# Semifinite-gap problems of Whittaker-Hill equation and complex oscillation theory<sup>1</sup>

Edmund Y. M. Chiang, a Xudan Luo b

<sup>a</sup>Hong Kong University of Science & Technology

<sup>b</sup>University at Buffalo (New York State Univ.)

The  $7^{\rm th}$  International Conference on Nonlinear Mathematical Physics & The  $14^{\rm th}$  National Workshop on Solitons and Integrable Systems

BISTU, 18-22 August, 2017

20 August, 2017

<sup>&</sup>lt;sup>1</sup>Research partially supported by Hong Kong Research Grant Council

Whittaker-Hill Eqn

Qualitative results

WH: Explicit general soln

Complex Oscillation theory

Stability intervals

#### Whittaker-Hill equation

- Schrödinger equations with potentials with period  $\pi$ .
- Mathieu equation (1868)

$$f''(z) + (A + B\cos 2z)f(z) = 0$$

(Separation of variables of 2D-Wave equation by elliptic cylindiical coordinates)

Whittaker-Hill equation (1907/1915)

$$f''(z) + (A + B\cos 2z + C\cos 4z)f(z) = 0.$$
 (1)

(Separation of variables of 3D-Helmholz equation by paraboloidal coordinates)

 Celestial machines, Quantum theory, Quantum chemistry, Integration of KdV with periodic BVP (Novikov), Quantum field theory, etc

#### Hill's equations

• Consider Hill's equation (1877)

$$\frac{d^2y}{dx^2} + Q(x)y(x) = 0, . (2)$$

which is a Schrödinger equation with periodic (even) potential

$$Q(x+\pi)=Q(x).$$

Hill's original treatment was to assume

$$Q(x) = \lambda + 2\sum_{k=1}^{\infty} \theta_k \cos 2kx$$

#### to converge on $\mathbb{R}$ .

- How much do we know about the eigenvalues  $\lambda$ ?
- Do there exist any periodic solutions?
- Coexistence: Do there exist two linearly independent (LI) periodic solutions?



#### Hill's equations

• Consider Hill's equation (1877)

$$\frac{d^2y}{dx^2} + Q(x)y(x) = 0, . (2)$$

which is a Schrödinger equation with periodic (even) potential

$$Q(x+\pi)=Q(x).$$

Hill's original treatment was to assume

$$Q(x) = \lambda + 2\sum_{k=1}^{\infty} \theta_k \cos 2kx$$

to converge on  $\mathbb{R}$ .

- How much do we know about the eigenvalues  $\lambda$ ?
- Do there exist any periodic solutions?
- Coexistence: Do there exist two linearly independent (LI) periodic solutions?



# Floquet (Bloch) Theory

- G. H. Hill (1886), G. Floquet (1883), A. M. Lyapunov (1907)
- L. Brillouin (1953) Wave propagation in periodic structures (Dover)
- Magnus & Winkler (1966): Hill's Equations (Dover)
- Arscott (1964): Periodic Differential Equations (Pergamon press)
- Eastham (1973): Spectral Theory of Periodic Differential Equations (Scottish Academic Press)
- Floquet theory:  $\exists \rho \neq 0$  and non-trivial soln  $\psi(x)$  of Eqn (2) such that

$$\psi(x+\pi) = \rho\psi(x).$$

- Similar to monodromy at a regular singular point  $(\mathbb{C})$ .
  - $\rho = 1$  periodic soln;
  - $\rho = -1$  semi-periodic soln;
  - Since Q(x) is even, so the solutions of (2) could be even/odd solns.

# Floquet (Bloch) Theory

- G. H. Hill (1886), G. Floquet (1883), A. M. Lyapunov (1907)
- L. Brillouin (1953) Wave propagation in periodic structures (Dover)
- Magnus & Winkler (1966): Hill's Equations (Dover)
- Arscott (1964): Periodic Differential Equations (Pergamon press)
- Eastham (1973): Spectral Theory of Periodic Differential Equations (Scottish Academic Press)
- Floquet theory:  $\exists \rho \neq 0$  and non-trivial soln  $\psi(x)$  of Eqn (2) such that

$$\psi(x+\pi)=\rho\psi(x).$$

- Similar to monodromy at a regular singular point (ℂ).
  - $\rho = 1$  periodic soln;
  - $\rho = -1$  semi-periodic soln;
  - Since Q(x) is even, so the solutions of (2) could be even/odd solns.

# Floquet (Bloch) Theory (II)

• Suppose  $\phi_1(x)$  and  $\phi_2(x)$  are two linearly independent solutions with initial conditions

$$\phi_1(0) = 1$$
,  $\phi_1'(0) = 0$ ,  $\phi_2(0) = 0$ ,  $\phi_2'(0) = 1$ 

• We observe  $\exists$  2 × 2 matrix such that

$$\begin{pmatrix} \phi_1(x+\pi) \\ \phi_2(x+\pi) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix}$$

• It follows from the initial conditions on  $\phi_1$ ,  $\phi_2$  above that

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} \phi_1(\pi) & \phi_1'(\pi) \\ \phi_2(\pi) & \phi_2'(\pi) \end{pmatrix}$$

$$\operatorname{tr}(A) = \phi_1(\pi) + \phi_2'(\pi), \quad \det(A) = \phi_1(\pi)\phi_2'(\pi) - \phi_1'(\pi)\phi_2(\pi).$$

# Floquet (Bloch) Theory (II)

• Suppose  $\phi_1(x)$  and  $\phi_2(x)$  are two linearly independent solutions with initial conditions

$$\phi_1(0) = 1$$
,  $\phi'_1(0) = 0$ ,  $\phi_2(0) = 0$ ,  $\phi'_2(0) = 1$ 

• We observe  $\exists 2 \times 2$  matrix such that

$$\begin{pmatrix} \phi_1(x+\pi) \\ \phi_2(x+\pi) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \phi_1(x) \\ \phi_2(x) \end{pmatrix}$$

