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Abstract. We give a pointwise estimate of meromorphic solutions of linear differential equations
with coefficients meromorphic in a finite disk or in the open plane. Our results improve some
earlier estimates of Bank and Laine. In particular we show that the growth of meromorphic
solutions with δ(∞) > 0 can be estimated in terms of initial conditions of the solution at or near
the origin and the characteristic functions of the coefficients. Examples show that the estimates
are sharp in a certain sense. Our results give an affirmative answer to a question of Milne
Anderson.

Our method consists of two steps. In Theorem 2.1 we construct a path Γ(θ0, ρ, t) consisting
of the ray

z = τeiθ0 , ρ ≤ τ ≤ t,

followed by the circle

z = teiθ, θ0 ≤ θ ≤ θ0 + 2π,

on which the coefficients are all bounded in terms of the sum of their characteristic functions
on a larger circle. In Theorem 2.2 we show how such an estimate for the coefficients leads to a
corresponding bound for the solution on |z| = t. Putting these two steps together we obtain our
main result, Theorem 2.3.
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1. Background and earlier results

We consider meromorphic solutions of the differential equation

y(n)(z) +
n−1∑
ν=0

fν(z)y(ν)(z) = fn(z), (1.1)

where the fν(z) are meromorphic in a disk |z| ≤ R. We assume that the reader
is familiar with the fundamental concepts of Nevanlinna Theory. However for the
purpose of this paper we ignore poles at the origin. Thus if f(0) �= ∞ our notation
is standard (see [11, Chapter 1]), however if f(0) = ∞, n(t) denotes the number
of poles of f in 0 < |z| ≤ t and N(t), N(t) are derived in the usual way.

Bank and Laine [6, Theorem 3] have shown that the Nevanlinna characteristic
T (r, y) of every meromorphic solution y(z) of

y(n)(z) +
n−1∑
ν=0

fν(z)y(ν)(z) = 0 (1.2)

can be estimated in terms of the poles and the distinct zeros of y and the char-
acteristic functions of the coefficients. Here as in the (1.1), the coefficients are
meromorphic. More precisely they proved

Theorem 1.1. Suppose that the coefficients of (1.2) are arbitrary meromorphic
functions and that y(z) is a meromorphic solution of (1.1). If

Φ(r) = max
0≤i≤n

(
log r, T (r, fi)

)
,

then for any σ, σ > 1, there exist positive constants c, c1 and r0, such that for
r ≥ r0,

T (r, y) ≤ c
{

rN(σr, y) + r2 exp
(
c1J(σr) log(rJ(σr)

)}
, (1.3)

where
J(r) = N(r, 1/y) + Φ(r). (1.4)

We refer to [4], Laine [12] and the references therein for the literature on the
growth of entire solutions of (1.1). The results go back to Valiron and Wittich,
and it suffices to mention that we can find an upper bound of the Nevanlinna
characteristic of the entire solution of (1.1) in terms of the Nevanlinna character-
istics of the coefficients. We also mention the works of Frei [7], Strelitz [14] and
Gundersen, Steinbart and Wang [8] in this connection.

Suppose now that (1.2) has rational coefficients and that it admits a meromor-
phic solution. Then the solution can have at most a finite number of poles because
they can only appear at the poles of the coefficients. It follows that the growth of
the characteristic function of the meromorphic solutions is very much like that of
entire solutions and so they can be estimated in terms of the characteristic of the
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coefficients by the methods of Valiron and Wittich. However, getting a precise up-
per bound for a meromorphic solution becomes a more difficult task, since many
tools, such as the Wiman–Valiron theory, are only available for entire function
solutions.

It is natural to ask whether one can obtain an upper bound for T (r, y) =
m(r, y) + N(r, y) in terms of the characteristics T (r, fν) of the coefficients alone.
An example of Bank [5] (see also [1]) shows that this is in general impossible. He
proved that the characteristics T (r, y) of the meromorphic solution of the equation

y′(z) = f0(z)y(z) (1.5)

can grow arbitrarily fast, while the meromorphic coefficient f0(z) grows arbitrarily
slowly. Rather surprisingly we are able to show in our main result Theorem 2.3
that it is possible to obtain a pointwise estimate for y(z) and hence a bound for
m(r, y) in terms of the characteristics of the fν .

The poles of y can only occur at the poles of fν , so that

N(r, y) ≤
n∑

ν=0

N(r, fν) ≤
n∑

ν=0

T (r, fν). (1.6)

Thus for T (r, y) = m(r, y) + N(r, y) to be large, the average multiplicity

N(r, y)/N(r, y) (1.7)

must be extremely large. The gist of Bank’s construction of his examples is that
his meromorphic solution of (1.5) has δ(∞) = 0 [5, Lemma]. This feature of the
Bank examples is thus essential not only for the solutions of (1.5) but also for
those of (1.1).

