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Let f(z) =z + 5" asz" be an analytic function defined in the unit disc. Gabriel has proved that if

the Schwarzian derivative S(f,z) of f is bounded by a constant, then f is a starlike function. We show
that under the assumption that if S(f,z) and ay, the second coefficient of f, are small then f is a
strongly starlike function of order «. Some conditions found are best possible in certain sense. Moreover
if S(f,z) is bounded by a smaller constant and together a; is also small, then f is a convex function.
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1. INTRODUCTION

Let f(z) =2+ 3a,z"” be an analytic function defined in the unit disc A =
{z : |z] < 1}. We denote the collection of such functions by N. If in addition f is
univalent, then we say f € S. Suppose f'(z) # 0 in A, then we define

S(,2) = (?—’)%z)— : (%(z))z

to be the Schwarzian Derivative of f. The Schwarzian derivative has a remarkable
property that it is invariant with respect to Mdbius transformations; i.e., S(M o
f.2) = S(f,2) for any Mdbius transformation M (z), and S(M,z)=0 if and only
if M(z) is a Mobius transformation.

Our starting point is the following results of Nehari and Gabriel.

THEOREM A (Nehari [8]) If f € N and it satisfies

IS(f,2)i < ﬂ; forall zeA,

then f(z) is univalent. The result is sharp.

The constant 72/2 is best possible as shown by the example (exp(irz) — 1)/i.
We also have

THEOREM B (Gabriel [3]) Suppose f € N and that
IS(f,2)| €£2cox 273  forall zeA,
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where ¢ is the smallest positive root of the equation 2./x — tan/x = 0, then [(z)
maps A onto a starlike domain.

Recall that [ € § is starlike (with respect to the origin) if and only it R(zf"/f) >0
for all ze€ A. We denote the class of starlike functions by $*. It is however not
known whether the constant 2¢p in Theorem B is the best possible. For details
about univalent functions we refer to [2] and [4].

Remark  Notice that we have not assumed that f'(z) # 0 in both Theorems A
and B. However, the Schwarzian derivatives are sti]l well-defined. For suppose [7(z))
= 0 for some z, ¢ A, then S(f,z0) will have a pole of order 2 at z,. This contradicts
the assumption that IS(/,2)| is uniformly bounded in A.

Similar results also exist for functions analytic in C\A, sec {3] for details. We can
reformulate the above results as follows. We define
"

E’)- =QN;S):=sup{26 : g c N; |5(¢,2)] < 26 =» g univalent}

to be the Schwarzian radius of univalence of the class N, and let
QN:S™) = sup{26 : g € N:|S(g,2)| < 26 = g starlike}

to be the Schwarzian radius of starlikeness of the class N. Gabriel’s result indicates
that 2¢y << Q(N;S*;.

Let f € N and largzf'/f| < an/2 (0<a=1). Then f is said to belong to the
class of strongly-starlike functions of order «, denoted by §*(a). Clearly we have
$7(1) = §*. Recall that if [ €N then [(z) is convex of order 1 if and only if
R(1+2f"/f") > n for all ze A. The class is denoted by K(n). Similarly K(0) = K
Is the class of usual convex functions.

In this note we would like to consider the following problems:

QUN;S™(a)) :=sup{2 : g ¢ N: 15(8,2)| <26 = g € §*(a)]

and
QN;K(m):=sup{26 : g € N; [S(g,2)| <26 > g € K-

Those are the Schwarzian radius of strongly-starlikeness of N and the Schwarzian
radius of K (7). The main results are stated in Section 2 and their proofs are given in
Sections 5 and 6. We shall show that the constant Q(N;5*()) does not exist as soon
as « <1 and we obtain a partial result about UN;K). Some examples are given in
Section 3. A brief discussion on the method used is given in Section 4. We shall
also consider another related subclass of N in Section 7 (where a connection with
quasiconformal extensions is considered). In Section 8, we give a further example
to illustrate a possible sharp bound for Q(N: ! 7

2. STATEMENTS OF THE MAIN RESULTS

THEOREM 1 Let f(Z)eN,0<a<1and laz| = n < sin(ar/2). Suppose
sup [S(f, z)] = 24(n)
ZEA
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where 8(n) satisfies the inequality

oy [ etE , (1+meet2\  am ,
sin”" |~ )+ sin” r}+—~7——w < (1)

Then f{z)c 8™ ().

