Chapter 4

Entire Functions

4.1 Infinite Products

Definition 4.1.1. Let {z,} be a sequence of complex numbers, and we
write p, = II} z; to denote the nth-partial product of {z,}. If p, — p
as n — 00. We say the infinite product exists and denote the limit by
p = limp, =I1{° #;. If p, does not tend to a finite number or p,, — 0,
then we say [17{° 2; diverges.

Example 4.1.2. Determine the convergence of (1+1)(1—;)(1+;) e
Solution. Define
a4+ D)@ =5 043 - (1=1), neven;
p”_{(1+1)(1;)(1+§) - (14+1), nodd
1 1léé " n—1:1 n even,
) Elili%ié "'nn__llnn_anL,l —1+1 nodd7
234 n—-2n—-1 n n’ '

Hence p, — 1 as n — oo, and we conclude that

(1+1>(1—;)<1+§)---:1.

144
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Note that we also have

(1+1)(1—;)(1+;)---: il (1-“””).

n=1 n

[]

1)
(=1) in the
n
partial product p, tends to one as n — oo. This is true in general.
N
Z.
For suppose p, — p, then zy = l_IHNl_ll — b_ las N — oo. In
1 i p
view of this observation, it will be more convenient for us to consider
infinite product of the form 113°(1 4 a,,) where a,, — 0 as n — oo if the
infinite product converges. We now prove a fundamental convergence

criterion.

From Example [4.1.2, we see that the last number 1 —

Theorem 4.1.3. The infinite product 113°(1 + ay,) is convergent if and
only if given € > 0, there exists an N > 0 such that

(14 ) o (L @) — 1] < €
for allm >n > N.

Proof. Suppose II5°(1 + a;) = p. Let p, be the nth-partial product of
[13°(1 4+ a;), then {p,} is a Cauchy sequence in C. That is, given € > 0,

there exists an N such that |p,| > ‘g‘ and

Ipl

for all m > n > N. Thus

(T4 anga) - (Tt am) = 1[ = [p n\

Do ‘\pn
1
- ‘pm_pn‘l

nl
9
Sz _
2 [p|
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for all m > n > N, as required.
Conversely, suppose given 1 > € > 0, there exists an N such that
for m > n > N we have

P _ 1| < e.
Pn
Let p). = Pr for all k > N and N fixed, then

PN

l—e<|ppl<1l+e<2.
Notice that the assumption is equivalent to

Dra

F < €.
Pn

That is

[ — Pl < €lpi| < 2e
for all m > n > N. Hence {p],} is a Cauchy sequence. So {p,} is also
a Cauchy sequence and thus converges in C. ]

If all the a,, are positive. Then we have

Proposition 4.1.4. Suppose all the a,, > 0. Then I1(1+a,) converges
if and only if 3 a, converges.

Proof. Suppose I1(1 + a,,) converges. By
ar+-ta, <(1+ay) (14 a,)

we conclude immediately that > a, < oco.
Conversely, since 1+a < e for all a > 0, hence (1+a4) - - (14a,) <
et e Thus [1(1 4 a;) converges. O

Definition 4.1.5. The infinite product [1(1+a,) is said to be absolutely
convergent if the product I1(1 + |a,|) converges.
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We recall from Example that the infinite product

(1+1)(1—;)(1+;)---

is not absolutely convergent. The converse, however, is definitely true.

Theorem 4.1.6. If (1 + |a,|) converges, then [1(1 + a,) converges.

Proof. Method I: The result follows immediately from the observation
that

(T +ang) - (T4 am) =1 < (1 +fana]) - (T4 fam]) = 1,
and by Theorem [4.1.3]|
Method II: Let p, = I1I{(1 + a;) and P, = I1}(1 + |a;|). Then

Pn—Dn1=14a1) - (1+ap_1)ay,
Py —Po1= 1+ ar]) - (1 + [an-1|)|an],

and
|pn - pn—l‘ S Pn - Pn—l-

Since P, — II5°(1 + |a;]), we have >5(P;, — P,_1) = P, — P, converges.
But then >3°(p; — pi—1) converges absolutely by the above inequality.
Hence the limit I1(1 + a,,) exists. O

Theorem 4.1.7. A product TI(1 + a,) is absolutely convergent if and
only if 3 a, converges absolutely.

Proof. T T13°(1 4 |a,|) converges then Y |a,| must converges by Propo-
sition 4.1.4, The converse also follows from Proposition [4.1.4] ]

We deduce immediately that

Proposition 4.1.8. [13°(1 + a,,) converges if >3°a, converges abso-
lutely.
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We next turn to the study whether the statement "if [1(1+4a,,) = p,
then 3" log(1+a,) = logp" holds? Here log p is the principal logarithm.

Proposition 4.1.9. If >log(1 + a,) converges, then T1(1 + a,) con-
verges. If TI(1+ay,) converges, then 3 log(1+4a,) converges to a branch
of log(TT (1 + ay,)) .

Proof. Let s, = X1 1og(1 + a;) then the hypothesis implies that s, —
Y log(l + a;) = s, say, as n — oco. That is,

n
[[(1+a)=¢"—¢€*, n—oo
I

i.e.
o

[I(1+a;) =€
1
Suppose now p = [I°(1 + a;) converges. Let p, = II7(1 + a;).
1 1

Then we must have log& — 0 as n — oo. We decompose it as

log@ =S, —logp+ hy,(2mi). Then
p

Pn+1
p

log " 1og P = log(1 4 anin) + (hui1 — hy)27i.

p
But the left side tends to zero as n — oo. Also log(1 + a,41) — 0 as
n — oo. Thus h,11 — h, = 0 for all n sufficiently large. Let it be h.

Then D
s, — logp + h(2mi) = log = — 0.
p

That is s, — S = logp — h(27i) answering the question raised before
the proposition. O

Finally, we give a criterion for the absolutely convergent product
[1(1 + a;) in terms of > log(1 + a;).