In the next section we state our results in detail and deduce Theorem 2.3 from
Theorems 2.1 and 2.2. In Section 3 we prove Theorem 2.2 which is quite simple.
The proof of Theorem 2.1 is completed in Section 4. In Section 5 we shall briefly
consider the analogous problem for equation (1.1) in the unit disk. In Section 6 we
obtain estimates for m(r, y) in terms of T (r) =

∑
T (r, fν) outside an exceptional

set of r having finite measure or finite logarithmic measure. We note that the
quantities A, R, K, K1, K2, · · · which appear in the rest of this paper are not
necessarily the same each time they occur.
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2. Statements of results

We prove the following

Theorem 2.1. Suppose that the functions fν(z), ν = 0, · · · , n − 1 are meromor-
phic in |z| ≤ R and that 0 < ρ < r < R < +∞. Then there exists t such
that r < t < 1

4 (3r + R), and θ0, such that 0 ≤ θ0 < 2π, such that we have for
ν = 0, · · · , n, and 0 < ρ < r,

log+ |fν(z)| ≤ 20R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

ρ

)
(2.1)

on the path
Γ = Γ(θ0, ρ, t) (2.2)

given by the segment
Γ1 : z = τeiθ0 , ρ ≤ τ ≤ t,

followed by the circle

Γ2 : z = teiθ, θ0 ≤ θ ≤ θ0 + 2π.

Here pν is the multiplicity of the pole of fν at the origin if fν(0) = ∞, and pν = 0
otherwise. Also in N(R, fν), T (R, fν), we ignore poles of fν at the origin. If all
the fν are analytic at the origin, we may take ρ = 0 in Γ and the term

∑
pν in

(2.1) drops out.

Our bound for the growth of the solution y(z) of (1.1) follows from this and

Theorem 2.2. Suppose that y(z) is analytic on an absolutely continuous path Γ
having one end point z0 and length l. Suppose further that

|y(ν)(z0)| < KCν , 0 ≤ ν ≤ n, (2.3)

and that for all z on Γ we have

|y(n)(z)| < max
{
KCn, sup

0≤ν≤n−1
Cn−ν |y(ν)(z)|}, (2.4)

where K, C are positive constants and n is a positive integer. Then we have for
all z on Γ and 0 ≤ ν ≤ n,

|y(ν)(z)| < KCνeCl. (2.5)

Combining Theorems 2.1 and 2.2 we obtain
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Theorem 2.3. Suppose that 0 < ρ < r < R and that the path Γ = Γ(θ0, ρ, t) is
chosen in accordance with Theorem 2.1. We suppose that y(z) is a solution of the
equation (1.1) and define

K = 2max
{

1, sup
0≤ν≤n

|y(ν)(z0)|
}

, (2.6)

where z0 = ρeiθ0 . We also define

C = C(fν , ρ, r, R) = (n + 2) exp
{

20R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

ρ

)}
.

(2.7)
Then we have for |z| = t, where t is some number such that r < t < 1

4 (3r + R),

|y(ν)(z)| < KCνe(2π+1)CR, 0 ≤ ν ≤ n. (2.8)

Proof of Theorem 2.3. In fact it follows from (1.1) and Theorem 2.1, (2.6) and
(2.7) that we have on Γ

|y(n)(z)| ≤ (n + 1)max
{|fn(z)|, sup

0≤ν≤n−1
|fν(z)||y(ν)(z)|}

< C max
{
1, sup

0≤ν≤n−1
|y(ν)(z)|}

≤ max
{
KCn, sup

0≤ν≤n−1
Cn−ν |y(ν)(z)|},

since K ≥ 1 and C ≥ 1. Thus (2.4) holds.

Again (2.6) ensures that (2.3) holds. Thus we have (2.5). Here the length l of
Γ is at most (2π + 1)R. So (2.8) holds. This proves Theorem 2.3. In particular
we have

|y(z)| < K exp

{
(2π + 1)R(n + 2) exp

[
20R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

ρ

)]}

(2.9)

on Γ(θ0, ρ, t). We take logarithms on both sides and deduce that

m(t, f) < log K + (2π + 1)R(n + 2) ×

× exp
[

20R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

ρ

)]
.

(2.10)

A blemish of Theorem 2.3 is that the estimate (2.10) is only valid for some
values t instead of all values r. This is an inevitable consequence of our method,
since y may have poles on |z| = r. If we allow for a larger bound in (2.10) then
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we can prove that the result holds for all r except for some small exceptional sets.
This will be done in Section 6 below.