• It follows from the initial conditions on  $\phi_1$ ,  $\phi_2$  above that

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} \phi_1(\pi) & \phi'_1(\pi) \\ \phi_2(\pi) & \phi'_2(\pi) \end{pmatrix}$$

$$\operatorname{tr}(A) = \phi_1(\pi) + \phi_2'(\pi), \quad \det(A) = \phi_1(\pi)\phi_2'(\pi) - \phi_1'(\pi)\phi_2(\pi).$$

# Floquet (Bloch) Theory (III)

• Suppose  $\psi(x)$  is a solution such that  $\psi(x+\pi)=\rho\psi(x)$  for certain  $\rho$ . Then  $\psi(x)=c_1\phi_1(x)+c_2\phi_2(x)$  for some  $c_1, c_2$ 

$$(A^T - \rho \operatorname{I}_2) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} - \rho \operatorname{I}_2 \end{bmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

i.e.,

$$\begin{vmatrix} a_{11} - \rho & a_{21} \\ a_{12} & a_{22} - \rho \end{vmatrix} = 0$$

or just

$$\rho^2 - \operatorname{tr}(A) \rho + \det(A) = 0.$$

where  $det(A) \neq 0$ 

•  $\rho = \rho_1, \, \rho_2$  are called the characteristic (Floquet) multipliers and

$$D = \Delta(\lambda) = \operatorname{tr}(A) = \phi_1(\pi) + \phi_2'(\pi)$$

is called Hill's discriminant (Lyapunov fn) of the DE (1).

# Floquet (Bloch) Theory (III)

• Suppose  $\psi(x)$  is a solution such that  $\psi(x+\pi)=\rho\psi(x)$  for certain  $\rho$ . Then  $\psi(x)=c_1\phi_1(x)+c_2\phi_2(x)$  for some  $c_1,\ c_2$  Then

$$(A^{\mathsf{T}} - \rho \operatorname{I}_2) \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} - \rho \operatorname{I}_2 \end{bmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

i.e.,

$$\begin{vmatrix} a_{11} - \rho & a_{21} \\ a_{12} & a_{22} - \rho \end{vmatrix} = 0$$

or just

$$\rho^2 - \operatorname{tr}(A) \rho + \det(A) = 0.$$

where  $det(A) \neq 0$ 

•  $\rho = \rho_1, \ \rho_2$  are called the characteristic (Floquet) multipliers and

$$D = \Delta(\lambda) = \operatorname{tr}(A) = \phi_1(\pi) + \phi_2'(\pi)$$

is called Hill's discriminant (Lyapunov fn) of the DE (1).

# Stability intervals vs Gaps

#### **Theorem**

- If D = |tr(A)| > 2, then all non-trivial solutions of Eqn (2) are unbounded on  $\mathbb{R}$  (unstable),
- If D = |tr(A)| < 2, then all solutions of Eqn (2) are bounded on  $\mathbb{R}$  (stable)
- If D = |tr(A)| = 2, then there exists a non-trivial solution of Eqn (2) which is bounded on  $\mathbb{R}$  (conditionally stable)

#### **Theorem**

- The Eqn (2) has a non-trivial soln with period  $\pi \iff D = 2$ .
- The Eqn (2) has a non-trivial soln with semi-period  $\pi \iff D = -2$  (i.e.,  $f(x + \pi) = -f(x)$ )

# Periodic boundary (eigenvalue) problem

• Periodic boundary value problem on  $[0, \pi]$  (D = 2)

$$f(0) = f(\pi), \quad f'(0) = f'(\pi)$$

This is a self-adjoint problem and standard method of constructing Green's functions and defining compact symmetric linear opeartor with a suitable inner-product space on  $[0,\pi]$  guarantees

• the existence of countably many orthogonal eigen-functions  $\psi_n$  and eigenvalues  $\lambda_n$  such that

$$\lambda_0 \leq \lambda_1 \leq \lambda_2, \cdots, \quad \lambda_n \to \infty$$

• Semi-periodic boundary value problem on  $[0,\pi]$  (D=-2)

$$f(0) = -f(\pi), \quad f'(0) = -f'(\pi)$$

• corresponding eigenfunctions  $\phi_n$  and eigenvalues  $\lambda'_n$  such that

$$\lambda_1' \leq \lambda_2', \cdots, \quad \lambda_n' \to \infty$$

# Periodic boundary (eigenvalue) problem

• Periodic boundary value problem on  $[0, \pi]$  (D = 2)

$$f(0) = f(\pi), \quad f'(0) = f'(\pi)$$

This is a self-adjoint problem and standard method of constructing Green's functions and defining compact symmetric linear opeartor with a suitable inner-product space on  $[0,\pi]$  guarantees

• the existence of countably many orthogonal eigen-functions  $\psi_n$  and eigenvalues  $\lambda_n$  such that

$$\lambda_0 \le \lambda_1 \le \lambda_2, \cdots, \quad \lambda_n \to \infty$$

• Semi-periodic boundary value problem on  $[0,\pi]$  (D=-2)

$$f(0) = -f(\pi), \quad f'(0) = -f'(\pi)$$

• corresponding eigenfunctions  $\phi_n$  and eigenvalues  $\lambda'_n$  such that

$$\lambda_1' \leq \lambda_2', \cdots, \quad \lambda_n' \to \infty$$

# Bands and Gaps

#### **Theorem**

To every differential equation

$$y'' + [\lambda + Q(x)]y = 0, \quad Q(x + \pi) = Q(x), \quad \lambda \in \mathbb{R}$$
 (3)

there exists two monotone sequences  $(\lambda_n)_0^{\infty}$ ,  $(\lambda'_n)_1^{\infty}$  such that

$$-\infty < \lambda_0 < \lambda_1' \le \lambda_2' < \lambda_1 \le \lambda_2 < \lambda_3' \le \lambda_4' < \lambda_3 \le \lambda_4 < \cdots,$$

