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hence
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So ((z) is an odd function. Although the Zeta function is meromorphic,
it is not an elliptic function. For it has a residue 1 at the only pole in
each period parallelogram.

We now connect the Weierstrass’s Sigma function and the elliptic
function p(z). It should be self-evident that

1 1 z>

o) =~ = 5+ T (oo a)
Pseudo-periodicity of Zeta function
Since —('(z) = p(2) = p(z +w1) = = (2 + w1). So
C(z+wi) =¢(2) +2m, (5.9)
for a suitable n;. Let z = —w;/2 in the above relation. We deduce

2m = ((w1/2) — ((—w1/2) = 2¢(w1/2)
because ((z) is odd. Hence 1, = ((w;/2). Similarly, if

C(z +wq) = ((2) + 219, (5.10)

then 7, = ((w2/2). We also observe that (n;, n72) # (0, 0) for if it
were, then ((z) being doubly periodic would be an elliptic function,
contradicting to our earlier conclusion.

The above relations and are called pseudo-periodicity
of (.
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Theorem 5.6.1. Let n1, 12 be defined by n; = ((w;) (j =1, 2). Then

Mwa — Nawy = Ti.

Proof. We consider a contour following the parallelogram defined by

Wi _wp Wi wp Wi Wy Wy Wy Wi W
2 27 2 27 2 2’ 2 2’ 2 2

Because the ((z) has a residue 1 at the only simple pole z = 0 inside
the contour P, so Residue’s theorem implies

271 :/PC(Z) dz

)
T /[wurwz — e C(2) dz + Ly e e ((z)dz
)

“1
) 2

- /[_wl_w w1 ) q¢ dz—{—/[w;_w;’ %+%2]C(z) dz
a /[—w“rwf’ 2] ((2) dz = /[_“’1 wp ey e ((z)dz
)

2 20
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= (w)(—2m) + (w2)(2m)

as required. [
The above relationship

MW — MW = .

is known as Legendre’s relation.
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Pseudo-periodicity of Sigma function

It follows from integrating

C(z+wr) =C((2) + 2m,

that
o(z +wy) = Ao (2).

%

5 in the above equation yields

for some non-zero A. Putting z =

A = eMw1 C(wl/Q) = —e'hw1

((=wi/2)
since o(z) is an odd function. Hence
o(z +w) = —eM¥1e?Mig(z) = —eM@F2) (1),
Similarly, we have

0(z 4 wy) = —e™@2 25 (2),

Exercise 5.6.1. Let w3 be the period of p(z) defined by wy +ws+ws =
0. Show that

L.m+mn+n =0,

2_ O-(Z _|_ w3) — _6773(w3+22)0.(z),

3. Tl = ToWws — NaWa = N3wW1 — NW3 = MWy — oW .
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5.7 The differential equation satisfied by

p(2)
We recall the following expansion
()_1+§ k—i_{_ 2 gt
p(2) = 2" = 5+ az2” + ayz

k=0

around the origin since g is an even function, so there are no odd
coefficients in the Laurent expansion. Notice that for z sufficiently
small,

1 1 1 1
(z—w)? w? W(l—z/w)? w2
== k(2 —= 5.11
w? kz_:l <w> w? (5.11)
2 .3 A

z 4

This implies that
1 1
ap=3Y —, a=5>5)y —,
w#0 w? w#0 wb
and so on. So
1 2 4 6
o(2) = 2 T ta + O(2")
where the O(z%) represents a function analytic at z = 0 with a zero of
order 6. Hence

1
©'(2) = == + 2a22 + 4as2° + O(2°).
2

Notice that,
1 a
3 _ 2 2
©°(2) = e —|—3Z2 + 3as + O(27)
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so that
0 (2)* —4p%(2) = —202; — 28ay + O(27)
= —20asp(2) — 28ay + O(2?).

This shows that the function
®(2) == ¢/ (2)* — 4p°(2) + 20asp(2) + 28ay

has a double zero around the origin z = 0 and hence analytic there.
Moreover, the construction of the function ® asserts that it is also an
elliptic function with periods w; and wy. That is, the ®(z) is analytic
at every w which are the only potential singularities. So the ®(z) is
an entire function in C. So it must reduce to a constant which mush
equals to 0 (because the function has a double zero at z = 0.).