However, since N(r, y) and T (r, y) = m(r, y) + N(r, y) (but not m(r, y)) are
monotonic functions of r, we can, with the hypotheses and notation of Theo-
rem 2.3, obtain

Theorem 2.4. We have, for r < t < R,

T (r, y) ≤ T (t, y) ≤ N(t, y) + (2π + 1)RC + log K. (2.11)

The above estimate greatly improves (1.3) given by Bank and Laine [6]. If,
however, δ = δ(∞, y) > 0, and 0 < ε < δ, we have for r sufficiently close to
R, N(t, y) < (1 − δ + ε/2)T (t, y) and, if T (R, y) is sufficiently large, log K <
1
2εT (t, y). Thus (2.11) yields

T (t, y) < (1 − δ + ε)T (t, y) + (2π + 1)RC,

This proves the following corollary.

Corollary 2.5. If δ = δ(∞, y) > 0 and ε is fixed, 0 ≤ ε < δ, we have for
r1(ε) < r < R,

T (r, y) ≤
(

1
δ − ε

)
(2π + 1)RC. (2.12)

We remark that if T (t, y) is bounded, (2.12) still holds, since C → +∞ as r
approaches R.

The corollary indicates that we can estimate the growth of a meromorphic
solution y, when δ(∞) > 0, in terms of the Nevanlinna characteristics of the
coefficients. Thus the result is sharp in view of Bank’s example in (1.5) where the
meromorphic solution has δ(∞) = 0. This can easily be seen from [5, Lemma].
This answers a question of Milne Anderson in a private communication.

We also deduce

Corollary 2.6. If N(t, y)/N(t, y) ≤ q, then

T (r, y) ≤ (2π + 1)RC + log K + q log C. (2.13)

To prove Corollary 2.6 we note that the poles of y must be among the poles of
the coefficients fν . Thus

N(t, y) ≤ qN(t, y) ≤ q

n∑
ν=0

N(t, fν) ≤ q log C,

and now (2.13) follows from (2.11).
We remark that the average multiplicity q must be truly enormous for the third

term on the right hand side of (2.13) to dominate the first term. This is the case
in the examples of Bank [5].
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We now give some examples to test the sharpness of Theorem 2.3. We confine
ourselves to the simple equation (1.5).

Example 2.7. If f0(z) ≡ 1, y(z) = aez. Here T (R, f0) = 0,

C(f0) = constant.

Thus we cannot dispense with the factor R in (2.9).

Example 2.8. If f0(z) = zp, T (R, f0) = p log+ R, then

y(z) = exp
(

zp+1

p + 1

)
,

and if r = R/2,
log C(f0) < A0p log R,

where A0 is an absolute constant. Here (2.9) yields

|y(z)| < K exp
(
(2π + 1)R1+A0p

)
.

This is quite sharp apart from the unknown A0.

Example 2.9. Suppose that

y(z) = exp exp
(

1
1 − z

)
, {z : |z| < 1}.

Then

f0(z) =
y′(z)
y(z)

=
1

(1 − z)2
exp

(
1

1 − z

)
, and T (1, f0) = O(1).

Here

C(f0) = exp
(

O(1)
1 − r

)
, 0 < r < 1,

and (2.9) yields

|y(z)| < exp exp
(

O(1)
1 − r

)
, |z| = r,

which again gives the right order of magnitude.

3. Proof of Theorem 2.2

We assume that the path Γ is parametrized by arc length z = z(s), 0 ≤ s ≤ l,
starting from the end point z0. If we have for all z = z(s) on Γ,

|y(ν)(z)| < KCνeCs, 0 ≤ ν ≤ n, (3.1)
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then Theorem 2.2 is proved.
Suppose then that (3.1) fails for some pair (zν , ν), when zν = zν(sν) and sν is

chosen as small as possible. We first show that if ν < n, then (3.1) also fails for
ν + 1 and

0 < sν+1 < sν . (3.2)

In fact (2.3) ensures that (3.1) holds for z = z0 and all ν. Thus sν > 0. Hence if
(3.2) fails, then

|y(ν+1)(z)| < KCν+1eCs, 0 < s < sν .

Thus,

|y(ν)(z(sν))| ≤
∣∣∣y(ν)(z0)

∣∣∣ +

∣∣∣∣∣
∫ z(sν)

z0

y(ν+1)(ζ) dζ

∣∣∣∣∣
< KCν + KCν+1

∫ sν

0

eCs ds

= KCνeCsν .

Thus (3.1) holds for z = z(sν), which contradicts the definition of sν and (3.2) is
proved.

We deduce that if ν = ν0 is the least value of ν for which (3.1) fails, then (3.1)
fails for ν = ν0 + 1, · · · , n, and (3.1) holds for 0 ≤ ν < ν0, and 0 ≤ s ≤ l. Also by
(3.2)

sn < sν , ν0 ≤ ν < n.

In particular, (3.1) holds for z = z(zn), and for 0 ≤ ν < n. Now using (2.4) and
the definition of sn, we obtain for z = z(sn),

|y(n)(z)| = KCneCsn < max
{
KCn, sup

0≤ν≤n−1
Cn−νKCνeCsn

}
= KCneCsn .