Theorem 4.1.10. [15°(1+4a;) converges absolutely if and only if >3° log(1+
a;) converges absolutely.
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Proof. The result follows immediately from Theorem [4.1.7] and the
limit los(1
lim 708;( +2)
z—0 z

= 1.

It suffices to show 3 |log(1 + a;)| and X |a;| converges and diverges
together. The details is left to the reader. ]

o0 1
Example 4.1.11. 1. J] (1 + a) converges whenever o > 1.
1 n

0 2 1
2-13(1‘n<n+1>):3'

N ﬁ<1+x>:{+oo, >0

1 n 0, x < 0.

4. TI(1 4 2") is absolutely convergent for every |z| < 1.

5. If 3 a,, converges absolutely, then [1(14a,z) converges absolutely

z
for every z. For example [T |1 + 2) converges absolutely.
n

6. If > a, and 3 |a,|* are convergent, then [I(1 + a,,) is convergent
(Hint: log(1 + a,) = a, + O(|a,|?)).

—1 1 1 1

Jir1l T \/n+1+n+1+(n+1)vn I

Then T1(1 + a,,) converges, but 3 a, and 3 a2 both diverge.

7. Suppose ag,_1 =

8. If a, is real and Y a, is convergent, then the product IT(1 +
a,) converges or diverges to zero according to 3 a? converges or
diverges respectively.

4.2 Infinite Product of Functions

It is not difficult to see that the main results from the previous section
can be generalized to infinite product of functions.
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Let G be a region in C, and { f,,} be a sequence of analytic functions
defined on G.

Theorem 4.2.1. Let {f,} C H(G) and X5°|fa| converges uniformly
on every compact subsets of G. Then the infinite product TI(1 + f,(2))
converges uniformly to an analytic function f on G , i.e. TI°(1+4 f,) =

f e H(G).

Moreover, f has a zero at those, and only those points of G at which
at least one of the factors is equal to zero. The order of such a zero
is finite and is equal to the sum of the orders to which those factors
vanish there.

Proof. Let K be any compact subset of G. Since Y |f,| converges
uniformly on K, there exists a M > 0 such that ¥5°|f.(z)| < M for
all z € K. Thus, for any n € N, we have

L+ A (L4 [fal2)]) < en@IHRE] M

for all z € K. Set P,(z) =17(1 + |fi(2)]). Then

Fu(z) = Poa(2) = (L4 [AGE)]D) - (U + | faa ()] fu(2)]

< eV fa(2)]

for all n > 2 and all z € K. Hence

n n

[+ fi(2)) = (1 + f1(2)| < >_(Pilz) = Pia(2))

1 1=2

n
<3 |fi(z) < M
=2

for all z € K. So we deduce that [15°(1+ f;(2)) — (14 f1(2)) converges
uniformly on K. But H(G) is complete, so [13°(1+ fi(2)) — (1+ f1(2)) is
analytic and hence [13°(1+ f;(2)) is analytic on K. But K is arbitrary,
so [17°(1 + fi(2)) is analytic on G.

Since Y |fn(z)| < oo for each z € K, there exists an N € N such

that 00| fi(2)| < 5 for all n > N. Suppose now that z € K and
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f(z) = 0. It follows that I13%,,(1 + fi(z)) # 0 on K and hence the
order of the zero is equal to the sum of orders of those factors (i.e.
1Y (1 + fi(z)) vanishes there). ]

Remark. It is clear from the proof of Theorem[4.1.10that ¥ | fi(z)| and
Y [log(1+ fi(2))| converge and diverge together. So we could rephrase
Theorem such that the hypothesis 3 |f;| < oo is replaced by
Y [log(1 + f;)| < oo. It turns out that both conditions are useful in
applications.

4.3 Weierstrass Factorization Theorem

Suppose f is entire and non-vanishing. Then we can write f as €9
where ¢ is an entire function (see Theorem [1.10.13)). If f has only
a finite number of zeros (can be repeated) 21, z29,...,2,, say, then

f
(z—z1)--- (2= 2n)
" (z — z)e?. A natural question is for an representation for f as
above when f has an infinite number of zeros. We can also view the

is entire and non-vanishing. Thus we have f(z) =

above question as an interpolation problem: Given zq,29,...,2,,...
and wy, wa, . .., Wy, ..., find an entire function f such that f(z;) = w;
fori=1,2,3,.... If w; =0 for¢s=1,2,..., then our question become

a special case of the interpolation problem.
Thus a natural guess of an answer of the interpolation is the func-
tion

f(z) = 2meI?) lo_o[ (1 — Z) :

1 Zi

But it is unclear of whether such a function exists since the infinite
oo

product may diverge. According to Proposition [4.1.8) T (1 — Z) con-

1 Zq
= 2| 2

1
= —; < oo and so f has the above factorized form.
n

is convergent for every z. Thus if z, = n?,

z
2

1
verges if > —
2

7

then )

1
<n
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Weierstrass was able to construct a convergent-producing factor
called primary factor so that a factorization of f always exist regardless
of the given sequence {z,}.

Definition 4.3.1. Let p > 0 be an integer. We define the Weierstrass
primary factor by

L 2P

1— T > 1
( z)exp(2+2+3+ +p), p=>1;

11—z, p = 0.

Ep(z) = E(Z7p> =

Theorem 4.3.2 (Weierstrass Factorization Theorem). Let {a,} be a
sequence of complex numbers with lima,, = oco. Then there exists an
entire function f with f(a,) =0 for alln and f has a zero at z = 0 of
order m > 0. In fact, [ is given by

flz) = M e9(2) nﬁlE (Z>

a,
1 Pn
1(1—;>exp{;+'--+m<;> }7

where g(z) is an entire function and {p,} is any non-negative integer
sequence for which

> ( ) < 00

1

|an|

—8

— ,Med(2)

n

for each r > 0.

Remark. (i) p, = n — 1 always satisfy the hypothesis. The idea is
to choose {p,} as simple as possible.

(ii) The above factorization has already taken care of the multiplicity
of {a,}.

