a (z —a)?
1
_n . ak 1 !
=« ZOkﬂlz ar) (z_a)zak_n+2dz+ﬁ
Z’I’) 1
—a . ak 1dz—|—5”
0 k;1
since Yp_j a =n — 2. []

Example 3.8.6. Let us apply the above formula to obtain an equilat-
eral triangle of side length ¢. That is, we may assume the three points
on the real axis are

a1207a2:17a3:

Then o = /3, k =1, 2, 3. The formula (3.10)) yields

f(z):oz/OZ(dZ—l—ﬁ.

z — 1)§z§
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The side length ¢ can be expressed as integration of arc-lenght:

0= ol [ 1f'(2)] |dz]
= la| [ 2571z = 1)37"|dz]
ya\/t (t—1)5"'dt
~ o BT o TG
G+ ' T@)

where I'(z) denotes the Euler-Gamma function (see later) and it is
known that

a— 1 5 1 ['(a)T(B)
/t dt = Tat 5’

provided that Ra > —1 and RF > —1.

Example 3.8.7. In general, if we consider the image of 0, 1, co to
be the general triangle ABC with angles aw, g, ym with side lengths
a, b, c respectively, then we have the Schwarz-Christoffel map to be

f(z) = /Oa 2271 —2)P tdz

where we have chosen C; = 1 and Cs so that f(0) = 0. Then we can
compute the side length of, say,

iy _ D(@)r(p)
c=f W@l = 55
But since I'(x)['(1 — z) = sinﬂmc’ SO
o= 1) = Lainom) M) D) T ()

since a + 8 + v = 1. Similarly, the side lengths of the other two sides

are given by
1

a=— sin(am) I'(a) I'(8) I'()
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and
1

b= —sin(fm) () T(B) (7).

™

Example 3.8.8. Apply a SC-formula to show that the conformal map-
ping f that maps H' onto the half vertical strip:

-5 < Rw=f(z)) < 5 S(w) > 0.

such that —1 — —;T, 1 ;T, 00— 00 is given by

—sin"! 2.

= dz
f(Z):/O ﬁ

Exercise 3.8.2. Show that the formula

Z dz
0= h =

maps the upper half-plane H' onto the interior of a square of side
length

1 " 12

sva )
Exercise 3.8.3. Given a polygon D with vertices wq, --- ,w, and in-
terior angles a k = 1, --- ,n, has one of its angles, ay = 0, say. See
the figure below. Derive a Schwarz-Christoffel formula mapping the
upper half-plane to this polygon. (Hint: Consider the polygon with
n + 1 sides constructed from that of the original polygon with a line
segment drawn from new vertices wo; and wsyy each on the parallel
sides of D with ay = 0 and perpendicular to the parallel sides. Use the
Schwarz-Christoffel formula of this polygon to approximate the desired

mapping).
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W, Wiz

Figure 3.14: The second angle is 0
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