This contradicts the definition of sn. Thus (3.1) and Theorem 2.2 are proved.

4. Proof of Theorem 2.1

To prove Theorem 2.1, we show that if f(z) is meromorphic in |z| ≤ R then the
average of M(r, f) = max|z|=r |f(z)| is not too large. More precisely, we prove

Theorem 4.1. Suppose that f(z) is meromorphic in |z| ≤ R, and that 0 < r < R,
r′ = 1

4 (R + 3r). Then we have

1
r′ − r

∫ r′

r

log+ M(t, f) dt ≤ 20R

R − r
T (R, f) + p log

(
R

r

)
, (4.1)

where, if f(z) ∼ czq, as z → 0, we set p = max{−q, 0}. We also define N(R, f) =
N(R, zpf) in this case; i.e., we ignore the poles of f at z = 0.



Vol. 79 (2004) Growth estimates of meromorphic solutions of linear ODE’s 459

Corollary 4.2. There exists a t, where r < t < r′ and

log+ M(t, f) ≤ 20R

R − r

{
T (R, f) + p log

R

r

}
. (4.2)

A similar inequality was obtained by Nevanlinna [13, pp. 25–27], but it does
not give the correct order of magnitude 1/(R − r) on the right hand side of (4.2).
As in the case of Nevanlinna’s inequality, our estimates are also based on the
Poisson–Jensen formula. See e.g. [11, p. 1].

Proof of Theorem 4.1. We need

Lemma 4.1. Suppose that 0 < b < 1, 0 < t < 1, 0 < r < 1 and r′ = 1
4 (1 + 3r).

We define

g(t, b) = log
∣∣∣∣1 − bt

b − t

∣∣∣∣ .

Then we have
1

r′ − r

∫ r′

r

g(t, b) dt < 4.

Proof of Lemma 4.1. We adopt the main idea from the argument in [9, pp. 143–
145]. We use the inequality

g(t, b) ≤ log+

∣∣∣∣ 1 − bt

k(b − t)

∣∣∣∣ + log k, (4.3)

where k > 1. We note that∫ 1

−1

log+

∣∣∣∣ 1
kx

∣∣∣∣ dx =
∫ 1/k

−1/k

log
∣∣∣∣ 1
kx

∣∣∣∣ dx = 2
∫ 1/k

0

log
1
kx

dx =
2
k

. (4.4)

We set
x =

t − b

1 − bt
, (4.5)

and assume that |x| < 1/k. We note that the integrand in∫ t=1

t=0

log+

∣∣∣∣ 1 − bt

k(b − t)

∣∣∣∣ dx ≤ 2
k

(4.6)

vanishes if |x| ≥ 1/k. So it suffices to consider the range of the integration such
that |x| < 1/k. We proceed to prove that in this case

1 − b <
k + 1
k − 1

(1 − r). (4.7)

Suppose first that r < 1/k. Then the right hand side of (4.7) is greater than 1, so
that (4.7) holds. Next if t > r ≥ 1/k, we assume that b < r, since otherwise (4.7)
is trivial. Then

r − b

1 − br
<

t − b

1 − bt
<

1
k

,
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since x increases with t in (4.5). Thus

k(r − b) < 1 − br, b >
kr − 1
k − r

,

and so

1 − b <
(1 + k)(1 − r)

k − r
,

which yields (4.7). We deduce from (4.5) and (4.7) that

dt =
1 − b2

(1 + xb)2
dx <

2(1 − b)
(1 − 1/k)2

dx =
2k2

(k − 1)2
(1 − b) dx

<
2k2(k + 1)
(k − 1)3

(1 − r) dx. (4.8)

It follows from (4.3), (4.6) and (4.8) that∫ r′

r

g(t, b) dt <

∫ r′

r

(
log+

∣∣∣∣ 1 − bt

k(b − t)

∣∣∣∣ + log k

)
dt

<
2k2(k + 1)
(k − 1)3

(1 − r)
∫ t=1

t=0

log+

∣∣∣∣ 1 − bt

k(b − t)

∣∣∣∣ dx + (r′ − r) log k

≤ 4k(k + 1)
(k − 1)3

(1 − r) + (r′ − r) log k

= h(k)(r′ − r),

where

h(k) =
(

16k(k + 1)
(k − 1)3

+ log k

)
.

Thus, we aim to choose k, k > 1, so that h(k) is as small as possible. Choosing
k = 22, we obtain

h(22) ≈ 0.874 + 3.09 < 3.97 < 4.

This proves the lemma.