Lemma 4.3.3. Let p be a non-negative integer. Then

(i) |Ep(z) = 1| < [2P*if 2] < 1;
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(ii) [log Ey(z)| <

1
p+1 - .
k_1|z\ zf|z]<kandk>1,

1
(iii) |E,(z) — 1| < 6|z|PT, if |2] < 5

Proof. (i) We expand E, into a power series:
E,(z) =1+ il%akzk
where all the a; are real. Differentiating both sides yields
E(z) = ilo:kakzkl. (4.1)

But the left side is equal to

EZI)(Z):[(1_2)(1+Z+Z2+"'+Zp_1—1]eXp(z+222_|__,,+jj)
:[(1—zp)_1]exp<z+2—|—---—}—p>. (4.2)

By comparing the coefficients of (4.1) and (4.2), we deduce a; =
.-+ =a, =0 and a; <0 for the rest of k. Thus for |z| <1,

xXO xXO
‘Ep(z) - 1| = Z akzk = ‘Zp+1| Zap+k+1zk
p+1 0
1 > 1 > 1
<Y laprin] = ~ |2 Dty = |2

since 0 = E,(1) =1+ 279 ax and so T |ag| = =X ap = 1.
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(ii) Since
22 2P
|long(z)|:10g(1—z)+z+2+---+p
- R
2 2 D
— | 1 Zp+1_1zp+2_...’
p+1 p+2
1 1 1
< sz( + z| + 22—|-~->
< I p+1 p-I-Q‘ | p-|-3‘ |
<P+ Lo+ e )
1 1
p+1 1 - _ e | = — p+1
< 4| <+k+k2+ ) e
(iii) By the definition of E,(2),
22 2P
|Ey(2) — 1] = (1—z)exp(z+2—|—---+p)—1
‘le—H ‘u‘p+2
< e —+ .. —
=P p+1 p+2
2
(byl—z:exp<—z—2—---)>

< expl|z[PTHIL + |2 + |2]* + -
1
_ R
P (‘Z' i |z\>
< exp(2|z[FT!) — 1
< 202"+ exp(2]z]P1)

< 2[z|Ptte! < 6z|PT.

R
e -

Now we can prove Theorem [4.3.2]

-1

1<ze* forz >0
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Proof of Theorem [4.3.3. Let {a,} be the given sequence of complex
numbers such that a,, — 0o as n — +oo. Thus given any |z| = r, we

can find an N > 0 such that |a,| > 2r, or
Lemma [4.3.3(iii) gives

E, <Z> _ 1| <6
an

for n > N and |z| < r. It follows from the hypothesis that the sum
>(E,, (z/an) — 1) converges uniformly and absolutely on any compact
subset of B(0,7). Theorem implies that the infinite product
I15° E,, (2/a,) converges to an analytic functions in B(0,7). But r
is arbitrary, so it is actually an entire function.

Suppose f is an entire function with zeros given by {a,}, then

f/ T E, (z/ay) is zero-free. Hence we can find an entire function g
such that

<3 for |z| < r. Thus

n

5 [Patl ( r )pnﬂ
< -
‘an|

an

o z
f2) = O L, ()
1 Qp
where m > 0 is an integer.
[t is easy to see that we can always find the sequence {p,} by choos-

a
completes the proof of the theorem.

pntl 1\"
ing p, = n — 1. Since X <X <2> < +oo for each r. This

Alternatively, we can prove the theorem by applying Lemmal[4.3.3[(ii).
We choose k£ > 1 and N so large that |a,| > kr for n > N and |z| <.

Thus
z
log £, (a)

n

k

z

an

< <— =
k—1 k—1\k

Choose p, = n — 1 again implies ¥ |log E,, (2/a,)| converges uni-

formly. The discussion in the remark after Theorem shows that

[15° E, (z/a,) converges to an entire function. You may fill in the de-

tails as an exercise. ]

pntl k < 1 )Pn+1
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Remark. Note that some authors will phrase Theorem 4.3.2| as: Let
{a,} be a sequence of complex numbers with lima, = oo, then there
exists {pn} such that the following f is an entire function

f(z) = 2med) ]O_:[E ; <Z>

Qn

where g is an entire function.
This is because we can always obtain the estimate, as in the proof,

1 Prt1
E, (;) _ 1‘ <6 <2> .

Hence any increasing non-negative integer sequence {p,} will make
> |E,, (z/a,) — 1] converges uniformly.

Proposition 4.3.4. Suppose G is an open set and {f,} C H(G) such
that f =11 f,, converges in H(G). Then

() f =5 (flg Il fn>

k=1 n#k
&
p) L — Jk
YT B

on any compact subset K C G provided f # 0 on K. (See Conway
p.174)

Proof. (Sketch) For (a), Consider F| = ¥ (f/Tlozi fn) = (I £).
By Theorem 3.3.1], since we have Fj — f, then ‘f’ — Sk (f] T fn)‘
converges in H(G) and f' = ¥, (f/ [lnzi fn) as required.

For (b), let K be an arbitrary compact set. Hence |f| > a > 0 for
all z € K. Then

" | 'R

[ Fy fEx
since F| — f' and Fy — f in H(G). O

—0 ask —
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4.4 Factorization of Sine Function

We define

23 25 ZZn—l

sing=z— "+ — —--- 4 (=1)"

TR T

(2n —1)

Since this series is convergent uniformly and absolutely on any
closed disk centred at the origin, we could rearrange the terns so that

: _ 1 1z —iz
sin z = 2@,(6 e "?).

