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Theorem 6.3.1. The modular function

λ(τ) = e3 − e2

e1 − e2

is a one-one conformal mapping λ : Ω → H. Moreover, the mapping
extends continuously to the boundary of Ω so that

1. the image of ∂Ω is real-valued; and

2. the boundary points τ = 0, 1, ∞ correspond to λ = 1, ∞, 0;

3. the λ(τ) is monotone on ∂Ω so that λ(∂Ω) = (−∞, ∞) in such
a way that

• λ : −∞ ↑ 0 over [1, 1 + i∞);
• λ : 0 ↑ 1 = λ(0) over (i∞, 0];
• λ : 1 ↑ +∞ over 1

2 + 1
2e
iθ where θ : −π ↑ π.

Proof. We first investigate the behaviour of λ(τ) on the boundary of Ω.
We recall from Theorem 6.2.2 that λ(z) is real on imaginary axis. So
the transformation τ + 1 maps the imaginary axis onto the <(τ) = 1.
So

λ(it+ 1) = λ(it)
1− λ(it)

is therefore real for all t > 0. Moreover, the map 1/τ maps the <(τ) =
1, i.e., τ = 1 + it (t > 0) onto the circle |τ − 1

2| =
1
2

2 Let τ ′ = 1
2 + 1

2e
iθ.

Let
τ = 1

1− τ ′ , τ ′ = 1− 1
τ
,

and
τ = 1 + i

sin θ
1 + cos θ , <(τ) = 1.

2
∣∣1− 1

τ −
1
2
∣∣2 =

∣∣1− 1
1+it −

1
2
∣∣2 = ( 1

2 )2.
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Then the image of λ on |τ − 1
2| = 1

2 can “pull-back” by the transfor-
mation:

λ(τ ′) = λ
(
1− 1

τ

)
= λ(−1/τ)

1− λ(−1/τ) = 1− λ(τ)
1− (1− λ(τ))

= 1
λ(τ) − 1,

hence showing that λ (where τ lies on the <(τ) = 1) is again real on
|τ − 1

2 | = 1
2 by the first case. Hence we have established that λ(τ) is

real-valued on the whole boundary of Ω.
Since our aim is to prove λ : Ω → H is a one-one conformal map,

so we choose an arbitrary point w0 in H. Then Theorem 6.2.2 (1)
guarantees that there exists a number t0 > 0 so that

w0 6= λ(τ) = λ(s+ it)

for t ≥ t0.
Let us consider the images of the horizontal line segment

L0 := {s+ it0 : 0 ≤ s ≤ 1}

under the modular transformations λ:

1. −1/τ : L0 is mapped onto a circle C0 tangent to the point τ = 0
in the upper half-plane. Clearly, the “smaller” the circle is when
the larger the t0 > 0 is chosen;

2. 1−1/τ : L0 is mapped onto a circle C1 tangent to the point τ = 1
in the upper half-plane. Clearly, the “smaller” the circle is when
the larger the t0 > 0 is chosen again.

We recall that the region of Ω is a “triangle” with all three angles
zero (one at ∞). Let us “cut off the three angles” by removing the
portions

• =(τ) > t0;
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• the whole disc filled from C0 tangent at τ = 0 constructed above;

• the whole disc filled from C1 tangent at τ = 1 constructed above.

We write Ω0 to denote the remaining region of Ω. Since λ(τ) → 1
as τ → 0 (Theorem 6.2.2 (1)), so λ(−1/τ) ≈ 1 uniformly on C0 as
t0 → +∞.

Figure 6.1: Non-Euclidean triangle with three angles 0

On the other hand, Theorem 6.2.2 (2) asserts that when τ ′ is close
to C1 when τ ′ ≈ 1,

λ(τ ′) = λ(1− 1/τ) = 1− 1/λ(τ)

≈ 1− 1
16e

−iπ(s+it0)

= 1 + 1
16e

πt0+iπ(1−s),

for 0 ≤ s ≤ 1, so that this is approximately a semi-circle in the upper
half-plane. This together with earlier analysis shows that in the limit
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as Ω0 → Ω as t0 → +∞ that

n
(
λ(∂Ω); w0

)
= 1

2πi
∫
λ(∂Ω)

dλ

λ− w0

= 1
2πi

∫
∂Ω

λ′(T )
λ(T )− w0

dT

= 1.

Hence each w0 in H has been “taken” once and once only by λ(τ) inside
Ω, and none of those points with =(w0) < 0 are taken by λ in Ω. It is
clear that λ(0) = 1, λ(1) =∞ and λ(∞) = 0.

The above analysis shows that λ : Ω → H is a one-one conformal
map also implies that λ(τ) is monotone on ∂Ω. For suppose not, then
there would be a boundary point a on ∂Ω at which λ′(a) = 0. But
then, in a neighbourhood of a in Ω, we have

λ(z) = λ(a) + λ(k)(a)
k! (z − a)k[1 +O(z − a)],

where k ≥ 2, so it is evident that the image of such neighbourhood
could not lie entirely within H. A contradiction.

Corollary 6.3.1.1. Let Ω′ denote the region that is the mirror image of
Ω reflected along the imaginary axis in H. Then the modular function
maps the Ω′ onto the lower half-plane, and λ(Ω̄ ∪ Ω′) = C\{0, 1}.

Remark. We call the modular function λ a universal cover of C\{0, 1}.

Exercise 6.3.1. Show that if τ ′ = 1
2 + 1

2e
iθ, τ ′ = 1− 1

τ , then

τ = 1 + i
sin θ

1− cos θ .
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Figure 6.2: D is the “Right-half” of FR, D′ its mirror-image. The
figure shows regions that are reflections of D and D′

It is routine to check that the six shaded regions in the above
figure are images of the Fundamental Region D under the following
transformations:

τ, −1
τ
, τ − 1, 1

1− τ ,
τ − 1
τ

,
τ

1− τ . (6.9)

which we denote by S1, S2, · · · , S6. They form a complete set of incon-
gruent unimodular transformations (i.e., members of modular group)
mod 2, in the sense that each unimodular transformation is congruent
mod 2 to one of the Sk. Let we denote S−1

k (k = 1, · · · , 6) to denote
the corresponding inverses. Then it can be checked that they map the
region D′ (the “left-half” of the FD) onto the unshaded regions of the
above figure. One see immediately that the union of 12 images of D̄
and D̄′ covers Ω̄ ∪ Ω̄′ (here the closure refers to the H only).

Let Ω′ be the mirror image of Ω reflected along the imaginary axis.
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Theorem 6.3.2. Every point τ in the upper half-plane H is equivalent
under the congruence subgroup mod 2 to exactly one point in Ω̄∪Ω′.

Proof. Let τ be an arbitrary point in H. Then according to Theorem
5.3.2 that there is a unimodular transformation S such that Sτ in D,
say. But there is a S−1

k such that S ≡ S−1
k mod 2, i.e., T = SkS ≡ I

mod 2. But then Tτ = Sk(Sτ) belongs to one of 12 regions and hence
in Ω̄∪Ω̄′. A similar reasoning also applies if Sτ ∈ D′. Hence Tτ ∈ Ω̄∪Ω̄′
in either cases. Hence Tτ ∈ Ω̄ ∪ Ω′.

The uniqueness follows from the fact that the S1, · · · , S6 as well as
S−1

1 , · · · , S−1
6 are incongruent mod 2.

Figure 6.3: Taken from page 426 of E. T. Copson


