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Whittaker-Hill equation

• Schrödinger equations with potentials with period π.

• Mathieu equation (1868)

f ′′(z) + (A + B cos 2z)f (z) = 0

(Separation of variables of 2D-Wave equation by elliptic
cylindiical coordinates)

• Whittaker-Hill equation (1907/1915)

f ′′(z) + (A + B cos 2z + C cos 4z)f (z) = 0. (1)

(Separation of variables of 3D-Helmholz equation by
paraboloidal coordinates)

• Celestial machines, Quantum theory, Quantum chemistry,
Integration of KdV with periodic BVP (Novikov), Quantum
field theory, etc
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Hill’s equations
• Consider Hill’s equation (1877)

d2y

dx2
+ Q(x)y(x) = 0, . (2)

which is a Schrödinger equation with periodic (even) potential

Q(x + π) = Q(x).

• Hill’s original treatment was to assume

Q(x) = λ+ 2
∞∑
k=1

θk cos 2kx

to converge on R.
• How much do we know about the eigenvalues λ ?
• Do there exist any periodic solutions?
• Coexistence: Do there exist two linearly independent (LI)

periodic solutions?
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Floquet (Bloch) Theory
• G. H. Hill (1886), G. Floquet (1883), A. M. Lyapunov (1907)
• L. Brillouin (1953) Wave propagation in periodic structures

(Dover)
• Magnus & Winkler (1966): Hill’s Equations (Dover)
• Arscott (1964): Periodic Differential Equations (Pergamon

press)
• Eastham (1973): Spectral Theory of Periodic Differential

Equations (Scottish Academic Press)
• Floquet theory: ∃ρ 6= 0 and non-trivial soln ψ(x) of Eqn (2)

such that
ψ(x + π) = ρψ(x).

• Similar to monodromy at a regular singular point (C).
• ρ = 1 periodic soln;
• ρ = −1 semi-periodic soln;
• Since Q(x) is even, so the solutions of (2) could be even/odd

solns.
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Floquet (Bloch) Theory (II)

• Suppose φ1(x) and φ2(x) are two linearly independent
solutions with initial conditions

φ1(0) = 1, φ′1(0) = 0, φ2(0) = 0, φ′2(0) = 1

• We observe ∃ 2× 2 matrix such that(
φ1(x + π)

φ2(x + π)

)
=

(
a11 a12

a21 a22

)(
φ1(x)

φ2(x)

)

• It follows from the initial conditions on φ1, φ2 above that

A =

(
a11 a12

a21 a22

)
=

(
φ1(π) φ′1(π)
φ2(π) φ′2(π)

)
tr (A) = φ1(π) + φ′2(π), det(A) = φ1(π)φ′2(π)− φ′1(π)φ2(π).
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Floquet (Bloch) Theory (III)

• Suppose ψ(x) is a solution such that ψ(x + π) = ρψ(x) for
certain ρ. Then ψ(x) = c1φ1(x) + c2φ2(x) for some c1, c2

Then(
AT−ρ I2

)(c1

c2

)
=

(
0

0

)
=

[(
a11 a21

a12 a22

)
− ρ I2

](
c1

c2

)
=

(
0

0

)
.

i.e., ∣∣∣∣a11 − ρ a21

a12 a22 − ρ

∣∣∣∣ = 0

or just
ρ2 − tr(A) ρ+ det(A) = 0.

where det(A) 6= 0

• ρ = ρ1, ρ2 are called the characteristic (Floquet) multipliers
and

D = ∆(λ) = tr(A) = φ1(π) + φ′2(π)

is called Hill’s discriminant (Lyapunov fn) of the DE (1).
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Stability intervals vs Gaps

Theorem

• If D = |tr(A)| > 2, then all non-trivial solutions of Eqn (2)
are unbounded on R (unstable),

• If D = |tr(A)| < 2, then all solutions of Eqn (2) are bounded
on R (stable)

• If D = |tr(A)| = 2, then there exists a non-trivial solution of
Eqn (2) which is bounded on R (conditionally stable)

Theorem

• The Eqn (2) has a non-trivial soln with period π ⇐⇒ D = 2.