It follows that each zero of sin(7z) is simple. In fact, the zeros are

real and equal to 0,+1,42,...,4+n,.... Let a; be the non-zero zeros.
Then
00 r 2 00 r\2 y X 1
S(o)-S () -2 4
k=1 |ak‘ —oo \M —oo N
(n0) (n£0)

always converge for each r > 0 by choosing {p,,} = {1}. It follows from
the Weierstrass factorization theorem (Theorem {4.3.2)) that

sinz = ze??) 11 <1 _ Z) e?/m

et n
00 2
= Zeg(z) H (1 _ 2)
1 n
for some entire function g(z). We deduce from Proposition that
cosmz 1 X 2z
cot Tz = =—+40)+>Y ———
e Tennz 2 9(2) 21222—712

converges uniformly on compact subsets of C \ Z.
We now need a standard contour integration result which can be
found p.122 in Conway :
x 2z

1
meotmz = — +
z Z1:,22—712

for z € Z.
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sin 7wz

Hence g is identically a constant. In fact g(z) = log ™ because —

Tz
1 as z — 0. We finally obtain

00 22
sinmz = 7wz [] (1 — ) :
1

n2

4.5 Introduction to Gamma Function

We shall only introduce the definition of Gamma function and leave
its more difficult asymptotic expansion to a later chapter when time

allows. To begin with, let us consider the following entire function
defined by

o z
G2) =] (1 + ) eIn.
1 n
The infinite product G converges to an entire function in H(C) with
only negative zeros —1,—2, —1,.... Similarly the function G(—z) has
similar properties except the zeros are 1,2, 3, .... It is readily seen that
712G (2)G(—z) = sinTz.

Consider now G(z — 1) which has the same zeros as G(z) plus a
new zero at the origin. Hence there exists an entire function y(z) such
that

G(z—1) = 2e¥G(2).

We shall determine y(z). To do so, we take the logarithmic deriva-
tive on both sides:
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Rewrite
00 1 1 1 s 1 1
?(Z_lm‘n):z‘”%(z_un‘n)
1 0 1 1
:z_1+21:<z—i—n_n+1>
1 0 1 1 x (1 1
:z_l_'_zl:(z—kn_n)_'_%:(n_n—l-l)
1 o0 1 1 1 X 1 1
R R E)

This implies that 7/(z) = 0 and ~y(z) = v is a constant. Putting z = 1
into G(z — 1) = €72G(2) gives 1 = G(0) = €?’G(1). That is

e 7T=G(1)= 10_0[ <1 + 1) e l/m

1 n
The nth-partial product is
(n + 1)6—(1+1/2+1/2+~~+1/n)
and this implies
1
-l-'-'—i-n—log(n—l—l))
1 1
+°-°+—logn—log<1—|—>>
n n
1 . 1
—|—---—|——logn> —hmlog(l—l—)
n n
1
:1im<1—i——|—~--—i——logn>.
2 n

The number (=~ 0.57722) is called Euler’s constant whose numer-
ical value is still unknown. In fact, it is still undecided whether ~ is
rational or irrational.

Using H(z) = €*G(z) on G(z — 1) = e'2G(z) gives us a new
relation:

H(z—1)=zH(2).
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1
A further change of notation I'(z) = H) gives us the right order:
zH(z

r
I'(z—1)= (2) or

z—1

I(z+1)=2I(z) forz#—1,-2,....
Of course

['(z) = ¢ IO_O[ (1 + Z>_1 e/

zZ 1 n

is now an infinite product of meromorphic functions. The conver-
gence can easily be justified by considering compact sets K in C \
{—=1,-2,...}. I'(2) is call (Euler’s) gamma function. Clearly I'(1) =1
and we deduce from the functional equation above that I'(2) = I'(1) =
LIEB)=2I'2) =2-1=2,....,I'(n) = (n — 1)!. Thus the gamma
function can be considered as a generalization of the factorial. Also

/0

(Il —z) =
(Z) ( Z) sinmz
which gives I'(1/2) = /7.

One can show that

['(z) = /OOO e 't*1dt. (Mellin transform)

We shall extend Weierstrass factorization theorem to an arbitrary
region.

Theorem 4.5.1. Let G be a region and {a;} C G is a sequence of
points without a limit point in G. Then there exists an analytic function
f G — C such that f(a;) =0 and f has no other zeros in G.

Proof. We first show that it is possible to simplify the problem by
considering G unbounded and lim, . f(z) = 1. More precisely, we
consider G such that {z: |2| > R} C G and |q;| < R for all j.
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For suppose this is true, then given any region G; and an arbitrary
sequence {«;} such that {a;} does not have a limit point in G;. We
choose a € Gy, r > 0 such that B(a,r) C Gy and «; ¢ B(a,r) for all

1
j. Let T(z) = ——, then G := T(G1) \ {oo} is such that {z : |z| >
z—a
R} C G and |a;| = |1/(ej — a)| < R for all j and some R > 0.

G :=T(Gy)\ {oo}

Figure 4.1: C\ G

Since lim, o f = 1, f(T(2)) has a removable singularity at a and

/ has zeros at precisely a; = for all j. Then according to

a;—a
the definition, there exists an arjlalytic function g on (G; such that
g = f(T'(2)) on Gy \ {a}. Clearly g has the zeros precisely on {a;}. It
remains to prove the special case mentioned above.

Since G is open, so for each a,, we can find w,, € C\ G such that

lw, — a,| = d(a,,C\ G)

and
Jig [, = ] = 0

Ay —

We aim to show that the infinite product [T £, (
w

n) converges in
< — Wnp
H(G). Solet K be any compact subset of G, and hence d(K, C\G) > 0.
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Then, for z € K,

| — wy| |an — wy|

= d(wn, K) = d(K,C\ G’

ap — Wy

Z—wy
Hence given 6, 0 < 0 < 1, there exists an N such that

ap — Wy

<0

Z_wn

for all n > N and all z € K. Thus Lemma [4.3.3(i) implies that

ZEn< )-1‘<25H+.

