Chapter 6

Modular functions

This chapter is a brief introduction to modular functions.
We recall that the modular group consists of the set of all Mobius
transformations of the from
, _at+b
et +d

where a, b, ¢, d are integers such that (WLOG) ad—bc = 1. This group
is denoted by I'. Such a Mobius transformation can be represented in

a matrix form:
a b
(c d)’ ad — bc = 1.

Definition 6.0.1. An analytic function A which satisfies

) =),

where the Mobius transformation belongs to the modular group is
called an automorphic function.

az +b
A
(cz+d

Recall that for a given Weierstrass elliptic function p(z), we have

e1 = p(wi/2), ex=p(wa/2), e3= p(ws/2),

where w; + w9y + w3 = 0.
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6.1 The function \(7)

We observe that scaling of the periods wy (k = 1, 2, 3) by twy, results
in
Wi . 1 Wi . 1 .
p(t) = p() = t—zek, k=1, 2, 3.

2
Thus the function
€3 — €9

A7) = (6.1)

€1 — 62’
is a function of 7 := wy/w;. Since the e; # e, whenever j # k, so
the A(7) is an analytic function in the upper half-plane J(7) > 0.
Moreover,

A7) #0, 1
since es # ez and ey # e3 respectively.
Applying knowledge from theta function, one can actually write

€3 — €2

A7) =

+q2k 1)’

6H<

€1 — €2

where ¢ = '™

Congruent subgroup of mod 2
Suppose our initial wy, wy is replaced by

wh = awsy + bwy,
2 (6.2)
Wy = cwy + dwy.

But since the o(z) is invariant with respect to any modular transfor-
mation, so it follows from the differential equation

0'(2)° = 49°(2) — gap(2) — g3
= (p(2) —e1)(p(2) — e2)(p(z) — e3).

the corresponding e (k = 1, 2, 3) are permuted (and so changing the
value of \) under a unimodular transformation.
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The identity map for the e, (kK = 1, 2, 3) from the following uni-
modular transformation. If we choose the a, b, ¢, d such that a =1 =
d mod 2and b=0=c¢ mod 2, then this imply
Wi wr W)y W

—= =, M
2 =9 g - g med
So the e (k =1, 2, 3) remain fixed. We may rephrase the above by
writing

at + b a by (10
A(CT—i—d) = \(7), when (c d) = (O 1) mod 2. (6.3)

The collection of unimodular transformations can easily be seen
to form a group, called the congruence subgroup mod 2 of the
modular group. In general a function f that satisfies the equation
f(MT) = f(7) is called automorphic. An automorphic function with
respect to a subgroup of the full modular group is called a (elliptic)
modular function.

Incongruent subgroup of mod 2

It is sufficient to consider

E0Y w (Y war

since the other ones can be composed from these two. The equation
(6.3) would therefore be violated. Indeed, in the first case above

wp _wituwn W w
2 2 72

mod M

we have, so that es <> e3 (they are interchanged), e; remains fixed. We
have the \(7) becomes

)\(T)_eg—@. . A7) ea—es
_61—62I /A(T)—l_el—eg'
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But the corresponding unimodular transformation is 7 — 7+ 1. Hence

A7)

AMT+1) = W

The second transformation corresponds to

wh  wr wp wa

5 =9 o mod M (6.5)

so that e; <> ey and e3 remains unchanged. We see that

63_e2r—>1—)\(7):e3_61

€1 — €2 €2 — €1

A7) =

the corresponding unimodular transformation is 7 — —1/7. Hence

A( . i) —1- A(T).

Remark. We note that the choice of the matrices representations ([6.4))
are far from unique. For example, if we rewrite (6.5)) with

— = mod M (6.6)

then we would have matrix representation
0 —1
(1 0 ) mod 2

01
(1 0) mod 2.

!This formula is called Jacobi’s imaginary transformation formula (1828).

instead of
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6.2 Growth properties of \(7)

We normalise the choice w; = 1 and wy = 7 for ease of later discussion.
We observe that

Theorem 6.2.1. The elliptic modular function (6.1)) A(7) is real when
T 18 purely imaginary.

Proof. This essentially follows from the definition of the ej, namely

00 1 1
ama= Y (o 1veopr mra-ho)
and
00 1 1
a-a= L (@ Trmr  mrao o)

where the double series are absolutely convergent. If 7 =it (¢t > 0),
then clearly, the above sums remain unchanged with 7 is replaced by
—7 = 7. This establishes the theorem. []

Theorem 6.2.2. The elliptic modular function (6.1) \(7) satisfies
1. XN1) = 0 as (1) — +oo uniformly with respect to the R(7),
2. more precisely,

A7) /™ — 16, (1) — +oo, (6.7)

3. M) = 1 as 7 — 0 along the imaginary axis.
Proof. Let us quote the elementary Mittag-Leffler expansion formula:

2 S 1

sin? 7z e (2 —m)?
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Applying this expansion in the definition of e; summing first over m
yields

s o0 ( 1 B 1 )
GTesT n:z_:oo cos? m(n — %)T sin?w(n — L7

and

, X 1 1
€1 — €y =T Z < D) — 3 1 >
ne—oo \COS?TNT  sin“w(n — )7

(Inlrs ()

Notice that the terms | sin n77| and | cos nw7| are comparable to
so that the above sums are uniformly convergent as n — +o0o when
(1) > 6 > 0 (for some § > 0). This also means that we could take
limit on individual terms of the above sum as (7) — +oo. This yields

e3—ey3 — 0, e — ey — T, (1) — 400,

and hence A\(7) — 0 as $(7) — +oo as asserted. If we let 7 — 0
along the imaginary axis, then we easily deduce from the equation
AM—=1/7) =1—= A(7) that \(1) — 1.

We note that the leading terms (i.e., n = 0, 1) of the above sum
for e3 — ey are given by

This concludes the part (2). O

6.3 Covering property of \(7)
Let
Q:={z: 0<R(z) <1, S(2)>0}n{z: |z—1]>1/2}  (6.8)

We are ready to deal with