• The Eqn (2) has a non-trivial soln with semi-period
π ⇐⇒ D = −2 (i.e., f (x + π) = −f (x))
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Periodic boundary (eigenvalue) problem
• Periodic boundary value problem on [0, π] (D = 2)

f (0) = f (π), f ′(0) = f ′(π)

This is a self-adjoint problem and standard method of
constructing Green’s functions and defining compact
symmetric linear opeartor with a suitable inner-product space
on [0, π] guarantees

• the existence of countably many orthogonal eigen-functions ψn

and eigenvalues λn such that

λ0 ≤ λ1 ≤ λ2, · · · , λn →∞

• Semi-periodic boundary value problem on [0, π] (D = −2)

f (0) = −f (π), f ′(0) = −f ′(π)

• corresponding eigenfunctions φn and eigenvalues λ′n such that

λ′1 ≤ λ′2, · · · , λ′n →∞
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Bands and Gaps

Theorem
To every differential equation

y ′′ + [λ+ Q(x)]y = 0, Q(x + π) = Q(x), λ ∈ R (3)

there exists two monotone sequences (λn)∞0 , (λ′n)∞1 such that

−∞ < λ0 < λ′1≤λ′2 < λ1≤λ2 < λ′3≤λ′4 < λ3≤λ4 < · · · ,

for which

• stability intervals (bands): (λ0, λ
′
1), (λ′2, λ1), (λ2, λ

′
3) · · · ,

• instability intervals (gaps): (λ2n+1, λ2n+2),
(λ′2n+1, λ

′
2n+2), · · · , (simple point).

• Instability interval disappears (shrink to a point) so that
λ2n+1 = λ2n+2, or λ′2n+1 = λ′2n+2, · · · . (stable double point).
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Mathieu equation
Ince (1922) infinitely many gaps

Figure: (Hemery & Veselov (2010))
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Finite-gaps or semi-finite gap potentials

Figure: (Hemery & Veselov (2010))
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Semi-finite gap (odd solutions)

Figure: (Hemery & Veselov (2010))
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Semi-finite gap (even solutions)

Figure: (Hemery & Veselov (2010))
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Semifinite-gap for WH-operator

Theorem (Djakov & Mityagin (2005))

Let
ν(x) = −4αt cos 2x − 2α2 cos 4x

be a potential of the Hill operator

λf = Lf = −f ′′ + ν(x)f , 0 ≤ x ≤ π,

where both (0 6=)α and t are real.

1. If t = 2p − 1, p ∈ N with periodic boundary conditions, then
the first 2p − 1 eigenvalues are simple, and others are double.

2. If t = 2m, m ∈ N with semi-periodic boundary conditions,
then the first 2m eigenvalues are simple and others are double.
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Comments

• Compared with the Mathieu operator, the eigenvalues of
Whittaker-Hill potential

ν(x) = −(B cos 2x + C cos 4x)

may be simple or double both for periodic and semi-periodic
boundary conditions.

• Djakov and Mityagin assumed that if B = 4αt and C = 2α2

for any real α and natural number t, i.e.,

B/(2
√

2C ) = t ∈ Z,

then they conclude that
1. all finitely many gaps exist
2. Semi-periodic BVP: t = 2m + 1, all the even gaps except the

first m are closed,
3. Periodic BVP: t = 2m, the first m are closed.

• Djakov and Mityagin’s argument is very elaborate and heavy
in spectra analysis (and also long).
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Riemann-Hilbert (21st) Problem

• Prove that there always exists a Fuchsian system (equation)
with given singularities in CP1 and a given monodromy
(representation).

• “Fuchsian” means the “coefficients” have at most poles at
the given singularities.

• Solved by Plemelj (1908), Arnold (1988), Bolibruch (1989)

• Closely related to Riemann-Hilbert methods in integrable
systems and Random matrices theory.

• Two singularities in CP1:
• E.g., Euler equation: {0, ∞}

x2y ′′ + (1− a− b)xy ′ + ab y = 0

•
y = Axa + Bxb
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2-3-4 Regular Singularties (I)
• Three singularities in CP1:

• E.g., Bessel equation: {0, ∞2}

x2y ′′ + xy ′ + (x2 − ν2)y = 0.

y(x) = Jν(x) =
∞∑
k=0

2ν

2kk!Γ(ν + k)
x2k+ν

• E.g., Confluent hypergeometric equation: {0, ∞2}

xy ′′(z) + (c − x)y ′(x)− ay(x) = 0.

