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Whittaker-Hill equation

Schrodinger equations with potentials with period 7.
Mathieu equation (1868)

f"(z) + (A+ Bcos2z)f(z) =0

(Separation of variables of 2D-Wave equation by elliptic
cylindiical coordinates)

Whittaker-Hill equation (1907/1915)

f"(z) + (A+ Bcos2z + Ccos4z)f(z) = 0. (1)

(Separation of variables of 3D-Helmholz equation by
paraboloidal coordinates)

Celestial machines, Quantum theory, Quantum chemistry,
Integration of KdV with periodic BVP (Novikov), Quantum
field theory, etc
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Hill's equations
¢ Consider Hill's equation (1877)
d?y
—— +Qxy(x) =0, . ()

dx?

which is a Schrodinger equation with periodic (even) potential
Qx +m) = Q(x).
e Hill's original treatment was to assume
oo
Q(x)=A+2 Z 6 cos 2kx

k=1
to converge on R.



Whittaker-Hill Eqn Qualitative results WH: Explicit general soln Complex Oscillation theory Stability intervals

Hill's equations
¢ Consider Hill's equation (1877)

T Q) =0, . @

dx?

which is a Schrodinger equation with periodic (even) potential
Qx +m) = Q(x).
e Hill's original treatment was to assume

oo
Q(x)=A+2 Z 6 cos 2kx
k=1
to converge on R.
e How much do we know about the eigenvalues A 7
e Do there exist any periodic solutions?
o Coexistence: Do there exist two linearly independent (LI)
periodic solutions?
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Floquet (Bloch) Theory

G. H. Hill (1886), G. Floquet (1883), A. M. Lyapunov (1907)
L. Brillouin (1953) Wave propagation in periodic structures
(Dover)

Magnus & Winkler (1966): Hill's Equations (Dover)

Arscott (1964): Periodic Differential Equations (Pergamon
press)

Eastham (1973): Spectral Theory of Periodic Differential
Equations (Scottish Academic Press)
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Floquet (Bloch) Theory

G. H. Hill (1886), G. Floquet (1883), A. M. Lyapunov (1907)

L. Brillouin (1953) Wave propagation in periodic structures

(Dover)

e Magnus & Winkler (1966): Hill's Equations (Dover)

e Arscott (1964): Periodic Differential Equations (Pergamon
press)

e Eastham (1973): Spectral Theory of Periodic Differential
Equations (Scottish Academic Press)

e Floquet theory: Jp # 0 and non-trivial soln ¢(x) of Eqn (2)

such that

(x +m) = pip(x).

e Similar to monodromy at a regular singular point (C).
e p =1 periodic soln;
e p = —1 semi-periodic soln;
e Since Q(x) is even, so the solutions of (2) could be even/odd
solns.
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Floquet (Bloch) Theory (I1)

e Suppose ¢1(x) and ¢2(x) are two linearly independent
solutions with initial conditions

¢1(0) =1, ¢1(0)=0, ¢(0)=0, ¢(0)=1
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Floquet (Bloch) Theory (I1)

e Suppose ¢1(x) and ¢2(x) are two linearly independent
solutions with initial conditions

e We observe 3 2 x 2 matrix such that
<¢1(X+7T)> _ <311 812> (¢1(X))
$o(x + ) a1 axn) \¢(x)
e It follows from the initial conditions on ¢1, ¢, above that
A <a11 a12> _ <¢1(7T) ¢’1(7T)>
a1 a2 ¢2(7T) ¢/2(7T)

tr (A) = ¢1(m) + ¢(7), det(A) = da1(m)d(m) — ¢ (m)a (7).
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Floquet (Bloch) Theory (I11)

e Suppose 1(x) is a solution such that ¢(x + 7) = pip(x) for
certain p. Then 1(x) = c1¢1(x) + c2¢2(x) for some c1, &
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Floquet (Bloch) Theory (I11)

e Suppose 1(x) is a solution such that ¢(x + 7) = pip(x) for
certain p. Then 1(x) = c1¢1(x) + c2¢2(x) for some c1, &

Then
(o] 0 ail  aoi Cc1 0

AT —pI = = —pl = .
wr-m(2)=(0) =G 2) -] (2) - ()
i.e.,

ail —p azi ‘—O

a2 axp —p
or just

p? — tr(A) p + det(A) = 0.
where det(A) # 0
e p = pi1, p2 are called the characteristic (Floquet) multipliers
and
D = A(X) = tr(A) = éa(m) + ¢5()

is called Hill's discriminant (Lyapunov fn) of the DE (1).
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Stability intervals vs Gaps

