
Chapter 5

Periodic functions
An (analytic) function f(z) is said to be periodic if there is a non-zero
constant ω such that

f(z + ω) = f(z), z ∈ C.

We call the number ω a period of the function f(z).
Definition 5.0.5. We call ω a fundamental (primitive) period of
f if |ω| is the smallest amongst all periods.

5.1 Simply periodic functions
The simplest periodic function of period ω is e2πiz/ω. Suppose Ω is a
region such that if z ∈ Ω then z + kω ∈ Ω for all k ∈ Z.
Theorem 5.1.1. Given a meromorphic function f defined on a re-
gion Ω (as discussed above). Then there exists a unique meromorphic
function F in Ω′ which is the image of Ω under e2πiz/ω, such that

f(z) = F
(
e2πiz/ω).

Proof. Suppose f is meromorphic in Ω in the z−plane with period ω.
Let ζ = e2πiz/ω. Then we define F by

f(z) = f(log ζ) = F (ζ).
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Then clearly F is meromorphic in the ζ−plane whenever f(z) is mero-
morphic in the z−plane.
Example 5.1.2. Let 0 < |q| < 1. Consider the function

f(z) =
∞∑

k=−∞
(−1)kqk2/2ekiz

which represents a 2π−periodic entire function in C. In fact, this is a
complex form of a Fourier series. Let ζ = eiz.

F (ζ) =
∞∑

k=−∞
(−1)kqk2/2ζk

which can be shown to converge in the punctured plane 0 < |ζ| < +∞.
Thus we have

f(z) = F (ζ)
as asserted by the last theorem. Here we have ω = 2π. Thus, the
function F is analytic in 0 < |ζ| < +∞.

More generally, if the series

F (ζ) =
∞∑

k=−∞
cnζ

k

converges in an annulus r1 < |ζ| < r2, then

f(z) := F (ζ) =
∞∑

k=−∞
cne

2πkiz/ω, ζ = e2πiz/ω,

is a ω−periodic analytic function in the infinite horizontal strip {ζ :
er1 < =(ζ) < er2}. We can represent the coefficient

ck = 1
2πi

∫
|ζ|=r

F (ζ)
ζk+1 dζ, r1 < |ζ| < r2

= 1
ω

∫ a+ω

a
f(z)e−2πkiz/ω dz,

where a is an arbitrary in the infinite strip {ζ : er1 < =(ζ) < er2} and
the integration is taken along any path lying in the strip.
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5.2 Period module
Let M denote that set of all periods of a meromorphic function f in
C. If ω 6= 0 is a period, then nω, for any integer n, obviously belongs
to M . If, however, there are two distinct periods ω1 and ω2, then
mω1 + nω2 is also a period for any integral multiples m, n. That is,
mω1 + nω2 ∈ M . This shows that M is a module over the ring of
integers.

We also note that the set of periods must be discrete since if there
is a sequence of periods with a limit point, then this would contradicts
the identity theorem for analytic functions. We are ready to answer
Jacobi’s first question.

Theorem 5.2.1. A discrete module M consists of either nω for an
arbitrary integer n and ω 6= 0, or mω1 + nω2 for arbitrary integers
n, m and non-zero ω1, ω2 with =(ω2/ω1) 6= 0.

Proof. Without loss of generality, we may assume M 6= ∅. Let ω =
ω1 ∈ M and there are at most a finite number of nω1 belong to M
in a fixed |z| ≤ r. Amongst all these ω1, we choose the one with the
smallest |ω1|.

If however, there is a period ω ∈M that is not of the form nω1 for
n ∈ Z. Then again we call ω2 with |ω2| the smallest (but not less than
|ω1|). We claim that =(ω2/ω1) 6= 0. For if it were, then there is an
integer n such that

n <
ω2

ω1
< n+ 1,

or
0 <

∣∣∣∣ω2

ω1
− n

∣∣∣∣ < 1

or |nω1 − ω2| < |ω1|. But nω1 − ω2 is a period which is smaller than
|ω1|. This contradicts the assumption that ω1 is the “smallest” period.