N+1 2 — Wp N+1

That is, X{°|E, (an — w”) — 1| converges uniformly, and Theorem
2 — wy,

ap — Wy

4.2.1/implies that f :=TI° E, ( ) converges to an analytic func-

z_wn

tion in H(G).
The only remaining fact to verify is that lim, ., f(z) = 1. Given
e >0, let Ry > R so that if |z| > Ry, |a,| < R, we have

a, — Wy, 2R
< .
z—w, | R —R
: . 2R
In particular, we can choose R; sufficiently large such that 7R <0
L —

for any 0 < § < 1. Thus by Lemma [£.3.3(i) again,

a, — W 2R \"T!
E,[-2—")—-1|< gl
( ) ‘ <R1 - R) =

log(1+ 2)

for all |z| > R; > R. Recall that lim,_,g = 1. Thus we may
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choose R; so large that when |z| > Ry, there exists C' > 0 such that

() 2 e (2 50)
Z — Wy 1 2 — Wy
ofa (222
1 < — Wp
Scién—kl
1
52
=C

1—06
Thus by choose ¢ sufficiently small and hence R; sufficiently large that,

[f(z) = 1| = |exp (Zlog E, (a” — w“)) - 1’
Z — wy,
<€
for all |z| > R;. This completes the proof. O

4.6 Jensen’s Formula

We shall derive a useful formula called Jensen’s formula. It is a special
case of the more general Poisson-Jensen formula. Jensen’s formula will
be used again in later sections.

Theorem 4.6.1. Let f be analytic on a region containing B(0,7) and
that ay,...,a, are the zeros of f in B(0,r). Suppose in addition that

f(2) #0 on |z| =r and f(0) # 0, then

log | £(0)] = —ZlogH+/ log | f(re™)| db.

Alternatively, Jensen’s formula can be written as

SO = exp (52 [ og|7(re”) d6).

1|k‘ 27'('
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Proof. We first prove Jensen’s formula when f is non-vanishing on
B(0,7). Hence we may find an analytic branch of log f(z). We then
have, by Cauchy’s integral formula

log (¢
log /(= ~ omi / (—=z

where v = 0B(0,r) and ¢ = re?’. Thus

log £(0) =5 /%logf re )

and we obtain the Jensen formula by taking the real parts on both
sides.
We next consider f to have a finite number of zeros in B(0,r). Let

be A ={z:|z] <1}, then it is known that the map

automorphism of A with |z| = 1 being mapped to |z| = 1. Based on
this automorphism, it is not difficult to check that

r(z — a)

r? —apz

maps B(0,7) onto B(0, 1) in an one-to-one manner with |z| = » mapped
to |z| = 1 and a — 0. So the function defined by

f(2) nort — apz
F(Z) nT(Z—ak) f(Z)IIIT(Z—CLk)
L
is non-vanishing on B(0,7), and |F(z)| = |f(2)| on |z| = r.

We now apply the result in the first part to F(z) to obtain
L2 i0
log |F(0)| = 2W/O wlog |F(re)| do
1 2w i0
:%/0 log | f(re™)| do.

But log |F(0)] = log | f(0)| + X1 log \c;|' This completes the proof. [
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Remark. (i) If f has a finite number of poles by, ..., b, except at
the origin, then the Jensen formula becomes

r

n m 1 2r .
lo 0))=—-> —+ + — lo re')| d.
BIFO)] == pe > o |, loglfre”)

(ii) The Jensen formula in Theorem still holds even if there are
finite number of zeros on |z| = r. It suffices to show that f has

only a simple zero a = re’¥ on |z| = r. Let us recall that the
function F'(z) defined in the proof of Theorem {4.6.1. Now the

function is zero-free on B(0,r) and hence
z—a
F(0) 1 yor F(re?)
1 = — log |[———| df
Blo—al " 2 Bt —q
— = [Trog |F(re)  db — —— [ log(r]1 — ¢¥-]) do
orJo 0% orJo 08 '
Hence

1 2 ; 1 2 o
log | F(0)] = o [ log [F(re”)| df — o [ log |1 — €0~ do.

The above equation will become the Jensen formula if the second
integral on the right hand side vanishes. This will be done in the
next lemma.

Lemma 4.6.2. |

LT b _

27r/0 log |1 — €] df = 0.
Proof. Consider the simply connected region Q = {z : R(z) < +1}.
Hence we may define an analytic branch log(1—z) in Q since 1 —z # 0
. In particular, the branch is unique if we choose log(1—0) = 0. Notice

that R(1 — z) > 0, so we have

R(log(l —2)) =log|l — 2| and |arg(l—2)| < 72T
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We then consider two paths:
T(t)=e", 6 <t<2r—¢6 and ~(t) =1+ pe, joining e to e

We apply Cauchy’s integral formula to log(1 — z) to obtain

1 276 0 B 1 dz B 1 dz
But on (),
log(1 — 2) (pe')?

_ it it
= log(—pe")(1 + O(p))

= —log 2(1 + O(p)) + i(imaginary part)(1 + O(p)).

R (271m L, log(lz_ : d’z)

as 0 — 0; thus proving the lemma. [

Hence

1

We shall study Weierstrass factorization type problem for the unit
disc in this section (briefly).

Definition 4.6.3. Let A = {z : |z] < 1}. Then we define a subset of
H(A) as

H>* = H*(A)
where sup{|f(2)| : z € A} < +oo forall f € H*®, i.e. the set of all
bounded analytic functions on A.

Definition 4.6.4. We also define

B(z) = 2F 11 O — 2 ||

=1 1 —apz ay,

(4.3)

on A, which is called Blaschke product provided the infinite product
converges. Here the sequence {«,} consisting of complex numbers in
the unit disc.
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Thus the natural questions is under what condition on {a,} will
(4.3) converges. We shall give an answer to this question in the follow-
ing theorem. In fact we shall give a characterization to the existence
of Blaschke product.

Theorem 4.6.5. Let {a,} be a sequence in A without limit points.
Then (4.3) converges uniformly to an analytic function if and only if
Y1 — |ay|) < 4oc.

Lemma 4.6.6. Suppose 0 < a, < 1. Then [15°(1 — a,) > 0 exists if
and only if >3° a, < oo.

Proof. Since ¥ a,, < 00, there exists NV such that X%, a, < 1/2. Note
that

(1—ant1)(1 —any2) > 1 —ani1 — anyo
(I—any1) (I —ansx) > 1 —anyy — - —ayyx forall k
> 1/2.