We can now prove Theorem 4.1. Suppose that f(z) is meromorphic in |z| ≤ 1,
that f(0) �= ∞, and that 0 < r < 1. We apply the Poisson–Jensen formula ([11,
p. 1] and [12, p. 276]) with R = 1

4 (3 + r) and obtain, for z = teiθ, r < t < r′,

log|f(z)| ≤ 1
2π

∫ π

−π

log|f(Reiφ)| R2 − t2

R2 − 2Rt cos(θ − φ) + t2
dφ

+
n∑

ν=0

log
∣∣∣∣ R2 − bνz

R(z − bν)

∣∣∣∣
≤ R + t

R − t
m(R, f) +

∑
|bν |<R

log
∣∣∣∣1 − t|bν |

t − |bν |
∣∣∣∣ .
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Here we have used the fact that, for fixed z1 and z2, the function

gR(z1, z2) = log
∣∣∣∣ R2 − z1z2

R(z1 − z2)

∣∣∣∣
increases with increasing R and, when |z1|, |z2| are given, the function is maximal
when z1 > 0, z2 > 0. Thus

log+ M(t, f) ≤ R + r′

R − r′
m(R, f) +

∑
g(t, |bν |), r < t < r′.

Here the sum is taken over all the bν in |bν | < R ≤ 1. We recall from Lemma 4.1
that r′ = 1

4 (1 + 3r), so that R − r′ = 1
2 (1 − r). Also

m(R, f) ≤ T (R, f) ≤ T (1, f).

Thus
log+ M(t, f) ≤ 4

1 − r
T (1, f) +

∑
g(t, |bν |).

Using Lemma 4.1, we deduce that

1
r′ − r

∫ r′

r

log+ M(t, f) dt ≤ 4
1 − r

T (1, f) + 4n(R, f),

where n(R, f) is the number of poles of f in |z| < R ≤ 1. Also

T (1, f) ≥ N(1, f) =
∫ 1

0

n(t, f)
t

dt ≥ (1 − R)n(R, f) =
(1 − r

4

)
n(R, f).

Hence

1
r′ − r

∫ r′

r

log+ M(t, f) dt ≤ T (1, f)
1 − r

{4 + 4 × 4} =
20

1 − r
T (1, f). (4.9)

This proves Theorem 4.1 if R = 1, and f(0) �= ∞.

Suppose next that f has a pole of positive order p at z = 0. We then apply the
inequality (4.9) to F (z) = zpf(z) instead of f(z) and note that

log+ M(t, f) ≤ log+ M(t, F ) + p log
1
t
≤ log+ M(t, F ) + p log

1
r
,

and
T (1, F ) = T (1, f).

Thus (4.9) yields

1
r′ − r

∫ r′

r

log+ M(t, f) dt ≤ 1
r′ − r

∫ r′

r

log+ M(t, F ) dt + p log
1
r

≤ 20
1 − r

T (1, f) + p log
1
r
.
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This proves Theorem 4.1 if R = 1. In the general case we apply the above result to
f(Rz) instead of f(z) and obtain (4.1). This completes the proof of Theorem 4.1.

To complete the proof of Theorem 2.1, we need an earlier result about radial
maxima. This is

Lemma 4.2. Suppose that f is meromorphic in |z| ≤ R and that f(0) �= ∞. We
define

f0(reiθ) = sup
0≤t≤r

|f(teiθ)|.

Then we have for 0 < r < R,

1
2π

∫ 2π

0

log+ f0(reiθ) dθ ≤ 3R

R − r
T (R, f). (4.10)

The Lemma 4.2 is a crude version of a result [10, p. 183, Theorem 1] of the
second author who obtained the conclusion with[

1 + Ψ
( r

R

)]
T (R, f)

on the right hand side of (4.10) where,

Ψ(t) =
(1 − t) log

(
1 +

2π
√

t

1 − t

)
π
√

t log(1/t)
.

We note that
log

1
t

> 1 − t,

and

log
(

1 +
2π

√
t

1 − t

)
<

2π
√

t

1 − t
.

Thus
Ψ(t) <

2
1 − t

, 1 + Ψ(t) <
3

1 − t
,

and Lemma 4.2 is proved.
If f(0) = ∞, it is clear that f0(reiθ) = ∞ for r > 0. In this case it is convenient

to define
fρ(reiθ) = sup

ρ≤t≤r
|f(teiθ)|.

We deduce

Lemma 4.3. Suppose that f is meromorphic in |z| ≤ R, where 0 < R < +∞ and
that f has a pole of order p at the origin. Then if ρ < r < R, we have

1
2π

∫ 2π

0

log+ fρ(reiθ) dθ ≤ 3R

R − r
T (R, f) + p log

R

ρ
.
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Proof of Lemma 4.3. We suppose first that R = 1 and apply Lemma 4.2 to F (z) =
zpf(z), to obtain

1
2π

∫ 2π

0

log+ Fρ(reiθ) dθ ≤ 3
1 − r

T (1, F ) =
3

1 − r
T (1, f).