It remains to show that any period ω must be of the formmω1+nω2
for some integers n, m. Without loss of generality, we may assume
=(ω2/ω1) > 0. Hence any complex number ω can be written as ω =
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λ1ω1+λ2ω2 for constants λ1, λ2. We claim that λ1, λ2 are real. Suppose

ω = λ1ω1 + λ2ω2,

ω̄ = λ1ω̄1 + λ2ω̄2.

Then one can can find unique solutions λ1, λ2 since ω1ω̄2 − ω2ω̄1 6= 0.
But then λ̄1, λ̄2 are also solutions. So they are real.

Clearly we find integers m1 and m2 such that

|λ1 −m1| ≤
1
2 , |λ2 −m2| ≤

1
2 .

If ω ∈M , then so does

ω′ = ω −m1ω1 −m2ω2.

But then

|ω′| < |λ1 −m1||ω1|+ |λ2 −m2||ω2|

≤ 1
2 |ω1|+

1
2|ω2|

≤ |ω2|

where the first inequality is strict since ω2 is not a real multiple of
ω1. That is, the |ω′| < |ω2| while ω′ ∈ M . We conclude that ω′ is an
integral multiple of ω1. This gives ω the desired form.

5.3 Unimodular transformations
We consider the case that M is generated by two distinct ω1 and ω2
such that =(ω2/ω1) > 0. We recall that M consists of discrete points
nω1 + mω2 where m, , n are integers. Suppose ω′1 and ω′2 is another
pair of distinct points that also generate M . Then we must havw

ω′1 = aω2 + bω1,

ω′2 = cω2 + dω1
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for some integers a, b, c, d. We can rewrite this in a matrix form:ω′1
ω′2

 =
a b
c d

ω1
ω2

 . (5.1)

There is a similar matrix equation for complex conjugates:ω̄′1
ω̄′2

 =
a b
c d

ω̄1
ω̄2

 . (5.2)

We can combine the above two matrix equations into one:ω′1 ω̄′1
ω′2 ω̄′2

 =
a b
c d

ω1 ω̄1
ω2 ω̄2

 . (5.3)

Similarly, we can find integers a′, b′, c′, d′ω1 ω̄1
ω2 ω̄2

 . =
a′ b′
c′ d′

ω′1 ω̄′1
ω′2 ω̄′2

 (5.4)

The determinant ω1ω̄2 − ω2ω̄1 6= 0 since ω2/ω1 would have real ratio.
Hence a b

c d

a′ b′
c′ d′

 =
1 0

0 1

 .
Hence the determinants equal∣∣∣∣∣∣a b

c d

∣∣∣∣∣∣ =
∣∣∣∣∣∣a
′ b′

c′ d′

∣∣∣∣∣∣ = ±1

Definition 5.3.1. The set of all such 2×2 linear transformations with
determinant ±1 is called unimodular. When we restrict to determi-
nant begin 1, it is also recognised as a subgroup of the projective
special linear group PSL(2, C) which we label as Γ = PSL(2, Z)
or just modular group.

It turns out that the modular group has generators

S =
1 1

0 1

 , T =
0 −1

1 0

 .



CHAPTER 5. PERIODIC FUNCTIONS 186

We label the lattice generated by ω1, ω2 by Ω(ω1, ω2). Thus if
ω1, ω2 by Ω(ω′1, ω′2) is another lattice, then two latices are connected
by a unimodular transformation.

We can make the basis ω1, ω2 by a suitable restriction.

Theorem 5.3.2. Let τ = ω2/ω1. If

1. =(ω2/ω1) > 0,

2. −1
2 < <(τ) ≤ 1

2,

3. |τ | ≥ 1,

4. <(τ) ≥ 0 when |τ | = 1,

then the τ is uniquely determined.