Theorem
o If D = |tr(A)| > 2, then all non-trivial solutions of Eqn (2)
are unbounded on R (unstable),

o If D = |tr(A)| < 2, then all solutions of Eqn (2) are bounded
on R (stable)

o If D = |tr(A)| = 2, then there exists a non-trivial solution of
Eqn (2) which is bounded on R (conditionally stable)

Theorem

e The Eqn (2) has a non-trivial soln with period 7 <= D = 2.

e The Eqn (2) has a non-trivial soln with semi-period
m < D=-2(ie, f(x+m)=—f(x))
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Periodic boundary (eigenvalue) problem
e Periodic boundary value problem on [0, 7] (D = 2)
f(0) = f(m), f'(0) = f'(m)

This is a self-adjoint problem and standard method of
constructing Green's functions and defining compact
symmetric linear opeartor with a suitable inner-product space
on [0, 7| guarantees
e the existence of countably many orthogonal eigen-functions v,
and eigenvalues A\, such that

Ao S AL S Agyeee Ap 200
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Periodic boundary (eigenvalue) problem
e Periodic boundary value problem on [0, 7] (D = 2)
f(0) = f(m), f'(0) = f'(m)

This is a self-adjoint problem and standard method of
constructing Green's functions and defining compact
symmetric linear opeartor with a suitable inner-product space

on [0, 7| guarantees
e the existence of countably many orthogonal eigen-functions v,
and eigenvalues A\, such that

Ao S AL S Agyeee Ap 200

e Semi-periodic boundary value problem on [0, 7] (D = —2)

F(0) = —f(r), f(0)=—f(m)

e corresponding eigenfunctions ¢, and eigenvalues )/ such that

N <My M o
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Bands and Gaps

Theorem
To every differential equation

Y'+ A+ QX)ly =0, Q(x+m)=Q(x), AeR (3)
there exists two monotone sequences (\p)3°, (\,)7° such that
—00 < A < NN, < A< < A<, < A3y <o e,

for which
e stability intervals (bands): (Ao, A7), (A5, A1), (A2, A§) -+,
e instability intervals (gaps): (A2n+1, A2n+2),
(Nopi1s Mopyn), oo+, (simple point).
e |Instability interval disappears (shrink to a point) so that
A2nt1 = Aong2, o Ny = A5, o, -+ . (stable double point).
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Mathieu equation
Ince (1922) infinitely many gaps
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Figure: (Hemery & Veselov (2010))
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Finite-gaps or semi-finite gap potentials
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Finite-gap (Lame equation)
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Figure: (Hemery & Veselov (2010))
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Semi-finite gap (odd solutions)

A(R)

TiTATSER
IRVRYAY,

Semifinite-gap (all odd gaps

closed except the first one)

Figure: (Hemery & Veselov (2010))
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Semi-finite gap (even solutions)
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closed except the first one)

Figure: (Hemery & Veselov (2010))



Whittaker-Hill Eqn Qualitative results WH: Explicit general soln Complex Oscillation theory Stability intervals

Semifinite-gap for WH-operator

Theorem (Djakov & Mityagin (2005))
Let
v(x) = —dat cos 2x — 20 cos 4x

be a potential of the Hill operator
M=Lf=—f"+v(x)f, 0<x<m

where both (0 #) o and t are real.

1. Ift =2p—1, p € N with periodic boundary conditions, then
the first 2p — 1 eigenvalues are simple, and others are double.

2. If t =2m, m € N with semi-periodic boundary conditions,
then the first 2m eigenvalues are simple and others are double.



Qualitative results

Comments

Compared with the Mathieu operator, the eigenvalues of
Whittaker-Hill potential

v(x) = —(Bcos 2x + C cos4x)

may be simple or double both for periodic and semi-periodic
boundary conditions.