#### for which

- stability intervals (bands):  $(\lambda_0, \lambda_1'), (\lambda_2', \lambda_1), (\lambda_2, \lambda_3') \cdots$ ,
- instability intervals (gaps):  $(\lambda_{2n+1}, \lambda_{2n+2})$ ,  $(\lambda'_{2n+1}, \lambda'_{2n+2})$ ,  $\cdots$ , (simple point).
- Instability interval disappears (shrink to a point) so that  $\lambda_{2n+1} = \lambda_{2n+2}$ , or  $\lambda'_{2n+1} = \lambda'_{2n+2}$ ,  $\cdots$  (stable double point).

# Mathieu equation Ince (1922) infinitely many gaps





## Finite-gaps or semi-finite gap potentials



# Semi-finite gap (odd solutions)



# Semi-finite gap (even solutions)





#### Semifinite-gap for WH-operator

#### Theorem (Djakov & Mityagin (2005))

Let

$$\nu(x) = -4\alpha t \cos 2x - 2\alpha^2 \cos 4x$$

be a potential of the Hill operator

$$\lambda f = Lf = -f'' + \nu(x)f, \quad 0 \le x \le \pi,$$

where both  $(0 \neq) \alpha$  and t are real.

- 1. If t = 2p 1,  $p \in \mathbb{N}$  with periodic boundary conditions, then the first 2p 1 eigenvalues are simple, and others are double.
- 2. If t = 2m,  $m \in \mathbb{N}$  with semi-periodic boundary conditions, then the first 2m eigenvalues are simple and others are double.

#### Comments

 Compared with the Mathieu operator, the eigenvalues of Whittaker-Hill potential

$$\nu(x) = -(B\cos 2x + C\cos 4x)$$

may be simple or double both for periodic and semi-periodic boundary conditions.

• Djakov and Mityagin assumed that if  $B = 4\alpha t$  and  $C = 2\alpha^2$  for any real  $\alpha$  and natural number t, i.e.,

$$B/(2\sqrt{2C})=t\in\mathbb{Z},$$

then they conclude that

- 1. all finitely many gaps exist
- 2. Semi-periodic BVP: t = 2m + 1, all the even gaps except the first m are closed,
- 3. Periodic BVP: t = 2m, the first m are closed.
- Djakov and Mityagin's argument is very elaborate and heavy in spectra analysis (and also long).



# Riemann-Hilbert (21st) Problem

- Prove that there always exists a Fuchsian system (equation) with given singularities in  $\mathbb{CP}^1$  and a given monodromy (representation).
- "Fuchsian" means the "coefficients" have at most poles at the given singularities.
- Solved by Plemelj (1908), Arnold (1988), Bolibruch (1989)
- Closely related to Riemann-Hilbert methods in integrable systems and Random matrices theory.
- Two singularities in  $\mathbb{CP}^1$ :
  - E.g., Euler equation:  $\{0, \infty\}$

$$x^2y'' + (1 - a - b)xy' + aby = 0$$

$$v = Ax^a + Bx^b$$

## Riemann-Hilbert (21st) Problem

- Prove that there always exists a Fuchsian system (equation) with given singularities in  $\mathbb{CP}^1$  and a given monodromy (representation).
- "Fuchsian" means the "coefficients" have at most poles at the given singularities.
- Solved by Plemelj (1908), Arnold (1988), Bolibruch (1989)
- Closely related to Riemann-Hilbert methods in integrable systems and Random matrices theory.
- Two singularities in  $\mathbb{CP}^1$ :
  - E.g., Euler equation:  $\{0, \infty\}$

$$x^2y'' + (1 - a - b)xy' + aby = 0$$

$$v = Ax^a + Bx^b$$

## Riemann-Hilbert (21st) Problem

- Prove that there always exists a Fuchsian system (equation) with given singularities in  $\mathbb{CP}^1$  and a given monodromy (representation).
- "Fuchsian" means the "coefficients" have at most poles at the given singularities.
- Solved by Plemelj (1908), Arnold (1988), Bolibruch (1989)
- Closely related to Riemann-Hilbert methods in integrable systems and Random matrices theory.
- Two singularities in  $\mathbb{CP}^1$ :
  - E.g., Euler equation:  $\{0, \infty\}$

$$x^2y'' + (1 - a - b)xy' + aby = 0$$

 $v = Ax^a + Bx^b$ 

# 2-3-4 Regular Singularties (I)

- Three singularities in CP<sup>1</sup>:
  - E.g., Bessel equation:  $\{0, \infty^2\}$

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0.$$

$$y(x) = J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{2^{\nu}}{2^{k} k! \Gamma(\nu + k)} x^{2k+\nu}$$

• E.g., Confluent hypergeometric equation:  $\{0, \infty^2\}$ 

$$xy''(z) + (c - x)y'(x) - ay(x) = 0$$

$$_{1}F_{1}(a;c;x) = {}_{1}F_{1}\left(\begin{matrix} a \\ c \end{matrix};x\right) := \sum_{n=0}^{\infty} \frac{(a)_{n}}{n!(c)_{n}}x^{n}, \quad c \neq 0, -1, -2, \cdots,$$

where  $(a)_k = a(a+1)\cdots(a+k-1)$  In particular, wher  $a = -n = 0, -1, -2, \cdots, {}_1F_1(-n; c; x)$  is (the Laguerre) polynomial