Now if 0 < ρ < r < 1,

fρ(reiθ) = sup
ρ≤t≤r

|f(teiθ)| ≤ ρ−pFρ(reiθ).

Thus Lemma 4.2 yields

1
2π

∫ 2π

0

log+ fρ(reiθ) dθ ≤ 3
1 − r

T (1, f) + p log
1
ρ
.

Finally if R �= 1, we apply the above conclusion to f(Rz) and now we obtain
Lemma 4.3.

We can now complete the proof of Theorem 2.1. We choose ρ, r so that
0 < ρ < r < R and define

r′ =
R + 3r

4
.

Then by Theorem 4.1, we have

1
r′ − r

∫ r′

r

( n∑
ν=0

log+ M(t, fν)
)

dt ≤ 20R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

r

)
,

where pν = 0 if fν(0) �= ∞, and pν is the multiplicity of the pole of fν at z = 0
otherwise. We deduce that there exists t, such that r < t < r′ and

n∑
ν=0

log+ M(t, fν) ≤ 20R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

r

)
. (4.11)

In particular log+ M(t, fν) is bounded above by the right-hand side for each ν.
Having fixed t, we next choose a fixed ρ, with 0 < ρ < r < t < R and deduce from
Lemma 4.3 that

1
2π

∫ 2π

0

n∑
ν=0

log+ fν,ρ(reiθ) dθ ≤ 3R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

ρ

)
.

On combining this with (4.11) we deduce that on the path Γ(θ0, ρ, t) we have
for ν = 0 to n,

log+|fν(z)| ≤ 20R

R − r

n∑
ν=0

T (R, fν) +
( n∑

ν=0

pν

)
log

(
R

ρ

)
.

This proves Theorem 2.1.
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5. Remarks on the unit disk case

Bank also considers (1.5) in the unit disk in [5, Theorem 1]. In that example he
constructed a solution y(z) of (1.5) that can grow arbitrarily quickly as r → 1
while f0(z) is the quotient of two bounded analytic functions in the unit disk. In
particular, f0(z) has bounded characteristic in the unit disk ([11, p. 172]). The
solution y(z) constructed in this case again has the property that (1.7) grows
arbitrarily quickly as r → 1−.

Let f(z) be a meromorphic function defined in the unit disk. Then the defi-
ciency of f can be defined in the same way as the plane:

δ1(a) = 1 − lim sup
r→1−

N(r, 1/(f − a))
T (r, f)

,

provided that f has unbounded characteristic. Then the main results in Section 2
are valid in the unit disk since we may choose R < 1 there. In particular, Theorem
2.4 asserts, as in the case of Corollary 2.5 in the plane, that the growth of a
meromorphic solution of (1.1) with δ1(∞) > 0 can be bounded by the Nevanlinna
characteristics of the coefficients of (1.1). We note that the example of Bank
mentioned above has δ1(∞) = 0. Thus our result in the unit disk is also sharp
in view of this example of Bank. We also note when the coefficients of (1.1) have
bounded characteristic (for instance in (1.5)), then (2.10) shows that

T (r, y) = exp
(

O(1)
1 − r

)
,

which gives the right order of magnitude as Example 2.9 shows.

6. Estimates outside an exceptional set

We assume that y(z) is a solution meromorphic in the plane of (1.1). We write

T (r) =
n∑

ν=0

T (r, fν), (6.1)

and assume that the fν(z) are not all constant so that T (r) is unbounded, and
more strongly

T (r) ≥ log r + O(1), as r → +∞. (6.2)

However, we do not use the full strength of (6.2) in our first result.
We need the following growth lemma.
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Theorem 6.1. Suppose that m(r), T (r) are measurable, non-negative functions
for R0 ≤ r < +∞, such that T (r) is non-decreasing and unbounded there and that
R0 > 0, T (R0) > 1.

We assume further that K, σ and p are constants, and that K > 0, σ > 1 and
p ≥ 0. For R0 < r < R < +∞, and r′ = 1

4 (R + 3r) we assume that

1
r′ − r

∫ r′

r

m(t) dt ≤ KR

R − r
T (R). (6.3)

Then for R0 < r < +∞, and outside an exceptional set Ep that satisfies∫
Ep

tp−1 dt < +∞, (6.4)

we have
m(r) < T (r)

{
(log r) log T (r)

}σ
, if p = 0; (6.5)

and
m(r) < r2p+σ−1T (r)

{
log T (r)

}σ
, if p > 0. (6.6)

We note that p = 0 corresponds to logarithmic measure and p = 1 to Euclidean
measure. Also the larger p is, the smaller is the exceptional set Ep, and the weaker
is the corresponding inequality (6.5) or (6.6).