1F1(a; c ; x) = 1F1

(
a
c

; x

)
:=

∞∑
n=0

(a)n
n!(c)n

xn, c 6= 0,−1,−2, · · · ,

where (a)k = a(a + 1) · · · (a + k − 1) In particular, when
a = −n = 0,−1,−2, · · · , 1F1(−n; c ; x) is (the Laguerre)
polynomial
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2-3-4 Regular Singularties (II)

• Four singularities in CP1:

• Rational form of the Mathieu Eqn., (x = e2iz)
• Rational form of the Whittaker-Hill equation (x = e2iz) ,
• Rational form of Lamé equation (x = P(z))
• Rational form of Darboux-Trebibich-Verdier equation

• Painlevé equations (II-VI) arise as compatibility condition (Lax
pairs) of Isomonodromy deformation of some of the DEs
above (Fuchs (1905/07), Garnier (1912), Schlesinger (1912),
Jimbo-Miwa-Ueno (1981)).
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WH-Eqn: General soln I
Theorem (C. & Luo) Suppose the coefficients A, B and C > 0 of
the WH-eqn

f ′′(z) + (A + B cos 2z + C cos 4z)f (z) = 0

are complex parameters, where BC 6= 0, then we have two linearly
independent solutions

f1(z) =(e2iz)
∓ B

4
√

2C
+ 1

2 · e±
√

2C
4

e−2iz · e∓
√

2C
4

e2iz

·
∞∑
k=0

B∓k
Γ(k + 2∓ B

2
√

2C
)
· 1F1

(
k + 1

k + 2∓ B
2
√

2C

;±
√

2C

2
e2iz

)
and

f2(z) =(e2iz)
± B

4
√

2C
+ 1

2 · e∓
√

2C
4

e−2iz · e∓
√

2C
4

e2iz

·
∞∑
k=0

B̂±k
Γ(k + 2± B

2
√

2C
)
· 1F1

(
k + 1± B

2
√

2C

k + 2± B
2
√

2C

;±
√

2C

2
e2iz

)
.
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WH-Eqn: General soln II

where the coefficients B∓k and B̂±k satisfy the following three-term
recurrence relations (infinite determinants)

− C

2
(k + 1)B∓k +

[
(k + 1)

(
k + 2∓ B

2
√

2C

)
+

C − A + 1

4

B2

32C
∓ B

4
√

2C

]
B∓k+1 − (k + 2)B∓k+2 = 0

and

C

2

(
k + 1± B

2
√

2C

)
· B̂±k +

[
(k + 1)

(
k + 2± B

2
√

2C

)
± B

4
√

2C
+

B2

32C
+
−A− C + 1

4

]
· B̂±k+1 − (k + 2) · B̂±k+2 = 0

respectively.
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WH-Eqn: General soln III
Theorem (C. & Luo) In particular, if ± B

2
√

2C
= −n − 1 ∈ Z<0 and

the tri-diagonal determinate |D̂±n+1| = 0, where

D̂±n+1 = {b̂kj}1≤k,j≤n+1 is defined as

b̂k,k−1 =
C

2

(
k − 1± B

2
√

2C

)
,

b̂kk = (k − 1)
(
k ± B

2
√

2C

)
± B

4
√

2C
+

B2

32C
+
−A− C + 1

4
,

b̂k,k+1 = −k

and b̂kj = 0 for other j , then

f2(z) = (e2iz)−
n
2 · e∓

√
2C
4

e−2iz · e∓
√

2C
4

e2iz

·
n∑

k=0

B̂±k ·
(−n − k)n−k

(n − k)!
·
(
±
√

2C

2
e2iz
)n−k

.
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Idea of proof I
• The WH-eqn in a rational form (x = e2iz) looks like:

x2y ′′(x) +
[
−
√

2C

2
x2 +

(
2− B

2
√

2C

)
x −
√

2C

2

]
y ′(x)

+
(
−
√

2C

2
x +

C − A + 1

4
+

B2

32C
− B

4
√

2C

)
y(x) = 0.

(4)

when divide x on both sides yields

xy ′′(x) +
[
−
√

2C

2
x +

(
2− B

2
√

2C

)
+ O(1/x)

]
y ′(x)

+
(
−
√

2C

2
+ O(1/x)

)
y(x) = 0.

(5)

which is asymptotically like the confluent hypergeometric Eqn.
• Recursion and asymptotic fomrulae of 1F1

• Three-term recursion: Poincaré’s theorem and Perron’s
theorems.
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Complex Oscillation: Philosophy

• Liouville theorem (1840’s): If f is a bounded entire function,
then f ≡ const. (i.e., f misses most of C)

• Little Picard theorem (1879-80) states that if an entire
function f on C misses two values in C, then f ≡ const.