Figure 5.1: Fundamental region of modular function

It is clear that the region defined by the criteria (1-4) in the theorem
is not an open. But it still call it a fundamental region. If it hap-
pens that =(ω2/ω1) < 0, then we could replace (ω1, ω2) by (−ω1, ω2)
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without changing the assumption −1
2 < <(τ) ≤ 1

2 . The assumption
(2) is also arbitrary in the sense if −1

2 ≤ <(τ) < 1
2 , then we could

use (ω1, ω1 + ω2). Finally, if the last assumption (4) is replaced by
<(τ) < 0 when |τ | = 1, then we consider (−ω2, ω1) instead.

Proof. Let τ ′ be
τ ′ = aτ + b

cτ + d
,

where a, b, c, d are integers and such that ad−bc = ±1. We recall that
the above Möbius transformation that maps the upper half τ−plane
onto itself if the determinant is +1 and onto the lower half τ−plane if
he determinant is −1. A simple calculation gives

=(τ ′) = ±=(τ)
|cτ + d|2

(5.5)

where the ± accords to that of ad− bc.
Suppose both the τ ′, τ situate inside the fundamental region. We

want to show that τ ′ = τ . Without loss of generality, we may assume
that ad− bc = 1, and =(τ ′) ≥ =(τ). This means that

|cτ + d| ≤ 1.

Since c, d are integers, so there are not too many cases to check.
If c = 0, then d = ±1. The condition ad − bc = 1 implies ad = 1.

So either a = d = 1 or a = d = −1, so that the equation (5.5) becomes

τ ′ = τ ± b.

But both τ ′, τ satisfy the assumption (2) which implies that

|b| = |<(τ ′)−<(τ)| < 1.

Thus b = 0 and τ ′ = τ .
Suppose now that c 6= 0. We have

|τ + d/c| ≤ 1/|c|.
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We claim that |c| = 1. For suppose |c| ≥ 2, then |τ +d/c| ≤ 1
2 meaning

that τ is closer to the d/c (real axis) than 1/2. This contradicts the
assumption (3) that |τ | ≥ 1. Thus c = ±1 and

|τ ± d| ≤ 1.

But since τ situates in the fundamental region, so either d = 0 or
d = ±1. In the latter, the |τ + 1| ≤ 1 has no solution there (the
only point being e2πi/3 is outside the fundamental region). The other
inequality |τ −1| ≤ 1 has the only one solution eiπ/3 and it becomes an
equality and |cτ+d| = 1. We deduce from (5.5) that =(τ ′) = =(τ) and
hence τ ′ = τ . Suppose d = 0 and |c| = 1. So |τ | ≤ 1. This together
with the assumption (3) |τ | ≥ 1 imply that |τ | = 1. Hence

τ ′ = aτ + b

cτ
= a

c
+ b

cτ
= a

c
+ −1

τ

since bc = −1. Hence

τ ′ = ±a− 1
τ

= ±a− τ̄ .

But then <(τ ′) = ±a−<(τ̄) = ±a−<(τ) so that

<(τ ′ + τ) = ±a

which is an integer. This is possible only if a = 0. Thus τ ′ = −1/τ
and the only solution for this equation in the fundamental region is
when τ ′ = τ = i (since |τ | = 1).

5.4 Doubly periodic functions
Definition 5.4.1. Let ω1 and ω2 be two distinct non-zero complex
numbers such that =ω1/ω2 > 0. An elliptic function f is a mero-
morphic function on C such that

f(z + ω1) = f(z), f(z + ω2) = f(z)

for any two distinct periods ω1 and ω2.
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That is, f(z + ω) = f(z) whenever ω = nω1 + mω2 for any inte-
gers n, m. Thus we may shift the vertex z = 0 of the parallelogram
to any point a and the above statement still hold. We denote such
parallelogram by Pa with vertices a, a+ ω1, a+ ω2, a+ ω1 + ω2.

We note that the τ = ω2/ω1 when restricted to the fundamental
region described in the Theorem 5.3.2 is unique.