Remarks (1) The inequality (1) guarantee the existence of such a &(7) since we
have assumed sin”™' 1 < «w /2 in the hypotheses of the Theorem.

(2) When « = 1 and a; = 0, Theorem 1 gives a poor estimate for 24 for starlike
functions when compared to Theorem B. The best 24 that we can derive from (1)
in this case is approximately 1.8.

THEOREM 2 Letr f & N and a>, = n < . Suppose

sup!S(f.2)1 = 2¢(n)

IEA
where 0(n) satisfies the inequality
60 + 5(1+n)oe’’ = < 2, (2)

Then

. "2 -6y ~51+T&€ "'\
21— (1 +n)det > /
In partictdar if a> =0 and 20 < 0.6712, then [ is convex.

Remark Note that (3) holds if (2) holds so that the quotient appearing in (3) is
positive.

3. EXAMPLES
First we consider the tollowing example

giz)= ———, ¢ <
8z) oy L

Y

1.

We require ¢| < L. since g(z) is univalent in A, Note that it has the following scries
2xpansion

glzy=z—czm+c 70— -2 8.

(T\

If 'e| < sin(am/2) for some 0 < a < 1, then g € §*(a) since $(g,z) = 0 and g(z) sat-

isfies the hypothesis of Theorem 1 with 26 = 0,
n fact
zg'(z) !

oz { +¢2

AiL <

S0

larg(1+ cz) < sin” el

if

;=ar~ !
) \ gn%gi
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Hence largzg'/gl < am/2 if and only if |¢| <<sin(am/2). This shows, at least for
this particular g, that it is necessary to assume |az| <sin(aw/2) in order for g €
S*(a). So the hypothesis in the Theorem 1 is nearly the best possible. Note also the
example actually shows that Q(N;S5"(«)) does not exist as soon as a < 1.
Next we consider an example similar to the above. This time we let
h(z)=~~z—=z+c23+c223+--- lel = 1.
1-cz ’

Here A(z) maps the unit disc onto a rotation of right-half plane passing through
—1¢, and so it is clearly a convex function with |a;| = |¢] = 1. However the hypoth-
esis in the above theorem requires |a,| < 1. Hence it is not sharp.

4. PRELIMINARY DISCUSSION AND A MAIN LEMMA

To prove the theorems, we use some classical methods in the area of second order
differential equations. Consider the following equation

y” + Ay = () (\4)

where A(z) is an analytic function.

Let A4:= %S(f,z). where [ e N and f'(2) #0 in A. Then there exist lincarly
independent solutions f1, /> of (4) such that [(z)= f1(2)/fa(2). Conversely if A
is analytic in A and if f; and f; arc linearly independent solutions of (4), then
[(z):= fi(z)/f2(z) satisfies the equation S(f,z) = 2.4. We shall use integral repre-
sentations of fi(z) and f2(z) to facilitate certain estimates which in turn give esti-
mates on R(zf'/[) and R(1+ zf"/f"). Therefore our method depends heavily on
the following integral inequality of Gronwall. For details see Hille [§]. In Gabriel’s
paper [3], estimations were made by using f = f1//2 only and in a somewhat differ-
ent direction where integral representations of /1 and f> were not involved.

LEMMA C (Gronwall T, H.; see Hille [5], p. 19) Suppose A(t) and g(t) are non-
negative continuous real functions for t = 0. Let k > 0 be a consiant. Then the in-
equality

t
sk + [ goamds
0
implies for all t > O that

g(t) <kexp (/Ol A(.s‘)dS) .