• The number “2” is best possible: (e.g. f (x) = ex 6= 0)

• Little Picard theorem says that entire functions are quite rigid.

• Consider
y ′′(x) + A(x)y(x) = 0

where A(x) is an entire potential.
• Suppose a solution f (x) omits x = 0. Then what can we say

about the solution f ?
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Measuring zeros of Entire Functions

We first review some complex analytic theory.

• Suppose f (z) has zeros. We define

n(r) := numbers of zeros of f in {|z | < r},

and define the exponent of convergence of the zeros of f (z):

λ(f ) = lim sup
r→+∞

log n(r)

log r

• Relation between order and exponent of convergence of f (z):

lim sup
r→+∞

log n(r)

log r
= λ(f ) ≤ lim sup

r→+∞

log logM(r , f )

log r
= σ(f ).

• Essentially just Poisson-Jensen formula.
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Bank-Laine’s Complex Oscillation (Nevanlinna) Theory

Theorem (Bank & Laine (1983))

Let f 6≡ 0 be a solution of

f ′′(z) + A(z) f (z) = 0

where

A(z) = B(ez) =
∑̀
j=−k

Kje
jz ,

such that λ(f ) < +∞ (= σ(f )). Moreover, we have

f (z) =

ψ(ez/2) exp
(∑`

j=0 dje
jz/2 + dz

)
, ` is odd and k = 0;

ψ(ez) exp
(∑`/2

j=−k/2 dje
jz + dz

)
, ` is even.
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1
16−theorem

Theorem
(Bank, Laine, Langley (1986), C. & Ismail (2006)) Let K ∈ C.
Then the equation

f ′′ + (ez − K )f = 0. (6)

admits linearly independent solutions

y±(z) = A±J2
√
K

(
± 2ez/2

)
+ B±Y2

√
K

(
± 2ez/2

)
. (7)

Each of the solutions of (6) has λ(f ) <∞ if and only if

K = (n + 1)2/16, n ∈ N ∪ {0} (8)

y±(z) = θn
(
± 2iez/2

)
exp

(
∓ 2iez/2 + dz

)
, (9)

where θn(x) is the reversed Bessel polynomial of degree n.
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Complex oscillation of WH-Eqn
Theorem (C & Luo) Suppose the Whittaker-Hill Eqn admits a
non-trivial solution f with λ(f ) <∞, where BC 6= 0. Then,

±B/(2
√

2C ) = −n − 1.

Moreover, if the tri-diagonal determinant |D̂±n+1| = 0, where the

tri-diagonal matrix D̂±n+1 = {b̂kj}1≤k,j≤n+1 is defined as

b̂k,k−1 =
C

2

(
k − n − 2

)
, b̂k,k+1 = −k

b̂kk = (k − 1)
(
k − n − 1

)
+ n2 − A− C/4,

and b̂kj = 0 for other j , then this solution can be represented by

f (z) = (e2iz)−
n
2 · e∓

√
2C
4

e−2iz · e∓
√

2C
4

e2iz

·
n∑

k=0

B̂±k
Γ(−n + k + 1)

· 1F1

(
−n + k
−n + k + 1

;±
√

2C

2
e2iz

)

where the B̂k satisfy the three-term recurrence relation

C

2
(k−n)B̂±k +

[
(k+1)(k−n+1)+

n2 − A− C

4

]
B̂±k+1−(k+2)B̂±k+2 = 0.

(10)
Specifically, if n is even, then f (z) is a periodic function with
period π; if n is odd, then f (z) is a semi-periodic function.
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Complex oscillation of WH-Eqn

where the coefficients B̂k satisfy the following three-term
recurrence relation

C

2
(k−n)B̂±k +

[
(k +1)(k−n+1)+

n2 − A− C

4

]
B̂±k+1−(k +2)B̂±k+2 = 0.
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(1) New explicit solutions

• Theorem
Suppose the coefficients B and C of the Whittaker-Hill equation

f ′′(x) + (A + B cos 2x + C cos 4x)f (x) = 0

are real, and BC 6= 0, 0 ≤ x ≤ π. Then it admits two linearly
independent solutions of periodic or semi-periodic π if and only if

B
2
√

2C
∈ Z . . .