We deduce

Theorem 6.2. If y(z) is a solution of (1.1) which is meromorphic in the plane
and the fν(z) are not all constant, we have, with the notation of Theorem 6.1,
with m(r) = m(r, y), and outside an exceptional set Ep satisfying (6.4),

log m(r, y) < T (r) {(log r) log T (r)}σ
, if p = 0;

and
log m(r, y) < r2p+σ−1T (r)

{
log T (r)

}σ
, if p > 0,

where T (r) is defined in (6.1), and m(r, y) is the proximity function of y.

We first define Ck = ek, k = 0, 1, 2, · · · . We then define a sequence rν , ν =
1, 2, 3, · · · inductively as follows. We set r0 = R0. Suppose that rν−1 has already
been chosen and that

Ck ≤ T (rν−1) < Ck+1. (6.7)

We say that ν is associated with k. Then we define

rν = rν−1 + k−σr1−p
ν−1. (6.8)

We now discard as exceptional all those intervals Iν = [rν−1, rν ] for which ν is
associated with k and

T
(
rν−1 + 4k−σr1−p

ν−1

) ≥ Ck+1. (6.9)
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Lemma 6.1. The union E′
p of the exceptional intervals satisfies∫

E′
p

tp−1 dt < +∞. (6.10)

Proof of Lemma 6.1. We show that, since T (r) increases to ∞ with r, there can
be, for each large k, at most 5 values of ν associated with k and satisfying (6.9).
In fact, suppose that ν, · · · , ν + q satisfy (6.9) and are associated with k, where
q ≥ 5. We deduce from (6.7) that rν → +∞ with ν and

rν

rν−1
= 1 + k−σr−p

ν−1 =
(
1 + o(1)

)
. (6.11)

Also

rν+1 − rν = k−σr1−p
ν =

(
rν

rν−1

)1−p

(rν − rν−1)

=
(
1 + o(1)

)
(rν − rν−1). (6.12)

Hence if q is a fixed positive integer, we have

rν+q+1 − rν−1 =
(
q + o(1)

)
(rν − rν−1) =

(
q + o(1)

)
k−σr1−p

ν−1.

Hence if q ≥ 5 and (6.9) holds we deduce, if ν is sufficiently large, that

T (rν+q−1) ≥ T
(
rν−1 + 4k−σr1−p

ν−1

) ≥ Ck+1.

Thus, T (rν+q−1) does not satisfy (6.7) and so ν+q is not associated with k. Hence
if ν is the smallest number associated with k and satisfying (6.9) then the only
other such numbers can be ν + 1, ν + 2, ν + 3 and ν + 4 at least if ν and k are
sufficiently large. Thus, if we sum over all exceptional intervals Iν for which the
corresponding k is sufficiently large, k ≥ k0 say, and together with (6.11) and
(6.12), we have ∑

ν

∫
Iν

tp−1 dt ≤
∑

ν

(
1 + o(1)

)
(rν − rν−1)r

p−1
ν−1

=
∑

ν

(
1 + o(1)

)
k−σ

≤ 6
∞∑

k≥k0

k−σ < +∞.

This proves Lemma 6.1.

Proof of Theorem 6.1. Suppose now that Iν is a normal interval, i.e., not excep-
tional. In this case we set

r = rν−1, R = rν−1 + 4k−σr1−p
ν−1,
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r′ =
1
4
(R + 3r) = rν−1 + k−σr1−p

ν−1 = rν .

Also since Iν is normal, (6.9) is false so that

T (R) = T
(
rν−1 + 4k−σr1−p

ν−1

)
< Ck+1 = eCk ≤ eT (r).

Thus (6.3) yields

1
r′ − r

∫ r′

r

m(t) dt ≤ KR

R − r
T (R) ≤ e

(
r + 4k−σr1−p

)
4k−σr1−p

KT (r)

=
ekσrp

(
1 + 4k−σr−p

)
4

KT (r) < KkσrpT (r),

if ν and so k are sufficiently large. Let Eν be the subset of all those points of Iν

for which

m(t) >
KkσrpT (r)

δ
, (6.13)

where δ is a positive number. Then

|Eν | < δ(r′ − r). (6.14)

Suppose first that p = 0. In this case we choose

δ = (log r)−σ, (6.15)

where σ > 1. Thus, (6.14), (6.15) yield∫
Eν

dt

t
<

1
r
|Eν | <

r′ − r

r(log r)σ
<

(
1 + o(1)

) ∫ r′

r

dt

t(log t)σ
,

since r ∼ r′. Summing over all normal intervals we deduce that, if ν0 is large
enough,

∞∑
ν0

∫
Eν

dt

t
< 2

∫ ∞

rν0

dt

t(log t)σ
< +∞.