Djakov and Mityagin assumed that if B = 4at and C = 202
for any real « and natural number ¢, i.e.,

B/(2vV2C) =t e Z,

then they conclude that
1. all finitely many gaps exist
2. Semi-periodic BVP: t = 2m + 1, all the even gaps except the
first m are closed,
3. Periodic BVP: t = 2m, the first m are closed.
Djakov and Mityagin's argument is very elaborate and heavy
in spectra analysis (and also long).
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Riemann-Hilbert (21st) Problem

e Prove that there always exists a Fuchsian system (equation)
with given singularities in CP! and a given monodromy
(representation).

e “Fuchsian” means the “coefficients” have at most poles at
the given singularities.

e Solved by Plemelj (1908), Arnold (1988), Bolibruch (1989)
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Riemann-Hilbert (21st) Problem

Prove that there always exists a Fuchsian system (equation)
with given singularities in CP! and a given monodromy
(representation).

“Fuchsian” means the “coefficients” have at most poles at
the given singularities.

Solved by Plemelj (1908), Arnold (1988), Bolibruch (1989)

Closely related to Riemann-Hilbert methods in integrable
systems and Random matrices theory.
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Riemann-Hilbert (21st) Problem

e Prove that there always exists a Fuchsian system (equation)
with given singularities in CP! and a given monodromy
(representation).

e “Fuchsian” means the “coefficients” have at most poles at
the given singularities.

e Solved by Plemelj (1908), Arnold (1988), Bolibruch (1989)

e Closely related to Riemann-Hilbert methods in integrable
systems and Random matrices theory.
e Two singularities in CP*:
e E.g., Euler equation: {0, oo}

x2y" +(1—a—b)xy' +aby =0

y = Ax? + Bx?
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2-3-4 Regular Singularties (1)

e Three singularities in CP':

e E.g., Bessel equation: {0, co?}

X2y// +Xy/ + (X2 o I/Z)y =0.

21/

y(x) = Jy(x) = kZ:O mxmy
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2-3-4 Regular Singularties (1)

e Three singularities in CP:

e E.g., Bessel equation: {0, co?}

X2y + xy' 4+ (x* = )y = 0.

S 2v 2k+v
) =) =3 2KKIT (v + k)
k=0

e E.g., Confluent hypergeometric equation: {0, 0o®}

xy"(2) + (c = x)y'(x) — ay(x) = 0.

o0
(a)” n
1F1(3CX)—1F1( ; ) nz:n!(c)nx, (:7é0,—]_)—2’-..7
where (a)x = a(a+1)---(a+ k — 1) In particular, when
a=-n=0,-1,-2,---, 1F1(—n; ¢; x) is (the Laguerre)
polynomial
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2-3-4 Regular Singularties (Il)

e Four singularities in CP*:

Rational form of the Mathieu Eqn., (x = e?iz
Rational form of the Whittaker-Hill equation (x = %),
Rational form of Lamé equation (x = P(z))

)
[
[ ]
e Rational form of Darboux-Trebibich-Verdier equation
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2-3-4 Regular Singularties (Il)

e Four singularities in CP*:

e Rational form of the Mathieu Eqn., (x = e?iz
e Rational form of the Whittaker-Hill equation (x = e
e Rational form of Lamé equation (x = P(z))

e Rational form of Darboux-Trebibich-Verdier equation

2iz)

e Painlevé equations (lI-VI) arise as compatibility condition (Lax
pairs) of Isomonodromy deformation of some of the DEs
above (Fuchs (1905/07), Garnier (1912), Schlesinger (1912),
Jimbo-Miwa-Ueno (1981)).
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WH-Eqn: General soln |
Theorem (C. & Luo) Suppose the coefficients A, B and C > 0 of
the WH-eqn

f(z) + (A4 Bcos2z + Ccosdz)f(z) =0

are complex parameters, where BC = 0, then we have two linearly
independent solutions

fl(Z) :(6212):,:%—%% ei@efﬂz . eq:@eﬂz
S k+1 2C ..
Z 1F1 <k+2+ 'ﬂ:\/76212>
k=0 r k + 2 + 2\/7) + 2\/7 2

and

fz(z) :(eziz)i4\5ﬁ+% e @e‘Q"Z ) e;@eziz
e foE=

> B} ] .F<k+1i2\{; imZZ).

k:Ork+2izr) k+ 2+ 5 2
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WH-Eqn: General soln Il

where the coefficients B and Ef satisfy the following three-term
recurrence relations (infinite determinants)

C B
— —(k+1)Bf k+1)(k+2F —

5k VBT + (k1) (k+27 )
C—A+1 B? B
— ] k+1 (k4‘2)Bk+2::0

4 32C " 4v2C
and

C

§(k+1i )-§f+[(k+1)<k+2i

2v2)
2v2C
Blil (k+2)- Bliz =0

B
2v2C

B? —-A-C+1
if,ﬁ+3TC+T}

respectively.
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WH-Eqn: General soIn 1
Theorem (C. & Luo) In particular, if +—7— F