Let us summarise the above discussion into a theorem.

Theorem 5.7.1. The elliptic function ©(z) with periods wi and wo
satisfies the differential equation

y'(2) = 49°(2) — gay(2) — g3 (5.12)

where

1
g2 := 20as = 60 Z o 93 =28a, =140 ) —.
w#0 W w#0 W

We actually can have

Theorem 5.7.2. p(z) has Laurent expansion of the form

1 %}
p(z) = 7 + > (2k 4 1)Gopga2™,
k=1
where .
Gk- - Z 7, k Z 3
w##0 w

s called the Eisenstein series of order n.
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Proof. Exercise. H
That iS, go = 60G4 and g3 = 140G6

Exercise 5.7.1. Show that

1.
1
@H(Z> = 6@2 - 592-
2.
o =120/
3.

oW = 1200 — 18¢sp — 12¢s.

Exercise 5.7.2. Recall the Taylor expansion

1 )
p(z)—;: o et
k=1

Show that
(n—2)(2n+ 3)c, = 3(c1¢p—2 + c2Cpg + -+ - Ch2c1), n > 3.

Hence prove that each ¢, is a polynomial in ¢o and g3 with positive
rational coefficients.

Exercise 5.7.3. Show that
L. 0(Az | Aw1, Aws) = Ao (z |wr, wa),
2. C(Az | dwi, dwg) = A7H(2 |wr, wa),
3. p(A2 dwi, dwa) = A20(2 |wi, wo).
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Three roots of ¢'(z)

We shall revisit the differential equation

0'(2)? = 49°(2) — gap(2) — g3
obtained above.
We also recall that
1
/
— 92y~
P 2) Zw: (2 —w)3’

and it is therefore clear that the ' is an odd elliptic function. Hence

9 (w1/2) = ¢'(—w1/2) = —¢'(w1/2)

and this immediately implies that ¢'(w;/2) = 0. Similarly,

¢ (wa/2) = 0.
Notice that
P (w1/2+w2/2) = ' (—w1/2 — wy/2) = —p'(w1/2 + w2/2).
Hence ¢'(w1/2 + w2/2) = 0. Recall that wy + ws + w3 = 0. Then

— ' (w3/2) = p'(—w3/2) = o' (w1/2 + w2/2) = 0.

Since the ws/2 are incongruent module to w;/2 and wy/2 within a
period parallelogram, so we have shown that all the three simple roots
of ¢'(2) there (since g’ has order 3 there).

Let

plwi/2) =e1, p(w2/2) =€, p(ws/2) = es.

Since ©'(w1/2) = 0, so the elliptic function @(z) — ey, which is of
order 2, has a double root at w;/2. So it cannot vanish at any other
point in the period parallelogram. This implies that e; # ey, and

e1 # e3. Similarly, es # e3 so that all three numbers eq, ey, e3 are
distinct. It follows that

0'(2)/[(p(2) — e1)(p(2) — e2)(p(2) — €3)]
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has no zero in any period parallelogram and hence in C. Thus the
quotient is a constant C', say. Hence

¢'(2)" = Clp(z) — e1)(p(2) — e2)(p(2) — e3).

Comparing with the lowest term above with that in (5.12) implies that
C' = 4 which gives the desired

p'(2)" = 4(p(2) — er)(p(2) — e2)(p(2) — e3).

Moreover, the ey, es, ez are three roots of the algebraic equation
y? = 4a® — gox — gs.

Exercise 5.7.4. Verify
1. €169 + €2e3 + €31 = —igz,
2. erese3 = 103,

2 2 2 _ 1

5.8 Elliptic integrals
The differential equation

¢/(2)" = 49°(2) — g29(2) — g5
gives the solution w = p(z). We can invert the z by

Z—/w dw
VAw? — gow — g3’

More precisely,

U /@(2) dw
"7 Jotz0) /AP — gow — g3

where the path of integration is the path of o on a path from zy to z
avoiding the zeros and poles of ©'(z).
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There is already a similar elliptic integral we encountered earlier
under the conformal mapping of the upper half-plane H onto a rect-
angle:

z dz
f@)=al A—aa-way "

The Jacobian sine elliptic function is w = sn(z) is the function behind.