Theorem 5.4.2. An elliptic function without poles must be a constant.

Proof. Being without poles, so an elliptic function f is bounded on
the period spanned by {0, ω1, ω2, ω1 + ω2} which is a compact set.
Hence f is a bounded entire function. Thus f is constant by Liouville’s
theorem.

Theorem 5.4.3. The sum of the residues of an elliptic function is
zero.

Proof. Without loss of generality, we may choose a so that none of the
poles falls on the boundary of Pa. Hence

∑
Res f(poles) = 1

2πi
∫
Pa
f(z) dz = 0

since the integral along the opposite sides of the parallelogram have
equal magnitudes but with opposite signs.

Definition 5.4.4. The sum of orders of the poles of an elliptic function
in its period parallelogram is called the order of the function.

We deduce that the order of an elliptic function in a period par-
allelogram is at least two. That is, an elliptic function cannot have a
single simple pole in a period parallelogram.

Theorem 5.4.5. A non-constant elliptic function has an equal number
of poles and zeros in its period parallelogram.
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Proof. Note that the quotient f ′(z)/f(z) is an elliptic of function of
the same periods as f . But then the last theorem asserts that

0 = 1
2πi

∫
Pa

f ′(z)
f(z) dz

= (no. of zeros)− (no. of poles)

in the period parallelogram Pa.

By considering the function

f(z)
f(z)− a,

we deduce immediately that

Theorem 5.4.6. An elliptic function of order m ≥ 2 assumes every
value m times in the period parallelogram (counted according to multi-
plicities).

Theorem 5.4.7. Let a1, · · · , an and b1, · · · , bn be the number of zeros
and poles of an elliptic function f in a period parallelogram respectively.
Then

n∑
k=1

(ak − bk) = nω1 +mω2

for some integers n, m.

We sometime write the above conclusion in the abbreviated form
n∑
k=1

ak =
n∑
k=1

bk ( mod M).

Proof. By choosing a suitable a we assume that there is no zeros and
poles of f that lie on the boundary of the period parallelogram Pa. It
follows from the residue theorem that

1
2πi

∫
∂Pa

zf ′(z)
f(z) dz =

n∑
k=1

(ak − bk).
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However, the integral has another interpretation: consider the inte-
grations of the integrand from a to a + ω1 and then from a + ω2 to
a+ ω1 + ω2. So

1
2πi

( ∫ a+ω1

a
−
∫ a+ω1+ω2

a+ω2

)zf ′(z)
f(z) dz

= 1
2πi

∫ a+ω1

a

zf ′(z)
f(z) dz − 1

2πi
∫ a+ω1

a

(ζ + ω2)f ′
f

dζ

= − ω2

2πi
∫ a+ω1

a

f ′(z)
f(z) dz

where the last integral is the winding number of f along the path from
a to a + ω1. Hence the integral is an integral multiple of ω2. Simi-
lar calculation over the second and the fourth sides gives an integral
multiple of ω1. This completes the proof.

5.5 Weierstrass elliptic functions
We start to construct doubly periodic functions. Since there is no
non-constant doubly periodic function with a single pole. Otherwise,
such an elliptic function would contradict the sum of residues in a
period parallelogram is zero. Thus a simplest elliptic function f has
a double pole or at least two simple poles with opposite residues in a
period parallelogram. Without loss of generality, we may assume in
the former that this double pole locates at the origin z = 0 (so that
the function has zero residue at z = 0). Moreover, we see that the
function

f(z)− f(−z)
has no pole in a period parallelogram. So it must be a constant. But
since f(ω1/2) − f(−ω1/2) = 0 so that f(−z) = f(z) implying that f
must be an even function. We denote such an elliptic function by ℘(z).
Hence we have the following expansion

℘(z) = 1
z2 + a1z

2 + a2z
4 + · · ·
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around the origin. To actually construct such an elliptic function, we
could resort to Mittag-Leffler theorem. But in this special case we
could construct such functions directly. That is, we have

Theorem 5.5.1. Let ω1, ω2 be such that =(ω2/ω1) 6= 0. Then the
function

℘(z) = 1
z2 +

∑
ω 6=0

( 1
(z − ω)2 −

1
ω2

)
(5.6)

where ω = nω1 + nω2 for all integers n, m with (n, m) 6= (0, 0), is an
elliptic function with fundamental periods ω1, ω2.

