
Chapter 6

Modular functions
This chapter is a brief introduction to modular functions.

We recall that themodular group consists of the set of all Möbius
transformations of the from

τ ′ = aτ + b

cτ + d

where a, b, c, d are integers such that (WLOG) ad−bc = 1. This group
is denoted by Γ. Such a Möbius transformation can be represented in
a matrix form: a b

c d

 , ad− bc = 1.

Definition 6.0.1. An analytic function λ which satisfies

λ
(az + b

cz + d

)
= λ(z),

where the Möbius transformation belongs to the modular group is
called an automorphic function.

Recall that for a given Weierstrass elliptic function ℘(z), we have

e1 = ℘(ω1/2), e2 = ℘(ω2/2), e3 = ℘(ω3/2),

where ω1 + ω2 + ω3 = 0.
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6.1 The function λ(τ )
We observe that scaling of the periods ωk (k = 1, 2, 3) by tωk results
in

℘
(
t
ωk
2
)

= 1
t2
℘
(ωk

2
)

= 1
t2
ek, k = 1, 2, 3.

Thus the function
λ(τ) = e3 − e2

e1 − e2
, (6.1)

is a function of τ := ω2/ω1. Since the ej 6= ek whenever j 6= k, so
the λ(τ) is an analytic function in the upper half-plane =(τ) > 0.
Moreover,

λ(τ) 6= 0, 1
since e2 6= e3 and e1 6= e3 respectively.

Applying knowledge from theta function, one can actually write

λ(τ) = e3 − e2

e1 − e2
= 16q

∞∏
k=1

( 1 + q2k

1 + q2k−1

)8
,

where q = eiπτ .

Congruent subgroup of mod 2

Suppose our initial ω1, ω2 is replaced by

ω′2 = aω2 + bω1,

ω′1 = cω2 + dω1.
(6.2)

But since the ℘(z) is invariant with respect to any modular transfor-
mation, so it follows from the differential equation

℘′(z)2 = 4℘3(z)− g2℘(z)− g3

= (℘(z)− e1)(℘(z)− e2)(℘(z)− e3).

the corresponding ek (k = 1, 2, 3) are permuted (and so changing the
value of λ) under a unimodular transformation.
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The identity map for the ek (k = 1, 2, 3) from the following uni-
modular transformation. If we choose the a, b, c, d such that a ≡ 1 ≡
d mod 2 and b ≡ 0 ≡ c mod 2, then this imply

ω′1
2 ≡

ω1

2 ,
ω′2
2 ≡

ω2

2 . mod M

So the ek (k = 1, 2, 3) remain fixed. We may rephrase the above by
writing

λ
(aτ + b

cτ + d

)
= λ(τ), when

a b
c d

 ≡
1 0

0 1

 mod 2. (6.3)

The collection of unimodular transformations can easily be seen
to form a group, called the congruence subgroup mod 2 of the
modular group. In general a function f that satisfies the equation
f(Mτ) = f(τ) is called automorphic. An automorphic function with
respect to a subgroup of the full modular group is called a (elliptic)
modular function.

Incongruent subgroup of mod 2

It is sufficient to considera b
c d

 ≡
1 1

0 1

 or
0 1

1 0

 mod 2 (6.4)

since the other ones can be composed from these two. The equation
(6.3) would therefore be violated. Indeed, in the first case above

ω′2
2 ≡

ω1 + ω2

2 ,
ω′1
2 ≡

ω1

2 , mod M

we have, so that e2 ↔ e3 (they are interchanged), e1 remains fixed. We
have the λ(τ) becomes

λ(τ) = e3 − e2

e1 − e2
7−→ λ(τ)

λ(τ)− 1 = e2 − e3

e1 − e3
.
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But the corresponding unimodular transformation is τ → τ+1. Hence

λ(τ + 1) = λ(τ)
λ(τ)− 1 .

The second transformation corresponds to

ω′2
2 ≡

ω1

2 ,
ω′1
2 ≡

ω2

2 , mod M (6.5)

so that e1 ↔ e2 and e3 remains unchanged. We see that

λ(τ) = e3 − e2

e1 − e2
7−→ 1− λ(τ) = e3 − e1

e2 − e1

the corresponding unimodular transformation is τ → −1/τ . Hence

λ
(
− 1
τ

)
= 1− λ(τ).1

Remark. We note that the choice of the matrices representations (6.4)
are far from unique. For example, if we rewrite (6.5) with

ω′2
2 ≡

ω1

2 ,
ω′1
2 ≡ −

ω2

2 , mod M (6.6)

then we would have matrix representation0 −1
1 0

 mod 2

instead of 0 1
1 0

 mod 2.

1This formula is called Jacobi’s imaginary transformation formula (1828).
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6.2 Growth properties of λ(τ )
We normalise the choice ω1 = 1 and ω2 = τ for ease of later discussion.
We observe that

Theorem 6.2.1. The elliptic modular function (6.1) λ(τ) is real when
τ is purely imaginary.

Proof. This essentially follows from the definition of the ek, namely

e3 − e2 =
∞∑

m,n=−∞

( 1
(m− 1

2 + (n− 1
2)τ)2 −

1
(m+ (n− 1

2)τ)2

)
,

and

e1 − e2 =
∞∑

m,n=−∞

( 1
(m− 1

2 + nτ)2 −
1

(m+ (n− 1
2)τ)2

)
,

where the double series are absolutely convergent. If τ = it (t > 0),
then clearly, the above sums remain unchanged with τ is replaced by
−τ = τ̄ . This establishes the theorem.

Theorem 6.2.2. The elliptic modular function (6.1) λ(τ) satisfies

1. λ(τ)→ 0 as =(τ)→ +∞ uniformly with respect to the <(τ),

2. more precisely,

λ(τ)/eiπτ → 16, =(τ)→ +∞, (6.7)

3. λ(τ)→ 1 as τ → 0 along the imaginary axis.

Proof. Let us quote the elementary Mittag-Leffler expansion formula:

π2

sin2 πz
=

∞∑
m=−∞

1
(z −m)2 .
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Applying this expansion in the definition of ek summing first over m
yields

e3 − e2 = π2
∞∑

n=−∞

( 1
cos2 π(n− 1

2)τ −
1

sin2 π(n− 1
2)τ

)

and
e1 − e2 = π2

∞∑
n=−∞

( 1
cos2 πnτ

− 1
sin2 π(n− 1

2)τ
)
.

Notice that the terms | sinnπτ | and | cosnπτ | are comparable to e|n|π=(τ)

so that the above sums are uniformly convergent as n → ±∞ when
=(τ) ≥ δ > 0 (for some δ > 0). This also means that we could take
limit on individual terms of the above sum as =(τ)→ +∞. This yields

e3 − e2 → 0, e1 − e2 → π2, =(τ)→ +∞,

and hence λ(τ) → 0 as =(τ) → +∞ as asserted. If we let τ → 0
along the imaginary axis, then we easily deduce from the equation
λ(−1/τ) = 1− λ(τ) that λ(τ)→ 1.

We note that the leading terms (i.e., n = 0, 1) of the above sum
for e3 − e2 are given by

2π2
( 4eπiτ

(1 + eπiτ)2 + 4eπiτ
(1− eπiτ)2

)
.

This concludes the part (2).

6.3 Covering property of λ(τ )
Let

Ω :=
{
z : 0 < <(z) < 1, =(z) > 0

}
∩
{
z : |z − 1| ≥ 1/2

}
(6.8)

We are ready to deal with