=0, where

—1le Z<0 and

the tri- dlagonal determinate \D

A+
D 1= {bkj}lgk,jgn—s—l is defined as

n+
- C B
bik1=—(k—-1+—to
et =5 3vsc)
B B B2 —A-C+1
) + + :
2v/2C/  4y2C  32C 4

by k+1 = —k

b = (k — 1)(ki

and Ekj = 0 for other j, then

f(z) = (¥7) 5 . T HTeT™
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Idea of proof |

o The WH-eqn in a rational form (x = e27?) looks like:

00+ [ 550+ (1= 32 )= 5]
vV2€C C—-A+1 B? B
+(- > T Tac _4\@)”)():
(4)
when divide x on both sides yields
\/f
xy"(x) + 2— —=) +0@1/x)|y'(x)
T o) o
+ (- = 0(1/x))y(x) = 0.

which is asymptotically like the confluent hypergeometric Eqn.
e Recursion and asymptotic fomrulae of 1 F;
e Three-term recursion: Poincaré’s theorem and Perron’s
theorems.
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Complex Oscillation: Philosophy

Liouville theorem (1840's): If f is a bounded entire function,
then f = const. (i.e., f misses most of C)

Little Picard theorem (1879-80) states that if an entire
function f on C misses two values in C, then f = const.

The number “2" is best possible: (e.g. f(x) = €e* # 0)
Little Picard theorem says that entire functions are quite rigid.
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Complex Oscillation: Philosophy

e Liouville theorem (1840’s): If f is a bounded entire function,
then f = const. (i.e., f misses most of C)

e Little Picard theorem (1879-80) states that if an entire
function f on C misses two values in C, then f = const.

e The number “2" is best possible: (e.g. f(x) = e* # 0)

o Little Picard theorem says that entire functions are quite rigid.

o Consider
y'(x) + Ax)y(x) =0
where A(x) is an entire potential.

e Suppose a solution f(x) omits x = 0. Then what can we say
about the solution f ?
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Measuring zeros of Entire Functions

We first review some complex analytic theory.

e Suppose f(z) has zeros. We define
n(r) := numbers of zeros of f in {|z| < r},

and define the exponent of convergence of the zeros of f(z):

[
A(f) = limsup M) n(r)
r——+o00 Iogr

e Relation between order and exponent of convergence of f(z):

| log log M(r, f

= o(f).
r—+o00 logr r—+00 log r

e Essentially just Poisson-Jensen formula.
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Bank-Laine's Complex Oscillation (Nevanlinna) Theory
Theorem (Bank & Laine (1983))
Let f # 0 be a solution of
f'(z) + A(z) f(z) =0

where

J4
A(z) = B(e) = 3 KieF,

j=—k
such that A\(f) < 400 (= o(f)). Moreover, we have

f(2) Y(e?/?) exp (Zf:o d;ef?/? + dz), ¢ is odd and k = 0;
z) = ,
P(e?) exp (fofkp dje” + dz), ¢ is even.
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1
1—6—theorem

Theorem
(Bank, Laine, Langley (1986), C. & Ismail (2006)) Let K € C.
Then the equation

"+ (e — K)f =0. (6)
admits linearly independent solutions
ye(2) = Asdy g (£272) + BiY, o (£2e77%).  (7)
Each of the solutions of (6) has A(f) < oo if and only if

K= (n+1)?/16, necNuU{0} (8)

ye(z) = 0n( = 2iez/2) exp (F 2ie?/? + dz), 9)

where 0,(x) is the reversed Bessel polynomial of degree n.
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Complex oscillation of WH-Eqn

Theorem (C & Luo) Suppose the Whittaker-Hill Eqn admits a
non-trivial solution f with \(f) < oo, where BC # 0. Then,

