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hence

ζ(−z) = −1
z

+
∑
ω 6=0

( 1
−z + ω

− 1
ω

+ z

ω2

)

= 1
z

+
∑
ω 6=0

( 1
z − ω

+ 1
ω

+ z

ω2

)

= −ζ(z).

So ζ(z) is an odd function. Although the Zeta function is meromorphic,
it is not an elliptic function. For it has a residue 1 at the only pole in
each period parallelogram.

We now connect the Weierstrass’s Sigma function and the elliptic
function ℘(z). It should be self-evident that

℘(z) = − d

dz
ζ(z) = 1

z2 +
∑
ω 6=0

( 1
(z − ω)2 −

1
ω2

)
.

Pseudo-periodicity of Zeta function

Since −ζ ′(z) = ℘(z) = ℘(z + ω1) = −ζ ′(z + ω1). So

ζ(z + ω1) = ζ(z) + 2η1, (5.9)

for a suitable η1. Let z = −ω1/2 in the above relation. We deduce

2η1 = ζ(ω1/2)− ζ(−ω1/2) = 2ζ(ω1/2)

because ζ(z) is odd. Hence η1 = ζ(ω1/2). Similarly, if

ζ(z + ω2) = ζ(z) + 2η2, (5.10)

then η2 = ζ(ω2/2). We also observe that (η1, η2) 6= (0, 0) for if it
were, then ζ(z) being doubly periodic would be an elliptic function,
contradicting to our earlier conclusion.

The above relations (5.9) and (5.10) are called pseudo-periodicity
of ζ.
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Theorem 5.6.1. Let η1, η2 be defined by ηj = ζ(ωj) (j = 1, 2). Then

η1ω2 − η2ω1 = πi.

Proof. We consider a contour following the parallelogram defined by

P :=
[
− ω1

2 −
ω2

2 ,
ω1

2 −
ω2

2 ,
ω1

2 + ω2

2 , −
ω1

2 + ω2

2 , −
ω1

2 −
ω2

2
]

Because the ζ(z) has a residue 1 at the only simple pole z = 0 inside
the contour P , so Residue’s theorem implies

2πi =
∫
P
ζ(z) dz

=
∫

[−ω1
2 −

ω2
2 ,

ω1
2 −

ω2
2 ]
ζ(z) dz +

∫
[ω1

2 −
ω2
2 ,

ω1
2 +ω2

2 ]
ζ(z) dz

+
∫
[ω1

2 +ω2
2 , −

ω1
2 +ω2

2 ]
ζ(z) dz +

∫
[−ω1

2 +ω2
2 , −

ω1
2 −

ω2
2 ]
ζ(z) dz

=
∫

[−ω1
2 −

ω2
2 ,

ω1
2 −

ω2
2 ]
ζ(z) dz +

∫
[ω1

2 −
ω2
2 ,

ω1
2 +ω2

2 ]
ζ(z) dz

−
∫

[−ω1
2 +ω2

2 ,
ω1
2 +ω2

2 ]
ζ(z) dz −

∫
[−ω1

2 −
ω2
2 , −

ω1
2 +ω2

2 ]
ζ(z) dz

=
∫

[−ω1
2 −

ω2
2 ,

ω1
2 −

ω2
2 ]

[ζ(z)− ζ(z + ω2)] dz

+
∫
[ω1

2 −
ω2
2 ,

ω1
2 +ω2

2 ]
[ζ(z)− ζ(z − ω1)] dz

= (ω1)(−2η2) + (ω2)(2η1)

as required.

The above relationship

η1ω2 − η2ω1 = πi.

is known as Legendre’s relation.
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Pseudo-periodicity of Sigma function

It follows from integrating

ζ(z + ω1) = ζ(z) + 2η1,

that
σ(z + ω1) = Ae2η1zσ(z).

for some non-zero A. Putting z = −ω1
2 in the above equation yields

A = eη1ω1
ζ(ω1/2)
ζ(−ω1/2) = −eη1ω1

since σ(z) is an odd function. Hence

σ(z + ω1) = −eη1ω1e2η1zσ(z) = −eη1(ω1+2z)σ(z).

Similarly, we have

σ(z + ω2) = −eη2(ω2+2z)σ(z).

Exercise 5.6.1. Let ω3 be the period of ℘(z) defined by ω1 +ω2 +ω3 =
0. Show that

1. η1 + η2 + η3 = 0,

2. σ(z + ω3) = −eη3(ω3+2z)σ(z),

3. πi = η2ω3 − η3ω2 = η3ω1 − η1ω3 = η1ω2 − η2ω1.
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5.7 The differential equation satisfied by
℘(z)

We recall the following expansion

℘(z) = 1
z2 +

∞∑
k=0

akz
k = 1

z2 + a2z
2 + a4z

4 + · · ·

around the origin since ℘ is an even function, so there are no odd
coefficients in the Laurent expansion. Notice that for z sufficiently
small,

1
(z − ω)2 −

1
ω2 = 1

ω2(1− z/ω)2 −
1
ω2

= 1
ω2

∞∑
k=1

k
( z
ω

)k−1
− 1
ω2

= 2 z

ω3 + 3 z
2

ω4 + 4 z
3

ω5 + 5 z
4

ω6 + · · ·

(5.11)

This implies that

a2 = 3
∑
ω 6=0

1
ω4 , a4 = 5

∑
ω 6=0

1
ω6 ,

and so on. So
℘(z) = 1

z2 + a2z
2 + a4z

4 +O(z6)

where the O(z6) represents a function analytic at z = 0 with a zero of
order 6. Hence

℘′(z) = − 1
z3 + 2a2z + 4a4z

3 +O(z5).