# 2-3-4 Regular Singularties (I)

- Three singularities in CP<sup>1</sup>:
  - E.g., Bessel equation:  $\{0, \infty^2\}$

$$x^2y'' + xy' + (x^2 - \nu^2)y = 0.$$

$$y(x) = J_{\nu}(x) = \sum_{k=0}^{\infty} \frac{2^{\nu}}{2^{k} k! \Gamma(\nu + k)} x^{2k+\nu}$$

• E.g., Confluent hypergeometric equation:  $\{0, \infty^2\}$ 

$$xy''(z) + (c - x)y'(x) - ay(x) = 0.$$

$$_{1}F_{1}(a;c;x) = {}_{1}F_{1}\begin{pmatrix} a \\ c \end{pmatrix};x := \sum_{n=0}^{\infty} \frac{(a)_{n}}{n!(c)_{n}}x^{n}, \quad c \neq 0,-1,-2,\cdots,$$

where  $(a)_k = a(a+1)\cdots(a+k-1)$  In particular, when  $a = -n = 0, -1, -2, \cdots, {}_1F_1(-n; c; x)$  is (the Laguerre) polynomial

# 2-3-4 Regular Singularties (II)

- Four singularities in CP<sup>1</sup>:
  - Rational form of the Mathieu Eqn.,  $(x = e^{2iz})$
  - Rational form of the Whittaker-Hill equation  $(x = e^{2iz})$ ,
  - Rational form of Lamé equation  $(x = \mathcal{P}(z))$
  - Rational form of Darboux-Trebibich-Verdier equation
- Painlevé equations (II-VI) arise as compatibility condition (Lax pairs) of Isomonodromy deformation of some of the DEs above (Fuchs (1905/07), Garnier (1912), Schlesinger (1912), Jimbo-Miwa-Ueno (1981)).

# 2-3-4 Regular Singularties (II)

- Four singularities in CP<sup>1</sup>:
  - Rational form of the Mathieu Eqn.,  $(x = e^{2iz})$
  - Rational form of the Whittaker-Hill equation  $(x = e^{2iz})$ ,
  - Rational form of Lamé equation  $(x = \mathcal{P}(z))$
  - Rational form of Darboux-Trebibich-Verdier equation
- Painlevé equations (II-VI) arise as compatibility condition (Lax pairs) of Isomonodromy deformation of some of the DEs above (Fuchs (1905/07), Garnier (1912), Schlesinger (1912), Jimbo-Miwa-Ueno (1981)).

## WH-Eqn: General soln I

Theorem (C. & Luo) Suppose the coefficients A, B and C>0 of the WH-eqn

$$f''(z) + (A + B\cos 2z + C\cos 4z)f(z) = 0$$

are complex parameters, where  $BC \neq 0$ , then we have two linearly independent solutions

$$f_{1}(z) = (e^{2iz})^{\mp \frac{B}{4\sqrt{2C}} + \frac{1}{2}} \cdot e^{\pm \frac{\sqrt{2C}}{4}} e^{-2iz} \cdot e^{\mp \frac{\sqrt{2C}}{4}} e^{2iz}$$

$$\cdot \sum_{k=0}^{\infty} \frac{B_{k}^{\mp}}{\Gamma(k+2\mp \frac{B}{2\sqrt{2C}})} \cdot {}_{1}F_{1}\left( \frac{k+1}{k+2\mp \frac{B}{2\sqrt{2C}}} ; \pm \frac{\sqrt{2C}}{2} e^{2iz} \right)$$

and

$$f_{2}(z) = (e^{2iz})^{\pm \frac{B}{4\sqrt{2C}} + \frac{1}{2}} \cdot e^{\mp \frac{\sqrt{2C}}{4}e^{-2iz}} \cdot e^{\mp \frac{\sqrt{2C}}{4}e^{2iz}}$$
$$\cdot \sum_{k=0}^{\infty} \frac{\widehat{B}_{k}^{\pm}}{\Gamma(k+2\pm \frac{B}{2\sqrt{2C}})} \cdot {}_{1}F_{1}\left(\begin{matrix} k+1\pm \frac{B}{2\sqrt{2C}} \\ k+2\pm \frac{B}{2\sqrt{2C}} \end{matrix}\right); \pm \frac{\sqrt{2C}}{2}e^{2iz}\right).$$

## WH-Eqn: General soln II

where the coefficients  $B_k^{\mp}$  and  $\widehat{B}_k^{\pm}$  satisfy the following three-term recurrence relations (infinite determinants)

$$-\frac{C}{2}(k+1)B_{k}^{\mp} + \left[ (k+1)\left(k+2 \mp \frac{B}{2\sqrt{2C}}\right) + \frac{C-A+1}{4} \frac{B^{2}}{32C} \mp \frac{B}{4\sqrt{2C}} \right] B_{k+1}^{\mp} - (k+2)B_{k+2}^{\mp} = 0$$

and

$$\frac{C}{2} \left( k + 1 \pm \frac{B}{2\sqrt{2C}} \right) \cdot \widehat{B}_{k}^{\pm} + \left[ (k+1) \left( k + 2 \pm \frac{B}{2\sqrt{2C}} \right) \right] \\
\pm \frac{B}{4\sqrt{2C}} + \frac{B^{2}}{32C} + \frac{-A - C + 1}{4} \right] \cdot \widehat{B}_{k+1}^{\pm} - (k+2) \cdot \widehat{B}_{k+2}^{\pm} = 0$$

respectively.