+B/(2vV2C) = —n—1.
Moreover, if the tri-diagonal determinant |5ni+1\ = 0, where the
tri-diagonal matrix 5,,i+1 = {Ekj}lgk7j§n+1 is defined as
Be1 = g(k —n=2), bk =k
Bkk:(k—l)(k—n—l) +n?—A—C/4,
and Ekj = 0 for other j, then this solution can be represented by

f(z) = (e2IZ)—g ) e;@efziz ) e¢JT2Teziz

i B - V2C o,
'Z—k'lFl n+k ;:t762/z
r —n+k+1 2
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Complex oscillation of WH-Eqn

where the coefficients By satisfy the following three-term
recurrence relation

¢ 5 2_A-C
Z(k—mBE+ [(k+1)(k—n+1)+ 275

5 Bif.,—(k+2)BE,=0.
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(1) New explicit solutions

e Theorem
Suppose the coefficients B and C of the Whittaker-Hill equation

f""(x) + (A+ Bcos2x + C cos4x)f(x) = 0

are real, and BC #£ 0, 0 < x < . Then it admits two linearly
independent solutions of periodic or semi-periodic 7 if and only if

2WEZ

e (1)If 4F =—n—13% n >0, and the solutions satisfy the
periodic boundary conditions, then the first 2n + 1 eigenvalues

are simple (\(f) < oc), and others are double (A(f) = co):
Al <Ay <A <A <Al < ---<A2‘n<A:jn
< Agnir = Asnio < Agpis =Adg <

where A;’. and A2_j are the eigenvalues corresponding to
non-trivial odd and even solutions with period 7 respectively.
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(1) Even, Odd (stable) solutions
e Moreover, (i) when A=A, , 1 <k <n,
_./c. .
fogg(x) =e \ECO‘QX - sin 2x

n—1
-ZA;(l)-lFl _n+1+k;v2C(cos2x—1) :
— k+3

whenA:Agk, 0< k<n,
feT/en

(X) _ e—\/§~c052x
. ZA;(Z) 1F <—n +k ; V2C(cos2x — 1)> :

k+1
k=0
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(1) Coexistence solutions
e (i) when A=A, = A;rk, k > n, then the two linearly

independent solutions of the Whittaker-Hill differential
equation are given by

C
foad(X) = e_\/;c°52x -sin 2x

odd
(1) —n+1+k
.;)Ak .1F1< k43 ;V2C(cos2x — 1)

and
_./c.
() = eV Eeor

42 —n+k o=
-;)Ak '1F1<k+1 ; 2C(cos2x—1)>.

f’?T

Stability intervals
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Even gaps closed

A< e

A AL

'k@\:-ﬂa

s\ AN
A A /A,_A\ /A4-A4 \
\V \J -

semifinite-gap (all even gaps
closed except the first one)

B
//




Whittaker-Hill Eqn Qualitative results WH: Explicit general soln Complex Oscillation theory Stability intervals

(2) New explicit solutions

e (2)If 4\ﬁ —1, n € NT U {0}, and the solutions satisfy
the semi- perlodlc boundary conditions, then the first 2n + 2
eigenvalues are simple, and others are double, i.e.,

+ - + - + -
Al <A <A <A3 < <Ay <A

— Jr . —
< A2n+3 Agniz < Agnis = Agpis <o

+ — . .
where A2J._1 and A2j_1 are the eigenvalues corresponding to
non-trivial odd and even solutions with semi-period 7
respectively.

Remark This appears to be the case that Djakov & Mityagin
(2005) missed.
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(2) Even, Odd (stable) solutions

e Moreover, (i) when A=A, |, 1<k<n+1,
f27(x) = sin x - e_\/g'wszx

: ;:%A;B) 1F1 <—kn—:—2k :V/2C(cos 2x — 1)> ;

when A=A] | 1<k<n+1,

C
forn(x) = cosx - e_\/;'cogX

even
o —n—+k
.ZAk(4).1F1<k+2 ;\/2C(cos2x—1)>;

k=0

Stability intervals
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(2) Coexistence solutions

o (i)when A=A, | = A;rk_l, k > n-+ 1, then the two
linearly independent solutions of the Whittaker-Hill differential
equation are

odd
- 4-(3) —n+k.
.kZ_OAk '1F1<k+2 ,\/2C(cos2x—l)>

and

C
f27 (x) = cos x - ef\/;cogx

even

S 4@ —ntk . oo
-;)Ak '1F1<k+2 ; 2C(cos2x—1)>.
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The remaining two cases

e (3) If — 4F——n 3, ne Nt u{o},
o (4)If — 4F——n—1,neN+U{O},
e We skip the details.
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Complex oscillation and semifinite-gaps

Theorem (C. & Luo) Suppose the WH-Eqn admits a solution f with
A\(f) < co. Then B/(2v/2C) € Z holds. Moreover, if f satisfies the
normalised initial condition, then we can express f in explicit
non-oscillatory-soln form:

1. the odd and even solutions 7 ,(x) and 7., (x) in cases (1) and
(1N1) of the last Theorem corresponding to the

periodic boundary condition and for the eigenvalues
A=A, (1<k<n)and A=A}, (1<k<n);

2. the odd and even solutions 27, (x) and f2% (x) in cases (Il) and

(IV) of the last Theorem corresponding to the
semi-periodic boundary condition and for the eigenvalues

A=A, ,(1<k<n+1l)and A=A}, ,(1<k<n+1).