Proof. We first show that the infinite sum

∑
ω 6=0

( 1
(z − ω)2 −

1
ω2

)

does converges away from the poles. So let |ω| > 2|z|. Then
∣∣∣∣ 1
(z − ω)2 −

1
ω2

∣∣∣∣ =
∣∣∣∣ z(2ω − z)
ω2(z − ω)2

∣∣∣∣ ≤ 10|z|
|ω|3

.

It remains to consider the sum
∑
ω 6=0

1
|ω|3

=
∑

(n,m)6=(0, 0)

1
|nω1 +mω2|3

(5.7)

converges.
We let S1 to denote the part of the infinite sum that runs through

the points
±ω1, ±(ω1 + ω2), ±ω2, ±(ω1 − ω2)

over the lattice that are closest to the origin (0, 0). There are exactly
eight points. Let D and d be the longest and shortest distances of the
eight points to the origin (0, 0). Then we have

8
D3 ≤ S1 ≤

8
d3 .
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The sum S2 over the second layer has 2 × 8 = 16 lattice points. But
then

16
(2D)3 ≤ S2 ≤

16
(2d)3 .

Similarly, the sum S3 is over 3× 8 = 24 lattice points. Hence
24

(3D)3 ≤ S3 ≤
24

(3d)3 .

For Sn, we have 8n lattice points so that
8

D3n2 = 8n
(nD)3 ≤ Sn ≤

8n
(nd)3 = 8

d3n2 .

The above analysis is sufficient to guarantee that the ℘ converges uni-
formly in any compact subset of C with the lattice points ω and 0
removed.

Then

℘′(z) = − 2
z3 −

∑
ω 6=0

2
(z − ω)3 = −2

∑
ω

1
(z − ω)3 .

This shows that the ℘′ is doubly periodic. We deduce that

℘(z + ω1)− ℘(z), ℘(z + ω2)− ℘(z)

are both constants. We further note that the ℘(z) as defined above
is an even function. Substitute z = −ω1 and z = −ω2 into the above
formulae shows that the two constants can only be zero. We deduce
that ℘(z) is doubly periodic.

5.6 Weierstrass’s Sigma and Zeta func-
tions

Since the sum (5.7) ∑
ω 6=0

1
|ω|3
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converges, so we can form a Hadamard product

σ(z) = σ(z |ω1, ω2) := z
∏
ω 6=0

(
1− z

ω

)
exp

( z
ω

+ z2

2ω2

)
. (5.8)

Thus the infinite product converges uniformly in any compact subset
of C, so it represents an entire function (of order 2). It is not an elliptic
function, for it would reduce to a constant otherwise. The function is
called Weiestrass’s Sigma function.

We further note that

σ(z) = z
∏

m,n>0

(
1− z

ω

)
exp

( z
ω

+ z2

2ω2

)

×
∏

m,n>0

(
1 + z

ω

)
exp

(
− z

ω
+ z2

2ω2

)

Hence
σ(−z) = −σ(z)

showing that the Sigma function σ(z) is an odd function.
We now take logarithmic derivative on both sides of the Sigma

function. This gives

σ′(z)
σ(z) = 1

z
+

∑
ω 6=0

( 1
z − ω

+ 1
ω

+ z

ω2

)

We define the Weiestrass’s Zeta function to be

ζ(z) = d

dz
log σ(z).

Notice that
ζ(z) = 1

z
+

∑
ω 6=0

( 1
z + ω

− 1
ω

+ z

ω2

)
,