## WH-Eqn: General soln III

Theorem (C. & Luo) In particular, if  $\pm \frac{B}{2\sqrt{2C}} = -n - 1 \in \mathbb{Z}_{<0}$  and the tri-diagonal determinate  $|\widehat{D}_{n+1}^{\pm}| = 0$ , where  $\widehat{D}_{n+1}^{\pm} = \{\widehat{b}_{ki}\}_{1 \le k, i \le n+1}$  is defined as

$$\widehat{b}_{k,k-1} = \frac{C}{2} \left( k - 1 \pm \frac{B}{2\sqrt{2C}} \right),$$

$$\hat{b}_{kk} = (k-1)\left(k \pm \frac{B}{2\sqrt{2C}}\right) \pm \frac{B}{4\sqrt{2C}} + \frac{B^2}{32C} + \frac{-A-C+1}{4},$$

$$\hat{b}_{k,k+1} = -k$$

and  $\hat{\mathbf{b}}_{kj} = \mathbf{0}$  for other  $\mathbf{j}$ , then

$$f_{2}(z) = (e^{2iz})^{-\frac{n}{2}} \cdot e^{\mp \frac{\sqrt{2C}}{4}e^{-2iz}} \cdot e^{\mp \frac{\sqrt{2C}}{4}e^{2iz}} \cdot \sum_{k=0}^{n} \widehat{B}_{k}^{\pm} \cdot \frac{(-n-k)_{n-k}}{(n-k)!} \cdot \left(\pm \frac{\sqrt{2C}}{2}e^{2iz}\right)^{n-k}.$$

## Idea of proof I

• The WH-eqn in a rational form  $(x = e^{2iz})$  looks like:

$$x^{2}y''(x) + \left[ -\frac{\sqrt{2C}}{2}x^{2} + \left(2 - \frac{B}{2\sqrt{2C}}\right)x - \frac{\sqrt{2C}}{2} \right]y'(x) + \left( -\frac{\sqrt{2C}}{2}x + \frac{C - A + 1}{4} + \frac{B^{2}}{32C} - \frac{B}{4\sqrt{2C}} \right)y(x) = 0.$$
(4)

when divide x on both sides yields

$$xy''(x) + \left[ -\frac{\sqrt{2C}}{2}x + \left(2 - \frac{B}{2\sqrt{2C}}\right) + O(1/x)\right]y'(x) + \left( -\frac{\sqrt{2C}}{2} + O(1/x)\right)y(x) = 0.$$

$$(5)$$

which is asymptotically like the confluent hypergeometric Eqn.

- Recursion and asymptotic fomrulae of <sub>1</sub>F<sub>1</sub>
- Three-term recursion: *Poincaré's theorem* and *Perron's* theorems.



# Complex Oscillation: Philosophy

- Liouville theorem (1840's): If f is a bounded entire function, then  $f \equiv \text{const.}$  (i.e., f misses most of  $\mathbb{C}$ )
- Little Picard theorem (1879-80) states that if an entire function f on  $\mathbb C$  misses two values in  $\mathbb C$ , then  $f \equiv const.$
- The number "2" is best possible: (e.g.  $f(x) = e^x \neq 0$ )
- Little Picard theorem says that entire functions are quite rigid.

Consider

$$y''(x) + A(x)y(x) = 0$$

where A(x) is an entire potential

• Suppose a solution f(x) omits x = 0. Then what can we say about the solution f(x)

# Complex Oscillation: Philosophy

- Liouville theorem (1840's): If f is a bounded entire function, then  $f \equiv \text{const.}$  (i.e., f misses most of  $\mathbb{C}$ )
- Little Picard theorem (1879-80) states that if an entire function f on  $\mathbb{C}$  misses two values in  $\mathbb{C}$ , then  $f \equiv const.$
- The number "2" is best possible: (e.g.  $f(x) = e^x \neq 0$ )
- Little Picard theorem says that entire functions are quite rigid.

Consider

$$y''(x) + A(x)y(x) = 0$$

where A(x) is an entire potential.

• Suppose a solution f(x) omits x = 0. Then what can we say about the solution f?

## Measuring zeros of Entire Functions

We first review some complex analytic theory.

• Suppose f(z) has zeros. We define

$$n(r) :=$$
 numbers of zeros of  $f$  in  $\{|z| < r\}$ ,

and define the exponent of convergence of the zeros of f(z):

$$\lambda(f) = \limsup_{r \to +\infty} \frac{\log n(r)}{\log r}$$

• Relation between order and exponent of convergence of f(z):

$$\limsup_{r\to +\infty} \frac{\log n(r)}{\log r} = \lambda(f) \le \limsup_{r\to +\infty} \frac{\log \log M(r, f)}{\log r} = \sigma(f).$$

Essentially just Poisson-Jensen formula.



# Bank-Laine's Complex Oscillation (Nevanlinna) Theory

#### Theorem (Bank & Laine (1983))

Let  $f \not\equiv 0$  be a solution of

$$f''(z) + A(z) f(z) = 0$$

where

$$A(z) = B(e^z) = \sum_{j=-k}^{\ell} K_j e^{jz},$$

such that  $\lambda(f) < +\infty (= \sigma(f))$ . Moreover, we have

$$f(z) = \begin{cases} \psi(e^{z/2}) \exp\left(\sum_{j=0}^{\ell} d_j e^{jz/2} + dz\right), & \ell \text{ is odd and } k = 0; \\ \psi(e^z) \exp\left(\sum_{j=-k/2}^{\ell/2} d_j e^{jz} + dz\right), & \ell \text{ is even.} \end{cases}$$

# $\frac{1}{16}$ – theorem

#### **Theorem**

(Bank, Laine, Langley (1986), C. & Ismail (2006)) Let  $K \in \mathbb{C}$ . Then the equation

$$f'' + (e^z - K)f = 0. (6)$$

admits linearly independent solutions

$$y_{\pm}(z) = A_{\pm} J_{2\sqrt{K}}(\pm 2e^{z/2}) + B_{\pm} Y_{2\sqrt{K}}(\pm 2e^{z/2}).$$
 (7)

Each of the solutions of (6) has  $\lambda(f) < \infty$  if and only if

$$K = (n+1)^2/16, \quad n \in \mathbb{N} \cup \{0\}$$
 (8)

$$y_{\pm}(z) = \theta_n \left( \pm 2ie^{z/2} \right) \exp\left( \mp 2ie^{z/2} + dz \right), \tag{9}$$

where  $\theta_n(x)$  is the reversed Bessel polynomial of degree n.