Hence p, = (1 —ay)--- (1 — a,) is monotonic decresing and bounded
below by a positive number. Thus [13°(1 — a,) > 0 exists.
Conversely, suppose [15°(1 — a,) = p > 0. Then

0<p<p,=]I1-ar) <exp (-Z%)
1 1

and if we assume >3° ay = 400 then exp (— X a;) — 0. A contradic-
tion. [

Proof of Theorem [[.6.5. Suppose >3°(1 — |a,|) < oo. According to
Theorem |4.2.1], it is sufficient to show

o0 ap — 2 oy
1— < 00.
zl: 1_0477%75 Oy >
Notice that
= LACE )

1 -,z (1 —@,2)a,
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For each |z| <r < 1, we have

n ), 1—7r
since |1 — ayz| > 1 — |a,|r > 1 —r. Hence (4.3)) converges if >3°(1 —
|, |) < o0.

Suppose now the Blaschke product converges. Then |B(z)| < 1 for
all z € A. We may assume B(0) # 0, since the factor 2* does not
affect the convergence of (1 — |«,|). By Jensen’s formula we have for
r < 1and n zeros in |z| < r,

1

r 2 i0
2W/g log | B(re™)| df| .

= exp

|B<o>|rf1

[e™y

But |B(z)| < 1 for all z € A. Hence the right hand side of the Jensen’s
formula is bounded by a constant C' > 0 for all 0 < r < 1. Thus

o0

IIlaw| = C7YB(0)] > 0
1

as 7 — 1. Lemma 4.6.6 implies >(1 — |,|) must converges. O

4.7 Hadamard’s Factorization Theorem

We have applied Weierstrass factorization theorem to obtain an infinite
product representation of sin wz:

sinmz = ze9® ] (1 _ Z) o2/n
n

—00

00 2
= 1——].
WZ];[( n2)

It is perhaps difficult to see at the beginning that g(z) reduces
2

2 . :
to a constant logm and thus 2z I{° (1 — 2) behaves as €™ — e ""*
n
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(which is the original definition) in the above representation for sin 7z.
A question comes into our minds immediately is that how will the
growth of e/ and II3° E,, (2/a,) relate to the growth of the function
f. We shall study this question when g is taken as a polynomial and
pn, = p for all n in this section. This line of research has dominated the
development of function theory of one complex variable for the past
seventy years. This area of research is related to subharmonic functions
(log |f(2)| is harmonic away from the zeros of f; see next chapter for
harmonic functions) and potential theory. Most easier problems have
been solved, with the remaining open problems exceedingly difficult.
Let {a,} be a sequence of numbers in C such that a, — co asn —

oo and that there exists a non-negative integer p such that > <

o0o. Then according to Weierstrass factorization theorem that

()

converges to an entire function on C.

Definition 4.7.1. If the integer p described above is chosen so that
> 1/la,|P = +oo and > 1/|a,[P™ < +4oo, then the integer is called
the genus of {a,}, and the infinite product is said to be canonical
(standard). We also call p the genus of the canonical product.

Example 4.7.2. The infinite product

i — 12 12
sin 7z ﬂz_];[0< n) ( nQ)

. 1 1
has genus one, since ¥7° — = +00 and ¥° — < +o0.
n n

H.':l

So if a function has a representation

f(z) = 2meI) I[1E, <Z> , P = genus
1 Qp
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where ¢ is a polynomial, then the growth is determined by that of
[15° Ey(2/a,) and e9. Note that the above infinite product represen-
tation of f is unique if p is chosen to be the genus. We now define
the genus of f to be p = max{degg,p}. We next show the genus of f
determines its growth.

Theorem 4.7.3. Let f be an entire function of genus j (refered to its
Weierstrass factorization). Then given o > 0, there exists R > 0 such
that

[f(2)] < exp(alz[*)
for |z| > R.

We first obtain a result for canonical product.

Theorem 4.7.4. Let P(z) be a canonical product with genus p. Then
given o > 0, there exists R > 0 such that

[P(2)] < exp(alz["*)
for|z| > R.

Proof. We need some elementary estimates for the primary factors.
Since

|2]° 21"
By < (L [el) exp 2]+ -+ o+ 2 )
thus
2"
log |Ep(z)| < log(1+ |2]) + [z 4+ -+ + e
Thus given any A > 0, there exists R > 0 such that
log |E,(2)| < Alz|P™ for |z| > R. (4.4)

We also recall from Lemma [4.3.3[(ii) that for k > 1,

log |Ey(2)] < |log Ep(2)] < 2P, for k<1, |z| < 1/k.

k—1
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1 1
Without loss of generality, we may assume z < R. For z < |z| <R,

the function
log | Ey(2)|

‘z|p+1

is easily seen to be continuous there except when z = 1 where log |E,(2)| =

—oo. In any case an absolute upper bound exists. Thus there exists
B > 0 such that

log |E,(2)| < Blz|""
k

T } we have

log |E,(2)| < M|z|"

1
for z = < |z| £ R. Let M = max{A, B,

for all z € C.
Since >-7° W < 00, we choose N so large that
an,
> 1 Q
< .
J\%—:l ‘an‘p—H 4M
Thus
e 1
Zlog ( ><sz+1z
N+1 an o N1 |anPt?
&‘Z|p+1
Sy (4.5)

To estimate > log |E,(2/a,)|, we note that |z/a,| are large for
1 < n < N, hence we may assume the constant A > 0 in (4.4) is

«
chosen such that A = v minj<;<y |a;|P™ for 2| > Ry > R, say. Thus

Nl E o p+1 N p+1
Xliog\ p(z/an)| < 4N‘Z| 21:| |p—|—1 1<1<I}V‘al|

1
p+1
192}]{\[ ]ai|P+1) 1<Z<N nail

< — |zt (4.6)
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for |z| > Ry > R. Combining (4.5) and (4.6) yields
log |P(2)] = Y- log | Ep(2/an)| < a2
1

for all |z| > R;. This completes the proof. O

Proof of Theorem [{.7.5. 1t is now easy to complete the proof of Theo-
rem [4.7.3] For degg < p+1, so |z|™ell Jexp(a|z|t1) — 0 as |z]| — oo.
But p+ 1 < u+ 1. The required estimate follows from Theorem
A4 ]

Example 4.7.5. If >1/|a,|* < co and > 1/|a,| = +o00, then

i)

an

has genus 1. So |f| < exp(c|z]?). It also follows that sin 7z has genus
1.

