CHAPTER 6. MODULAR FUNCTIONS 210

Theorem 6.3.1. The modular function

€3 — €2

A =
R

is a one-one conformal mapping X\ : @ — H. Moreover, the mapping
extends continuously to the boundary of €} so that

1. the image of 0S) is real-valued; and
2. the boundary points T = 0, 1, oo correspond to A = 1, 0o, 0;

3. the X\(7) is monotone on 9§ so that A\(02) = (—oo, 00) in such
a way that

e \:—00 710 over[l, 1+i00);
e \:0711=X\O0) over (ico, 0];

e \: 11T +00 0ver%+%ew where 0 : —m 1 7.

Proof. We first investigate the behaviour of A(7) on the boundary of €.
We recall from Theorem that A(z) is real on imaginary axis. So
the transformation 7 + 1 maps the imaginary axis onto the $(7) = 1.

S0 Ait)
i
Ait+1) = —F—
G+ D) =13
is therefore real for all t > 0. Moreover, the map 1/7 maps the (1) =
1,ie., 7=1+it (t > 0) onto the circle |7 — | = % Let 7/ = § + L€',
Let

1 ]
T = T=1-—
1—7" T’
and "
sin
a —Hl—l—cos@’ (7)
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Then the image of A on |7 — 3| = § can “pull-back” by the transfor-
mation:
1 A(—1/7) 1 — (1)
MY =A1-=)= =
() =( T) L—A—1/7) 1-(1-Xn)
1
- 1
Ar)

hence showing that A (where 7 lies on the $(7) = 1) is again real on
|7 — 3| = % by the first case. Hence we have established that A(7) is
real-valued on the whole boundary of 2.

Since our aim is to prove A :  — H is a one-one conformal map,
so we choose an arbitrary point wy in H. Then Theorem [6.2.2] (1)
guarantees that there exists a number ¢35 > 0 so that

wo # A1) = A(s + it)

for t > t.
Let us consider the images of the horizontal line segment

Ly:={s+ity: 0<s<1}
under the modular transformations A:

1. —1/7: Ly is mapped onto a circle Cy tangent to the point 7 =0
in the upper half-plane. Clearly, the “smaller” the circle is when
the larger the ¢y > 0 is chosen;

2. 1—1/7: Ly is mapped onto a circle C tangent to the point 7 = 1
in the upper half-plane. Clearly, the “smaller” the circle is when
the larger the ¢y > 0 is chosen again.

We recall that the region of €2 is a “triangle” with all three angles
zero (one at 0o0). Let us “cut off the three angles” by removing the
portions

o (1) > to;
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e the whole disc filled from () tangent at 7 = 0 constructed above;
e the whole disc filled from C} tangent at 7 = 1 constructed above.

We write €y to denote the remaining region of Q. Since A(7) — 1
as 7 — 0 (Theorem (1)), so A(—=1/7) ~ 1 uniformly on Cj as
tyg — +00.

£ 0

0 172 1

Figure 6.1: Non-Euclidean triangle with three angles 0

On the other hand, Theorem [6.2.2] (2) asserts that when 7' is close
to C1 when 7/ =~ 1,

A7) =X1-1/7)=1-1/\(7)

1 ) .
~1— — —im(s+ity)
16°
1 )
— 14— mto+im(l—s)
T 16° ’

for 0 < s <1, so that this is approximately a semi-circle in the upper
half-plane. This together with earlier analysis shows that in the limit
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as €y — Q as tg — +oo that

1 dA
n(A(09Q); wy) = /A(aQ)

B 271 A — wy
1 N(T)
= dT
270 /39 AT — wy
= 1.

Hence each wy in H has been “taken” once and once only by A(7) inside
(2, and none of those points with &(wp) < 0 are taken by A in . It is
clear that A(0) = 1, A(1) = oo and A(oc0) = 0.

The above analysis shows that A : 2 — H is a one-one conformal
map also implies that A(7) is monotone on 0. For suppose not, then
there would be a boundary point a on 02 at which X (a) = 0. But
then, in a neighbourhood of a in €2, we have

M) (a)

Az) = Ma) + o

(z—a)*[1 +O(z — a)],

where k > 2, so it is evident that the image of such neighbourhood
could not lie entirely within H. A contradiction. ]

Corollary 6.3.1.1. Let Q) denote the region that is the mirror image of
Q reflected along the imaginary axis in H. Then the modular function
maps the Q' onto the lower half-plane, and A\(2U Q') = C\{0, 1}.

Remark. We call the modular function A a universal cover of C\{0, 1}.

Exercise 6.3.1. Show that if 7/ = % + %ew, T=1- %, then

i sin 0
T = —.
1 —cosf
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-1 -1/2 0 1/2 1

Figure 6.2: D is the “Right-half” of FR, D’ its mirror-image. The
figure shows regions that are reflections of D and D’

It is routine to check that the six shaded regions in the above
figure are images of the Fundamental Region D under the following
transformations:

1 1 T—1 T
—— —1 : 6.9
7_7 T Y T Y 1 — T Y T Y 1 — T ( )
which we denote by 57, Ss,---,Ss. They form a complete set of incon-

gruent unimodular transformations (i.e., members of modular group)
mod 2, in the sense that each unimodular transformation is congruent
mod 2 to one of the S;. Let we denote S;' (k =1, ---,6) to denote
the corresponding inverses. Then it can be checked that they map the
region D’ (the “left-half” of the FD) onto the unshaded regions of the
above figure. One see immediately that the union of 12 images of D
and D' covers Q U Q' (here the closure refers to the H only).

Let ' be the mirror image of 2 reflected along the imaginary axis.
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Theorem 6.3.2. Every point 7 in the upper half-plane H is equivalent
under the congruence subgroup mod 2 to exactly one point in QU Q.

Proof. Let 7 be an arbitrary point in H. Then according to Theorem
that there is a unimodular transformation .S such that S7 in D,
say. But there is a S} such that S =S, mod 2,ie., T =SS =1
mod 2. But then 7't = S;.(S7) belongs to one of 12 regions and hence
in QUCY. A similar reasoning also applies if ST € D’. Hence T't € QU
in either cases. Hence Tt € QU (Y.

The uniqueness follows from the fact that the Si, - -+, S¢ as well as
Syt .. Sgtare incongruent  mod 2. O]
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Figure 6.3: Taken from page 426 of E. T. Copson