#### Complex oscillation of WH-Eqn

Theorem (C & Luo) Suppose the Whittaker-Hill Eqn admits a non-trivial solution f with  $\lambda(f) < \infty$ , where  $BC \neq 0$ . Then,

$$\pm B/(2\sqrt{2C}) = -n-1.$$

Moreover, if the tri-diagonal determinant  $|\widehat{D}_{n+1}^{\pm}| = 0$ , where the tri-diagonal matrix  $\widehat{D}_{n+1}^{\pm} = \{\widehat{b}_{kj}\}_{1 \leq k, j \leq n+1}$  is defined as

$$\widehat{b}_{k,k-1} = \frac{C}{2} \left( k - n - 2 \right), \quad \widehat{b}_{k,k+1} = -k$$

$$\hat{b}_{kk} = (k-1)(k-n-1) + n^2 - A - C/4,$$

and  $\hat{b}_{kj} = 0$  for other j, then this solution can be represented by

$$f(z) = (e^{2iz})^{-\frac{n}{2}} \cdot e^{\mp \frac{\sqrt{2C}}{4}e^{-2iz}} \cdot e^{\mp \frac{\sqrt{2C}}{4}e^{2iz}}$$
$$\cdot \sum_{k=0}^{n} \frac{\widehat{B}_{k}^{\pm}}{\Gamma(-n+k+1)} \cdot {}_{1}F_{1} \begin{pmatrix} -n+k \\ -n+k+1 \end{pmatrix}; \pm \frac{\sqrt{2C}}{2}e^{2iz}$$

#### Complex oscillation of WH-Eqn

where the coefficients  $\widehat{B}_k$  satisfy the following three-term recurrence relation

$$\frac{C}{2}(k-n)\widehat{B}_{k}^{\pm} + \left[(k+1)(k-n+1) + \frac{n^{2}-A-C}{4}\right]\widehat{B}_{k+1}^{\pm} - (k+2)\widehat{B}_{k+2}^{\pm} = 0.$$

#### (1) New explicit solutions

#### Theorem

Suppose the coefficients  ${\color{red}B}$  and  ${\color{gray}C}$  of the Whittaker-Hill equation

$$f''(x) + (A + B\cos 2x + C\cos 4x)f(x) = 0$$

are real, and  $BC \neq 0$ ,  $0 \leq x \leq \pi$ . Then it admits two linearly independent solutions of periodic or semi-periodic  $\pi$  if and only if  $\frac{B}{2\sqrt{2C}} \in \mathbb{Z} \dots$ 

• (1) If  $\frac{B}{4\sqrt{2C}} = -n - \frac{1}{2}$   $n \ge 0$ , and the solutions satisfy the periodic boundary conditions, then the first 2n + 1 eigenvalues are simple  $(\lambda(f) < \infty)$ , and others are double  $(\lambda(f) = \infty)$ :

$$A_0^+ < A_2^- < A_2^+ < A_4^- < A_4^+ < \dots < A_{2n}^- < A_{2n}^+ < A_{2n+2}^- < A_{2n+4}^- = A_{2n+4}^+ < \dots,$$

where  $A_{2j}^+$  and  $A_{2j}^-$  are the eigenvalues corresponding to non-trivial odd and even solutions with period  $\pi$  respectively.



## (1) Even, Odd (stable) solutions

• Moreover, (i) when  $A = A_{2k}^-$ ,  $1 \le k \le n$ ,

$$f_{odd}^{\pi}(x) = e^{-\sqrt{\frac{C}{2}} \cdot \cos 2x} \cdot \sin 2x$$

$$\cdot \sum_{k=0}^{n-1} A_k^{-(1)} \cdot {}_1F_1\left(\frac{-n+1+k}{k+3}; \sqrt{2C}(\cos 2x - 1)\right);$$

when  $A = A_{2k}^+$ ,  $0 \le k \le n$ ,

$$f_{\text{even}}^{\pi}(x) = e^{-\sqrt{\frac{C}{2}} \cdot \cos 2x}$$

$$\cdot \sum_{k=0}^{n} A_{k}^{-(2)} \cdot {}_{1}F_{1} \begin{pmatrix} -n+k \\ k+1 \end{pmatrix}; \sqrt{2C}(\cos 2x - 1);$$

#### (1) Coexistence solutions

• (ii) when  $A=A_{2k}^-=A_{2k}^+$ , k>n, then the two linearly independent solutions of the Whittaker-Hill differential equation are given by

$$f_{odd}^{\pi}(x) = e^{-\sqrt{\frac{c}{2}} \cdot \cos 2x} \cdot \sin 2x$$
$$\cdot \sum_{k=0}^{\infty} A_k^{-(1)} \cdot {}_1F_1\left(\frac{-n+1+k}{k+3}; \sqrt{2C}(\cos 2x - 1)\right)$$

and

$$f_{\text{even}}^{\pi}(x) = e^{-\sqrt{\frac{c}{2}} \cdot \cos 2x}$$

$$\cdot \sum_{k=0}^{\infty} A_k^{-(2)} \cdot {}_1F_1\left(\frac{-n+k}{k+1}; \sqrt{2C}(\cos 2x - 1)\right).$$

#### Even gaps closed



#### (2) New explicit solutions

• (2) If  $\frac{B}{4\sqrt{2C}} = -n - 1$ ,  $n \in \mathbb{N}^+ \cup \{0\}$ , and the solutions satisfy the semi-periodic boundary conditions, then the first 2n + 2 eigenvalues are *simple*, and others are *double*, i.e.,

$$A_1^+ < A_1^- < A_3^+ < A_3^- < \dots < A_{2n+1}^+ < A_{2n+1}^- < A_{2n+1}^+ < A_{2n+5}^- < \dots,$$

where  $A_{2j-1}^+$  and  $A_{2j-1}^-$  are the eigenvalues corresponding to non-trivial odd and even solutions with semi-period  $\pi$  respectively.