• (1) If B
4
√

2C
= −n − 1

2 n ≥ 0, and the solutions satisfy the

periodic boundary conditions, then the first 2n + 1 eigenvalues
are simple (λ(f ) <∞), and others are double (λ(f ) =∞):

A+
0 < A−2 < A+

2 < A−4 < A+
4 < · · · < A−2n < A+

2n

< A−2n+2 = A+
2n+2 < A−2n+4 = A+

2n+4 < · · · ,

where A+
2j and A−2j are the eigenvalues corresponding to

non-trivial odd and even solutions with period π respectively.
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(1) Even, Odd (stable) solutions

• Moreover, (i) when A = A−2k , 1 ≤ k ≤ n,

f πodd(x) = e
−
√

C
2
·cos 2x · sin 2x

·
n−1∑
k=0

A
−(1)
k · 1F1

(
−n + 1 + k

k + 3
;
√

2C (cos 2x − 1)

)
;

when A = A+
2k , 0 ≤ k ≤ n,

f πeven(x) = e
−
√

C
2
·cos 2x

·
n∑

k=0

A
−(2)
k · 1F1

(
−n + k
k + 1

;
√

2C (cos 2x − 1)

)
;
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(1) Coexistence solutions

• (ii) when A = A−2k = A+
2k , k > n, then the two linearly

independent solutions of the Whittaker-Hill differential
equation are given by

f πodd(x) = e
−
√

C
2
·cos 2x · sin 2x

·
∞∑
k=0

A
−(1)
k · 1F1

(
−n + 1 + k

k + 3
;
√

2C (cos 2x − 1)

)
and

f πeven(x) = e
−
√

C
2
·cos 2x

·
∞∑
k=0

A
−(2)
k · 1F1

(
−n + k
k + 1

;
√

2C (cos 2x − 1)

)
.
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Even gaps closed
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(2) New explicit solutions

• (2) If B
4
√

2C
= −n− 1, n ∈ N+ ∪ {0}, and the solutions satisfy

the semi-periodic boundary conditions, then the first 2n + 2
eigenvalues are simple, and others are double, i.e.,

A+
1 < A−1 < A+

3 < A−3 < · · · < A+
2n+1 < A−2n+1

< A+
2n+3 = A−2n+3 < A+

2n+5 = A−2n+5 < · · · ,

where A+
2j−1 and A−2j−1 are the eigenvalues corresponding to

non-trivial odd and even solutions with semi-period π
respectively.

Remark This appears to be the case that Djakov & Mityagin
(2005) missed.
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(2) Even, Odd (stable) solutions

• Moreover, (i) when A = A−2k−1, 1 ≤ k ≤ n + 1,

f 2π
odd(x) = sin x · e−

√
C
2
·cos 2x

·
n∑

k=0

A
−(3)
k · 1F1

(
−n + k
k + 2

;
√

2C (cos 2x − 1)

)
;

when A = A+
2k−1, 1 ≤ k ≤ n + 1,

f 2π
even(x) = cos x · e−

√
C
2
·cos 2x

·
n∑

k=0

A
−(4)
k · 1F1

(
−n + k
k + 2

;
√

2C (cos 2x − 1)

)
;
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(2) Coexistence solutions

• (ii) when A = A−2k−1 = A+
2k−1, k > n + 1, then the two

linearly independent solutions of the Whittaker-Hill differential
equation are

f 2π
odd(x) = sin x · e−

√
C
2
·cos 2x

·
∞∑
k=0

A
−(3)
k · 1F1

(
−n + k
k + 2

;
√

2C (cos 2x − 1)

)
and

f 2π
even(x) = cos x · e−

√
C
2
·cos 2x

·
∞∑
k=0

A
−(4)
k · 1F1

(
−n + k
k + 2

;
√

2C (cos 2x − 1)

)
.
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The remaining two cases

• (3) If − B
4
√

2C
= −n − 1

2 , n ∈ N+ ∪ {0},

• (4) If − B
4
√

2C
= −n − 1, n ∈ N+ ∪ {0},

• We skip the details.
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Complex oscillation and semifinite-gaps

Theorem (C. & Luo) Suppose the WH-Eqn admits a solution f with

λ(f ) <∞. Then B/(2
√

2C ) ∈ Z holds. Moreover, if f satisfies the
normalised initial condition, then we can express f in explicit
non-oscillatory-soln form:

1. the odd and even solutions f πodd(x) and f πeven(x) in cases (I) and
(III) of the last Theorem corresponding to the
periodic boundary condition and for the eigenvalues

A = A−2k (1 ≤ k ≤ n) and A = A+
2k (1 ≤ k ≤ n);

2. the odd and even solutions f 2π
odd(x) and f 2π

even(x) in cases (II) and
(IV) of the last Theorem corresponding to the
semi-periodic boundary condition and for the eigenvalues

A = A−2k−1 (1 ≤ k ≤ n + 1) and A = A+
2k−1 (1 ≤ k ≤ n + 1).