Suppose >7°1/]a,| < oco. Then [T (1 — z) has genus zero. Hence

Qn
z
— T (1= =
reemf )
also has genus 1.
The above theorems show that we can know the growth of f pro-
vided we know the function g and the growth (genus) of the zeros of f.

We shall study the converse problem in what follows. Namely, what
can we say about g and the zeros of f if we know the growth of f.

Definition 4.7.6. Let S(r) be a positive and monotonic increasing
function of r > 0. The order X of S(r) is defined to be

, log S(r)
lim sup :
r——400 log T

We say S(r) has infinite order if no finite A can be found.
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Remark. The above definition is equivalent to: given any € > 0, there
exists a ry > 0 such that
(i) S(r) < r*€ for r > ry, and

(i) S(r) > r*~¢ holds for infinitely many r > rq.

Example 4.7.7. The order r and r(log)? where s # 0 are both equal
to 1. The order of €" is infinite.

Definition 4.7.8. Let f be an entire function and M(r) = M (r, f) =
max|.— | f(z)|. Then the order of f is defined to be the real number:

log log M
A = limsup og log M(r, f)
r—00 log r

Example 4.7.9. (i) A\(e*) = 1.
(ii) A(e”®*)) = n, where p(z) is a polynomial of degree n.
(iii) A(exp(e?)) = oo.

Definition 4.7.10. Let n(r) be the number of zeros of f in |z| < r
(counted according to multiplicities).

Proposition 4.7.11. The order of n(r) does not exceed that of f, i.e.
A(n(r)) < A(f).

Proof. We may assume f(0) # 0. Given € > 0, there exists 1y > 0 such
that
log M(r, f) < e for r > ry.

Putting 2r into Jensen’s formula yields

n(r) o ni2r) oy 1 jon ‘
n(r) — ex 20
2" F(0)] < [£(0)] l:[ o < [£(0)| 1;[ T O <27T/0 log [ f(2re )|d9>

< M(2r, f).
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Hence

log [ f(0)| +n(r)log2 < log M(2r, f)

< MMt for > g,

Thus, proving the proposition. ]

Proposition 4.7.12. Suppose A\(f) = A < 400 and {r;} are the mod-
uli of the zeros of f. Then the series Y r,“ < +00 whenever o > \.

Proof. Let A < 8 < a. It follows from Proposition that n(r) <
Arf for r > 1y, say. Suppose r = 7,, then n = n(r,) < Ar?. Hence
r < An7', and so r;® < An~P. Thus ©r;* < Axn % < +o00
since a/f8 > 1. O

Definition 4.7.13. The real number
< 1
v:inf{a:2<+oo}
T T
is called the exponent of convergence of the sequence {r,}.

If {a,} is a sequence of the zeros of P(z) and |a,| = r,, then
p<uv<p+1

where p is the genus of {a,}. Also, it was proved in Theorem that
|P(2)] < exp(a|zP™). We can prove a more precise result.

Theorem 4.7.14. The order of a canonical product is equal to the
exponent of convergence of its zeros.

Proof. See exercise/homework. ]

It follows that if v is the exponent of convergence of P(z), then
IP(2)] < exp(al2]")
for all |z| sufficiently large. It also follows that
genus p < order of a canonical product < p + 1.

Note also that p = [v], p < v < A (for an entire function).
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Lemma 4.7.15. Let f be an entire function of order A\ < +oo and
f(0) = 1. Suppose {a;} are the zeros of f and an integer p > X\ — 1.

Then () |
dzr (f(Z)) =2

for z # ay,as, .. ..

The proof of this lemma will be given after the Poisson-Jensen
formula.

Theorem 4.7.16 (Hadamard’s Factorization Theorem). Let f be an
entire function of order A < +oo, and suppose {a;} are the zeros of f
where f(0) = 1. Then

f(z) = ¢"¥P(z)

where g is a polynomial of degree < X, and P(z) is the canonical prod-
uct form from the zeros of f.

Proof. Let p be an integer such that p < A < p 4+ 1. Since the order
of f, AM(f) < oo, Proposition |4.7.12] implies that the zeros aq, as, ... of
f satisfy > T < +oo since p+ 1 > A. Let P(z) be the canonical
Qn

product forms from the zeros of f, and v be its exponent of convergence
of zeros.

Weierstrass factorization theorem implies that there exists an entire
function g(z) such that f(z) = efP(z).

It remains to show that ¢ is a polynomial. But it is easy to check

that o / .
z z
— | |E, | — E,\—]]|=-p———.
dzp (l P (anﬂ /B <an>) Pla, = zpp+
Combining this and by using Lemma [4.7.15] we obtain

T (a, — 2)PtL dzp \ f(2) (a, — z)Ptl

Hence g must be a polynomial of degree at most p. ]




CHAPTER 4. ENTIRE FUNCTIONS 176

4.8 Poisson-Jensen Formula

Theorem 4.8.1. Let f be analytic on B(0,7) and let ay, ..., a, be the
zeros of f(z) in B(0,r). Suppose f(z) # 0 for z € B(0,r), then

" 2 —a,z 1 ,on ret? + 2 ;
log |f(2)] = = X log =5+ o | éR( _) log | ()] db

r(z—ax)| 27 ret

2

o T — apz 1 2 72 o p2 )
=T E %) Tor 1 )| df
kzz:l Og T(Z—ak) + 271_‘/0 ,',,2 _ZTIOCOS(d)—Q) +p2 Og‘f('r'e )|

where z = pe'?.