Remark This appears to be the case that Djakov & Mityagin (2005) missed.

## (2) Even, Odd (stable) solutions

• Moreover, (i) when  $A = A_{2k-1}^-$ ,  $1 \le k \le n+1$ ,

$$f_{odd}^{2\pi}(x) = \sin x \cdot e^{-\sqrt{\frac{C}{2}} \cdot \cos 2x}$$

$$\cdot \sum_{k=0}^{n} A_{k}^{-(3)} \cdot {}_{1}F_{1}\left(\frac{-n+k}{k+2}; \sqrt{2C}(\cos 2x - 1)\right);$$

when  $A = A_{2k-1}^+$ ,  $1 \le k \le n+1$ ,

$$f_{even}^{2\pi}(x) = \cos x \cdot e^{-\sqrt{\frac{C}{2}} \cdot \cos 2x}$$

$$\cdot \sum_{k=0}^{n} A_k^{-(4)} \cdot {}_1F_1\left(\frac{-n+k}{k+2}; \sqrt{2C}(\cos 2x - 1)\right);$$

#### (2) Coexistence solutions

• (ii) when  $A = A_{2k-1}^- = A_{2k-1}^+$ , k > n+1, then the two linearly independent solutions of the Whittaker-Hill differential equation are

$$f_{odd}^{2\pi}(x) = \sin x \cdot e^{-\sqrt{\frac{C}{2}} \cdot \cos 2x}$$

$$\cdot \sum_{k=0}^{\infty} A_k^{-(3)} \cdot {}_1F_1\left(\frac{-n+k}{k+2}; \sqrt{2C}(\cos 2x - 1)\right)$$

and

$$f_{\text{even}}^{2\pi}(x) = \cos x \cdot e^{-\sqrt{\frac{c}{2}} \cdot \cos 2x}$$
$$\cdot \sum_{k=0}^{\infty} A_k^{-(4)} \cdot {}_1F_1\left(\frac{-n+k}{k+2}; \sqrt{2C}(\cos 2x - 1)\right).$$

#### The remaining two cases

• (3) If 
$$-\frac{B}{4\sqrt{2C}} = -n - \frac{1}{2}$$
,  $n \in \mathbb{N}^+ \cup \{0\}$ ,

• (4) If 
$$-\frac{B}{4\sqrt{2C}} = -n - 1$$
,  $n \in \mathbb{N}^+ \cup \{0\}$ ,

• We skip the details.

#### Complex oscillation and semifinite-gaps

Theorem (C. & Luo) Suppose the WH-Eqn admits a solution f with  $\lambda(f) < \infty$ . Then  $B/(2\sqrt{2C}) \in \mathbb{Z}$  holds. Moreover, if f satisfies the normalised initial condition, then we can express f in explicit non-oscillatory-soln form:

- 1. the odd and even solutions  $f_{\text{odd}}^{\pi}(x)$  and  $f_{\text{even}}^{\pi}(x)$  in cases (I) and (III) of the last Theorem corresponding to the periodic boundary condition and for the eigenvalues  $A = A_{2k}^- (1 \le k \le n)$  and  $A = A_{2k}^+ (1 \le k \le n)$ ;
- 2. the odd and even solutions  $f_{\text{odd}}^{2\pi}(x)$  and  $f_{\text{even}}^{2\pi}(x)$  in cases (II) and (IV) of the last Theorem corresponding to the semi-periodic boundary condition and for the eigenvalues  $A = A_{2k-1}^ (1 \le k \le n+1)$  and  $A = A_{2k-1}^+$   $(1 \le k \le n+1)$ .

Moreover, the eigenvalues  $A = A_{2k}^ (1 \le k \le n)$ ,  $A = A_{2k}^+$   $(1 \le k \le n)$ ,  $A = A_{2k-1}^ (1 \le k \le n+1)$  and  $A = A_{2k-1}^+$   $(1 \le k \le n+1)$  are solutions of certain determinants  $|D_n(j)| = 0$  (j = 1, 2, 3, 4) respective, whose respective entries are suitably defined.

hittaker-Hill Eqn Qualitative results WH: Explicit general soln Complex Oscillation theory Stability interval

#### E. T. Whittaker (1873-1956)



Figure: (MathTutor, 1915)

• Supervisor: A. R. Forsyth

• Students: G. H. Hardy, W. Hodge, G. N. Watson, A. Eddington



## E. L. Ince (FRSE: 1891-1941)



Figure: (MathTutor, 1923)

#### Instability intervals (gaps) of the Hill operator I

In the case of specific potentials, like the Mathieu potential

$$\nu(x) = -B\cos 2x,$$

where  $0 \neq B$  is real, or more general trigonometric polynomials

$$\nu(x) = \sum_{-N}^{N} c_k e^{ikx}, \quad c_k = \overline{c_{-k}}, \quad 0 \le k \le N < \infty,$$

one comes to two category of questions:

- 1. (Notation change) The left-end point  $\lambda_n^-$  and right-end points
- 2. Is the n-th intervals of instability *closed*, i.e.,

$$\gamma_n = \lambda_n^+ - \lambda_n^- = 0,$$

or, equivalently, is the multiplicity of  $\lambda_n^+$  double?