Moreover, the eigenvalues A = A−2k (1 ≤ k ≤ n), A = A+
2k (1 ≤ k ≤ n),

A = A−2k−1 (1 ≤ k ≤ n + 1) and A = A+
2k−1 (1 ≤ k ≤ n + 1) are solutions

of certain determinants |Dn(j)| = 0 (j = 1, 2, 3, 4) respective, whose
respective entries are suitably defined.



Whittaker-Hill Eqn Qualitative results WH: Explicit general soln Complex Oscillation theory Stability intervals

E. T. Whittaker (1873-1956)

Figure: (MathTutor, 1915)

• Supervisor: A. R. Forsyth
• Students: G. H. Hardy, W. Hodge, G. N. Watson, A. Eddington
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E. L. Ince (FRSE: 1891-1941)

Figure: (MathTutor, 1923)
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Instability intervals (gaps) of the Hill operator I

• In the case of specific potentials, like the Mathieu potential

ν(x) = −B cos 2x ,

where 0 6= B is real, or more general trigonometric
polynomials

ν(x) =
N∑
−N

cke
ikx , ck = c−k , 0 ≤ k ≤ N <∞,

one comes to two category of questions:
1. (Notation change) The left-end point λ−n and right-end points
2. Is the n-th intervals of instability closed, i.e.,

γn = λ+
n − λ−n = 0,

or, equivalently, is the multiplicity of λ+
n double?

3. If γn 6= 0, what could we say about γn = γn(ν)→ ? as
n→∞?
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Instability intervals (gaps) of the Mathieu operator II
• Ince (1922) answered in a negative way for question (1) the

Mathieu-operator has only simple eigenvalues both for
periodic and semi-periodic boundary conditions, i.e., infinitely
many gaps.

• Harrell (1981), Avron & Simon (1981) gave

γn = λ+
n − λ−n =

8

[(n − 1)!]2
·
(
|B|
8

)n (
1 + o

(
1

n2

))
.

as n→∞ which was improved by Anahtarci & Djakov
(2012). ([1− π2/4n3 + O(1/n4)).

• Levy & Keller (1963) gave the asymptotics of γn = γn(B),
i.e., for fixed n and real B 6= 0, when B → 0,

γn = λ+
n − λ−n =

8

[(n − 1)!]2
·
(
|B|
8

)n

(1 + O(B)).

• Djakov & Mityagin (2007): WH Eqn contains modular forms
studied by Kac & Wakimoto, Milne and Zagier in 1990’s.
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8
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1
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(2012). ([1− π2/4n3 + O(1/n4)).

• Levy & Keller (1963) gave the asymptotics of γn = γn(B),
i.e., for fixed n and real B 6= 0, when B → 0,

γn = λ+
n − λ−n =

8

[(n − 1)!]2
·
(
|B|
8

)n

(1 + O(B)).

• Djakov & Mityagin (2007): WH Eqn contains modular forms
studied by Kac & Wakimoto, Milne and Zagier in 1990’s.
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Summary

• We have introduced (semi)finite-gap problems for Hill’s
equations.

• We have reviewed some classical and recent results for
Mathieu and Whittaker-Hill operatprs

• We have found exact solutions in terms of 1F1 as basis.
(N. Katz’s rigid local systems theory can offer a deeper
monodromy/geometric insight: on going project)

• We relate complex oscillatory and non-oscillatory solutions to
those semi-finite gap solutions (Picard-type viewpoint).

• Very little is known about the real nature of the

eigenvalues λ = A with respect to B and C.
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International J. Quantum Chemistry (2010)

Figure: (Wiley)
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Roncaratti and Aquilanti (H2O2 : λ(B , C ))

Figure: (Numerical study of eigenvalues)
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Ince’s contour plot

Figure: Proc. Lond. Math Soc. (1923)
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