On combining this with Lemma 6.1 we obtain (6.4) in this case, where Ep = E0 is
the union of all the exceptional intervals Iν and all the subsets Eν of the normal
intervals Iν . Also, if t is outside E0 and large, then t is in a normal interval Iν

and (6.13) is false where δ is given by (6.15). Thus

m(t) ≤ Kkσ(log r)σT (r) ≤ KT (r)
{
(log r) log T (r)

}σ

= KT (rν−1)
{
(log rν−1) log T (rν−1)

}σ

≤ KT (t)
{
(log t) log T (t)

}σ
,

by (6.7) and the monotonicity of T (r). Also if σ′ > σ we have

K <
(
log t

)σ′−σ

for large t and so we have proved (6.5) with σ′ instead of σ. Since σ and so σ′ can
be any number greater than one we deduce that (6.5) holds.
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Suppose next that p > 0. In this case we choose

δ = r1−σ−p. (6.16)

Thus in this case (6.11) and (6.14), with r = rν−1, give∫
Eν

tp−1 dt <
(
1 + o(1)

)
rp−1|Eν | <

(
1 + o(1)

)
rp−1δ(r′ − r).

On the other hand, ∫
Iν

t−σ dt =
(
1 + o(1)

)r′ − r

rσ

because of (6.11). Thus (6.16) gives∫
Eν

tp−1 dt <
(
1 + o(1)

) ∫
Iν

t−σ dt.

Summing over ν, we deduce that, if ν0 is large,
∞∑
ν0

∫
Eν

tp−1 dt ≤ 2
∞∑
ν0

∫
Iν

t−σ dt ≤ 2
∫ ∞

rν0−1

t−σ dt < +∞,

since σ > 1. As in the previous case, (6.4) follows from this and Lemma 6.1. On
the other hand, we have outside the exceptional set, and so in normal intervals Iν ,
where (6.13) fails,

m(t) ≤ KkσrpT (r)
δ

= Kkσr2p+σ−1T (r) ≤ Kt2p+σ−1T (t)
{
log T (t)

}σ
,

again by (6.7) and by the monotonicity of T (r). Replacing σ by a slightly larger
number σ′, we obtain (6.6). This proves Theorem 6.1.

We proceed next to prove Theorem 6.2. To do this it suffices to show that

m(r) = log+ m(r, y) (6.17)

satisfies the hypothesis (6.3) if R0 is sufficiently large.
To do this, let Γ = Γ(θ0, ρ, t) be the path whose existence is asserted in The-

orem 2.1. We denote by Mν,1(t), Mν,2(t), Mν(t) the maximum of |fν | on Γ1, Γ2

and Γ respectively. It follows from Theorem 4.1 that

1
r′ − r

∫ r′

r

n∑
ν=0

log+ Mν,2(t) dt ≤ 20R

R − r
T (R) + d1 log

R

ρ
, (6.18)

where d1 is a constant. Similarly by Lemma 4.3, we can choose θ0, depending only
on R so that for t = r′, and so also for ρ < t < r′, we have, with r′ = 1

4 (R + 3r),
n∑

ν=0

log+ Mν,1(t) ≤ 3R

R − r′
T (R) + d2 log

R

ρ
=

4R

R − r
T (R) + d2 log

R

ρ
.
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Here d2 is a constant. Thus,

1
r′ − r

∫ r′

r

n∑
ν=0

log+ Mν,1(t) dt ≤ 4R

R − r
T (R) + d2 log

R

ρ
. (6.19)

Clearly, Mν(t) is the larger of Mν,1(t) and Mν,2(t) so that

log+ Mν(t) = max
{
log+ Mν,1(t), log+ Mν,2(t)

}
≤ log+ Mν,1(t) + log+ Mν,2(t).

On combining this with (6.18) and (6.19) we deduce that

1
r′ − r

∫ r′

r

n∑
ν=0

log+ Mν(t) dt ≤ 24R

R − r
T (R) + d3 log

R

ρ
, (6.20)

where d3 = d1 + d2.
Let K be given by (2.6). We define the constant C in Theorem 2.2 by

C = (n + 2) exp
{ n∑

ν=0

log+ Mν(t)
}

.

Then, as in the proof of Theorem 2.3, we deduce that, when z ∈ Γ, |y(z)| satisfies
(2.4). Let M(t) be the maximum of |y(z)| on Γ, then we deduce, as in Theorem 2.3
that

log+ M(t) ≤ (2π + 1)R(n + 2) exp
{ n∑

ν=0

log+ Mν(t)
}

+ K1.

Using (6.2) and (6.20) we deduce that for large R,

1
r′ − r

∫ r′

r

log+ log+ M(t) dt ≤ 24R

R − r
T (R) + d4 log R + K2

≤ KR

R − r
T (R),

where K1, K2, d4 and K are constants. Evidently,

m(t, y) ≤ log+ M(t), log+ m(t, y) ≤ log+ log+ M(t).

Thus, we can apply Theorem 6.1 with m(r) given by (6.17) and the Theorem 6.2
follows from (6.5) and (6.6).
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