3. If  $\gamma_n \neq 0$ , what could we say about  $\gamma_n = \gamma_n(\nu) \rightarrow ?$  as  $n \rightarrow \infty$ ?

#### Instability intervals (gaps) of the Mathieu operator II

- Ince (1922) answered in a negative way for question (1) the Mathieu-operator has only simple eigenvalues both for periodic and semi-periodic boundary conditions, i.e., infinitely many gaps.
- Harrell (1981), Avron & Simon (1981) gave

$$\gamma_n = \lambda_n^+ - \lambda_n^- = \frac{8}{[(n-1)!]^2} \cdot \left(\frac{|B|}{8}\right)^n \left(1 + o\left(\frac{1}{n^2}\right)\right).$$

as  $n \to \infty$  which was improved by Anahtarci & Djakov (2012). ( $[1 - \pi^2/4n^3 + O(1/n^4))$ .

• Levy & Keller (1963) gave the asymptotics of  $\gamma_n = \gamma_n(B)$ , i.e., for fixed n and real  $B \neq 0$ , when  $B \rightarrow 0$ ,

$$\gamma_n = \lambda_n^+ - \lambda_n^- = \frac{8}{[(n-1)!]^2} \cdot \left(\frac{|B|}{8}\right)^n (1 + O(B)).$$

• Djakov & Mityagin (2007): WH Eqn contains modular forms studied by Kac & Wakimoto, Milne and Zagier in 1990's.

#### Instability intervals (gaps) of the Mathieu operator II

- Ince (1922) answered in a negative way for question (1) the Mathieu-operator has only simple eigenvalues both for periodic and semi-periodic boundary conditions, i.e., infinitely many gaps.
- Harrell (1981), Avron & Simon (1981) gave

$$\gamma_n = \lambda_n^+ - \lambda_n^- = \frac{8}{[(n-1)!]^2} \cdot \left(\frac{|B|}{8}\right)^n \left(1 + o\left(\frac{1}{n^2}\right)\right).$$

as  $n \to \infty$  which was improved by Anahtarci & Djakov (2012). ( $[1 - \pi^2/4n^3 + O(1/n^4))$ .

• Levy & Keller (1963) gave the asymptotics of  $\gamma_n = \gamma_n(B)$ , i.e., for fixed n and real  $B \neq 0$ , when  $B \rightarrow 0$ ,

$$\gamma_n = \lambda_n^+ - \lambda_n^- = \frac{8}{[(n-1)!]^2} \cdot \left(\frac{|B|}{8}\right)^n (1 + O(B)).$$

 Djakov & Mityagin (2007): WH Eqn contains modular forms studied by Kac & Wakimoto, Milne and Zagier in 1990's.

#### Summary

- We have introduced (semi)finite-gap problems for Hill's equations.
- We have reviewed some classical and recent results for Mathieu and Whittaker-Hill operators
- We have found exact solutions in terms of <sub>1</sub>F<sub>1</sub> as basis.
   (N. Katz's rigid local systems theory can offer a deeper monodromy/geometric insight: on going project)
- We relate complex oscillatory and non-oscillatory solutions to those semi-finite gap solutions (Picard-type viewpoint).
- Very little is known about the real nature of the eigenvalues  $\lambda = A$  with respect to B and C.

#### International J. Quantum Chemistry (2010)

#### Whittaker–Hill Equation, Ince Polynomials, and Molecular Torsional Modes

#### LUIZ F. RONCARATTI, VINCENZO AOUILANTI

Dipartimento di Chimica, Università di Perugia, 06123 Perugia, Italy

Received 23 December 2008; accepted 11 March 2009 Published online 26 August 2009 in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/qua.22255

Figure: (Wiley)

#### Roncaratti and Aquilanti ( $H_2O_2: \lambda(B, C)$ )



FIGURE 2. Surfaces λ<sub>m</sub> (a, b) where λ's are the eigenvalues of Whittaker-Hill equation; n and τ are quantum numbers, a and b are the torsional potential parameters. Valley bottoms and ridges follow parabolic curves defined by the parameter p (see text). Each color bar describes the color scale for the pictures in the column above it. [Color figure can be viewed in the online issue, which is available at www.interscience.wilev.com.]

#### Ince's contour plot



Figure: Proc. Lond. Math Soc. (1923)



#### References

- 1. F. M. Arscott, Periodic differential equations, Pergamon press, 1964
- S. Bank, & I. Laine, Representations of solutions of periodic second order linear differential equations, J. Reine Angew. Math. 344 (1983), 1-21
- Y. M. Chiang, & M. Ismail, On value distribution theory of second order periodic ODES, special functions and orthogonal polynomials, Canad. J. Math. 58 (2006) 726–767.
- Y. M. Chiang & Xudan Luo, Explicit determination of complex oscillatory and semifinite-gap solutions of the Whittaker-Hill equation, (In preparation).
- P. Djakov and B. Mityagin, Simple and double eigenvalues of the Hill operator with a two-term potential, J. Approx. Thy. 135 (2005), 70-104.
- P. Djakov and B. Mityagin, Asymptotics of instability zones of the Hill operator with a two term potential, Journal of Functional Analysis 242 (2007), 157?194.
- A. D. Hemery & A. P. Veselov, Whittaker-Hill equation and semifinite-gap Schrödinger operator, J. Math Phys. 51 no. 7, 17 pp.
- 8. E. L. Ince, *A linear differential equation with periodic coefficients*, Proc. London Math. Soc., **23** (1923), 56-74.
- 9. E. T. Whittaker, On a class of differential equations whose solutions satisfy integral equations, Proc. Edinburgh Math. Soc. 33 (1915), 14–33.



/hittaker-Hill Eqn Qualitative results WH: Explicit general soln Complex Oscillation theory Stability intervals

#### HKUST



Figure: Clear Water Bay, Hong Kong Thank you for your attention !!