Notice that,
℘3(z) = 1

z6 + 3 a2

z2 + 3a4 +O(z2)

℘′(z)2 = 4
z4 −

8az
z2 − 16a4 +O(z2)
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so that

℘′(z)2 − 4℘3(z) = −20a2

z2 − 28a4 +O(z2)

= −20a2℘(z)− 28a4 +O(z2).

This shows that the function

Φ(z) := ℘′(z)2 − 4℘3(z) + 20a2℘(z) + 28a4

has a double zero around the origin z = 0 and hence analytic there.
Moreover, the construction of the function Φ asserts that it is also an
elliptic function with periods ω1 and ω2. That is, the Φ(z) is analytic
at every ω which are the only potential singularities. So the Φ(z) is
an entire function in C. So it must reduce to a constant which mush
equals to 0 (because the function has a double zero at z = 0.).

Let us summarise the above discussion into a theorem.

Theorem 5.7.1. The elliptic function ℘(z) with periods ω1 and ω2
satisfies the differential equation

y′(z)2 = 4y3(z)− g2y(z)− g3 (5.12)

where
g2 := 20a2 = 60

∑
ω 6=0

1
ω4 , g3 = 28a4 = 140

∑
ω 6=0

1
ω6 .

We actually can have

Theorem 5.7.2. ℘(z) has Laurent expansion of the form

℘(z) = 1
z2 +

∞∑
k=1

(2k + 1)G2k+2z
2k,

where
Gk =

∑
ω 6=0

1
ωk
, k ≥ 3

is called the Eisenstein series of order n.
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Proof. Exercise.

That is, g2 = 60G4 and g3 = 140G6.

Exercise 5.7.1. Show that

1.
℘′′(z) = 6℘2 − 1

2g2.

2.
℘(3) = 12℘℘′

3.
℘(4) = 120℘3 − 18g2℘− 12g3.

Exercise 5.7.2. Recall the Taylor expansion

℘(z)− 1
z2 =

∞∑
k=1

c1z
2 + c2z

4 + · · ·+ cnz
2n + · · · .

Show that

(n− 2)(2n+ 3)cn = 3(c1cn−2 + c2cn−3 + · · · cn−2c1), n ≥ 3.

Hence prove that each cn is a polynomial in g2 and g3 with positive
rational coefficients.

Exercise 5.7.3. Show that

1. σ(λz |λω1, λω2) = λσ(z |ω1, ω2),

2. ζ(λz |λω1, λω2) = λ−1ζ(z |ω1, ω2),

3. ℘(λz |λω1, λω2) = λ−2℘(z |ω1, ω2).
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Three roots of ℘′(z)

We shall revisit the differential equation

℘′(z)2 = 4℘3(z)− g2℘(z)− g3

obtained above.
We also recall that

℘′(z) = −2
∑
ω

1
(z − ω)3 ,

and it is therefore clear that the ℘′ is an odd elliptic function. Hence

℘′(ω1/2) = ℘′(−ω1/2) = −℘′(ω1/2)

and this immediately implies that ℘′(ω1/2) = 0. Similarly,

℘′(ω2/2) = 0.

Notice that

℘′(ω1/2 + ω2/2) = ℘′(−ω1/2− ω2/2) = −℘′(ω1/2 + ω2/2).

Hence ℘′(ω1/2 + ω2/2) = 0. Recall that ω1 + ω2 + ω3 = 0. Then

−℘′(ω3/2) = ℘′(−ω3/2) = ℘′(ω1/2 + ω2/2) = 0.

Since the ω3/2 are incongruent module to ω1/2 and ω2/2 within a
period parallelogram, so we have shown that all the three simple roots
of ℘′(z) there (since ℘′ has order 3 there).

Let
℘(ω1/2) = e1, ℘(ω2/2) = e2, ℘(ω3/2) = e3.

Since ℘′(ω1/2) = 0, so the elliptic function ℘(z) − e1, which is of
order 2, has a double root at ω1/2. So it cannot vanish at any other
point in the period parallelogram. This implies that e1 6= e2, and
e1 6= e3. Similarly, e2 6= e3 so that all three numbers e1, e2, e3 are
distinct. It follows that

℘′(z)2/[(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)]
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has no zero in any period parallelogram and hence in C. Thus the
quotient is a constant C, say. Hence

℘′(z)2 = C(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Comparing with the lowest term above with that in (5.12) implies that
C = 4 which gives the desired

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

Moreover, the e1, e2, e3 are three roots of the algebraic equation
y2 = 4x3 − g2x− g3.

Exercise 5.7.4. Verify

1. e1e2 + e2e3 + e3e1 = −1
4g2,

2. e1e2e3 = 1
4g3,

3. e2
1 + e2

2 + e2
3 = 1

2g2.

5.8 Elliptic integrals
The differential equation

℘′(z)2 = 4℘3(z)− g2℘(z)− g3

gives the solution w = ℘(z). We can invert the z by

z =
∫ w dw√

4w3 − g2w − g3
.

More precisely,

z − z0 =
∫ ℘(z)

℘(z0)

dw√
4w3 − g2w − g3

,

where the path of integration is the path of ℘ on a path from z0 to z
avoiding the zeros and poles of ℘′(z).
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There is already a similar elliptic integral we encountered earlier
under the conformal mapping of the upper half-plane H onto a rect-
angle:

f(z) = α
∫ z

0

dz√
(1− z2)(1− k2z2)

+ β.

The Jacobian sine elliptic function is w = sn(z) is the function behind.