Moreover, the eigenvalues A= A;, (1 < k <n), A=A], (1< k<n),
A=A, ;(1<k<n+1l)and A=A, | (1<k<n+1) are solutions
of certain determinants |D,(j)| =0 (j = 1, 2, 3, 4) respective, whose
respective entries are suitably defined.
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E. T. Whittaker (1873-1956)

Figure: (MathTutor, 1915)

e Supervisor: A. R. Forsyth
e Students: G. H. Hardy, W. Hodge, G. N. Watson, A. Eddington
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E. L. Ince (FRSE: 1891-1941)

L\.ﬂl i

Figure: (MathTutor, 1923)
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Instability intervals (gaps) of the Hill operator |

e In the case of specific potentials, like the Mathieu potential
v(x) = —Bcos2x,

where 0 # B is real, or more general trigonometric
polynomials

N
v(x) =Y ae™, a=ck 0<k<N<oo,
—-N

one comes to two category of questions:
1. (Notation change) The left-end point A\, and right-end points
2. lIs the n-th intervals of instability closed, i.e.,

’yn:)\j;i)\;:()*

or, equivalently, is the multiplicity of A double?
3. If 4, # 0, what could we say about 7, = 7,() — ? as
n— oo?
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Instability intervals (gaps) of the Mathieu operator |l

e Ince (1922) answered in a negative way for question (1) the
Mathieu-operator has only simple eigenvalues both for
periodic and semi-periodic boundary conditions, i.e., infinitely
many gaps.

e Harrell (1981), Avron & Simon (1981) gave

wmi =gty (3 (00(3)

as n — oo which was improved by Anahtarci & Djakov
(2012). ([1 — 72/4n3 + O(1/n%)).
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Instability intervals (gaps) of the Mathieu operator |l

e Ince (1922) answered in a negative way for question (1) the
Mathieu-operator has only simple eigenvalues both for
periodic and semi-periodic boundary conditions, i.e., infinitely
many gaps.

e Harrell (1981), Avron & Simon (1981) gave

wmi =gty (3 (00(3)

as n — oo which was improved by Anahtarci & Djakov
(2012). ([1 — 72/4n3 + O(1/n%)).

e Levy & Keller (1963) gave the asymptotics of 7, = v,(B),
i.e., for fixed n and real B # 0, when B — 0,

=N = oo (g ) (40,

e Djakov & Mityagin (2007): WH Eqgn contains modular forms
studied by Kac & Wakimoto, Milne and Zagier in 1990's.



Stability intervals

Summary

We have introduced (semi)finite-gap problems for Hill's
equations.

We have reviewed some classical and recent results for
Mathieu and Whittaker-Hill operatprs

We have found exact solutions in terms of 1 f; as basis.

(N. Katz's rigid local systems theory can offer a deeper
monodromy/geometric insight: on going project)

We relate complex oscillatory and non-oscillatory solutions to
those semi-finite gap solutions (Picard-type viewpoint).

Very little is known about the real nature of the
eigenvalues A = A with respect to B and C.
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Roncaratti and Aquilanti (H,O0, : A(B, C))

Stability intervals

— -
-180 -85 10 -100 -40 20 -40 0

—
40 -8 30 68
FIGURE 2. Surfaces i (a, by where s are the eigenvalues of Whittaker—Hill equation; n and t are quantum
numbers; a and b are the torsional potential parameters. Valley bottoms and ridges follow parabolic curves defined by

the parameter p (see text). Each color bar describes the color scale for the pictures in the column above it. [Color figure
can be viewed in the online issue, which is available at www.interscience. wiley.com.]
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Ince's contour plot

Figure: Proc. Lond. Math Soc. (1923)
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HKUST

Figure: Clear Water Bay, Hong Kong Thank you for your attention !
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