Proof. We need to quote the quote following result from Chapter 6:
Suppose g is analytic on B(0,r) and that R(g(z) = U(z). Then for
z = pe?, p < r, we have

ei9+z

i L r i
U(pe‘b):%/o %<rei9—z> Ul(re) df

L2 r? —p’ 0
= U(re®) do.
s /0 r2 —2rpcos(¢ — 6) + p? (re”)

r? —apz

Let g(z) = n G2
€ g(Z) f(Z)HlT(Z—CLk)
log g(z) is analytic on B(0,7). We thus obtain

then it is zero-free on B(0, ). Hence

Tez@—l—z

) log |g(7“ew)| db

re — z

1 21
osla(2) = 51 %
104z

_ Lo re i0
_277/0 %(T€i9—2> log | f(re™)| do.

But )
re — apz

r(z — a)

and the required formula now follows. ]

log|g(2)| = log |£(2)] + kz log
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Remark. The Poisson-Jensen formula recovers the Jensen’s formula
after putting z = 0.

Now we can give a proof of Lemma 4.7.15|

Proof of Lemma[4.7.15. The easiest way to obtain (f’/f
ferentiate the Poisson-Jensen formula. Suppose f(z) # 0,

)P) is to dif-
then log f(z)
d

exists and Cauchy-Riemann equations gives f'/f = P log f(2) =

0

0 0 0
5y Rllog £(2) = i Rlox (2)) = 5 log| /()] — i logf(2)]. We

apply this formula and differentiation under the integral (see Conway
p.69),

L r? —apz i 2m re” + z
s 72) = — 1o 7T L (5 g e
We obtain
fliz) & - ay, 1 ror 2ret? ”
_ 1t — e | N de.
f(2) ;z—ak ;7“2—@7& 27T/0 (rei? — z)? og |f(re")

Differentiating this formula p time yields:

p ! n n a1
d(f(z)) :—plzlpﬂer!Z i

dzr \ f(2) T (ar — 2) T (r2 —apz)pt!

16

1 sor 2re
|
+ (p+ 1)! /0 e

el — ) log | f(re)| df.

It remains to show the last two terms tend to zero as r — oo
(n — o0). We consider the integral of the last expression first, and
note that the integral
2m rew
/0 (reif — z)p+2 do = 0.

Hence

2 19 ) 2m Tew (7" f)
10 _
_/ mw )2 log | f(re™) do = /0 (rei® — 2)pe2 log f(reid)] do.
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Suppose r > 2|z|, then

2 ret? ; 2r 2r  M(r, f)
/O (/r'ew — Z)p+2 log |f(’]"6 9)‘ de‘ S (7’ — ’]"/2)p+2 /0 log W d@
— 9p+3,.—p—1 M( f)
— 9PT3y / log’f( ew)ld@

— gpt3ppl /O (log M (r, f) — log | f(re®)|) d6

Lo 2m log M(r, f)
= 2 /O rp+l

(by [ og £ (re™)| 8 > o)

do

by Jensen’s formula. But log M (r, f)/r’*™' — 0 as r — oo since \ <
p + 1 and this proves the integral tends to zero as r — oo.

We now consider an individual term in the second summand: we
assume again r > 2|z|,

ar p+1 |ak‘p+1 (27“)p+1 2\ Pl
2 _ Gz = (r2 — r2/2)p1 = 20 <r> '
Hence - ) )
" ay " n(r
<ortiy —_<optl 2 4
21: 2 —apz| 21: rptl — rp+l
as r — 00, n(r) > n(r,) by Proposition [4.7.11, Thus
ar [ f' 0 1
AT\ N S
dzr \ f(2) T (z — ap)pt!
as r — 0o and this completes the proof. ]

We can rewrite the above lemma as p < A < p+ 1. We also note
the following:

Theorem 4.8.2. Let f be an entire function of finite order, then f
assumes each complexr number with at most one exception.
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Proof. Suppose f(z) # a, for all z € C. Since f — « has the same
order of growth of f and never vanish. By Theorem [4.7.16] there exists
a polynomial g such that f — a = exp(g). Thus exp(g) never assume
f — a and so g(z) never assume log(5 — «), a contradiction to the
Fundamental theorem of algebra. ]

Theorem 4.8.3. Suppose the order of an entire function is finite and
not equal to an integer. Then the function must have an infinite num-
ber of zeros.

Theorem 4.8.4. Let o be a real number. Then the function

fz) =2 (nl)o

has order 1/c.

Proof. Suppose z is real and positive. By considering
z oz z z
1o 2o (n—1)® no’

we clearly deduce z"/(n!)® is increasing when |z| > n® and it starts to
decrease when |z] < n®. Hence the maximum of 2"/(n!)* occurs when
z =n“. Thus

n an no no

(nl)® - (nl)o - (n+(1/2e=1/27(1 + o(1)))® - n®/2(2m)*/2(1 4 o(1))
eazl/a

T 212(21)02(1 + o(1))

by Stirling formula (Titchmarsh, p.58).

But the order of growth of f(z) must be greater than its individual
term when z > 0. Hence A\ > 1/a.

On the other hand, |f(2)| < f(|z|) when z is real,

zZ" 00
+ >
n=o (n)* ;71 (nh)e

_ % 2" N § 2
a0 () N7 [(N 4 DIV =ted

Zn

M=

fz) =

n
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Suppose N > z, then

00 P (NN+1)a oo P
SN T DIV = [N+ DI 2
NN—H) N+2
N_|_1)l ( NN+1)a NN+2) +)
[(N+1).] <1+Na+ )

TN+ D1 - (z/Ne))

Thus we have

ZN—i—l

(N + D1 = (2/N))

f(z) < AZN +

whenever N > z. Hence, by taking N = [(22’)1/0‘],

1/«

f(2) = 0(z") = O(*I") = O(exp(x1 V1)),
and we deduce the order of f does not exceed 1/a. Hence A = 1/a. [
Remark. Stirling formula:

[(z) = 22~ M2e /27 (1 + o(1))

where I'(n 4+ 1) = nl.

n

2
Exercise. What is the order of ¥77; — for o > 07
n
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