5. PROOF OF THEOREM 1

Suppose u(z) and v(z) are lincarly independent solutions of the differential equa-
tion (4) with A(z)= {S(f,z) where u(0) = v/(0) = 0 and «/(0) = v(0) = 1. This is
always possible since the Wronskian W(u,v) of u(z) and v(z) of a second order dif-
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ferential equation is identically equal to a constant which we may assume to be —1.
Thus we have u(z)=z+ - and v(z)=1+---.

By the discussion preceding Lemma C, we cna find two linearly independent so-
lutions f; and f; of (4) such that

_ hlz) au(z) + bv(z)
f(z)= hD) ~ culd) + dv(z)’ ad — bec # 0. (5)

This representation depends on three arbitrary constants only. But A(z) = $8(f,z)
is a third order differential equation in f, hence the constants can be determined
uniquely and every solution of (4) can be obtained from (5) by a suitable choice of
these constants.

Since f(z) =z + ---, we deduce that b = 0. We can divide through the right hand
side of equation (5) by a and therefore we may assume @ = 1 at the beginning. Since
f'(0) =1, so d = 1. Also we have ¢ = —a, because v'(0) = 0. Hence

u(2)

cu(z) + v(z)

f(2)=
Differentiating f yields

W) - V()
P& = =iy )

. W(u,v) _ 1
(cu(z) +v(2))*  (cu(z)+v(z))*

Hence
zf'(z) _ z
fz)  wz)cu(z) +v(z))

We will show that |argzf'/f| < aw/2. Integrating (4) by parts, we may write u(z) in
the following form:

u(z)=z+ /0 (€~ DAQuU(C) . 6)

The path of integration is taken along the radius ((¢) = 1e'%, 1 € [0,7], z = re'®. Thus
we have the estimate

lu(z)| <r+ /0 te? —re'®|| A(re'®)| |u(te'®)| dt

<1+ /r(r ~ ) A(te'®)| Ju(ze'?) dr.
0
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Now 'A(z) < & = () by assumption, where a(y) satisfies (1). Thus applying Lem-
ma C, we deduce

l(z)] < ex [ (r- z)jA(Ie”")\dI\
P A] )

< CXp ((‘5(7}) /hr(r —1) dr\)

JA)

Substituting (7) back into (6) vields

w(zy—zi < / (r — D) A@e ) Julee'y dt

J{

r

dtmyexp(d(n)) | (r—n)dt

é\-%

["\ T

= o) exp(é())

Hence

2y dmexplom)r b exp(d(n) -

e 7 2

Simijarly, v(z) can also be written in the form
‘ re e
v(iz)=1+ / (¢ 2)A(Cv{CydC.
Jo
Combining this with (6), we have
cu(zy+v(zy=l+cz+ / (¢ - A (cu(() + v(()HdC. (9)
Jo
S0 we can estimate cu(z) + v(z) as above,
i~ i
cn(z)y+viz) <t b+ cir + | (r D A(te' Y jcure' ™y + vite'?y dr.
JO

Since 1 A(z)] < () where o(n) satisfies (1), we obtain, by applying Lemma C again
that
rr

cu(zy+ () < {1+ chexp| ;’ (r — A dt \
Lo

< U+ Jelyexplé(n)/25. (1)
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We substitute (10) back into (9) and note that lc| = 7 < sin(a7/2),

lcu(zy+v(z)— 1) < icjr +f (r — O A(te'Hl jcu(te’) + v(te'®) dt
0

<+ (1+ MO exp((n),/2) /0 (r—tydt

< (14 oty SR (an

[t follows from (8) and (10) that

{arg I]- !argum(cu(? )
|
|

Set/? 1 &/2
§sjn_l< 62 ) +sin”! (77+ ~—-————( +T/7)6€ ) < 971

L F

The last inequality follows from the hypothesis (1). Hence f € $*(«) and this com-
pletes the proof of the Theorem.

Another observation is that we can estimate arg f/z the same way that we have
done to argzf'/f. Since

W%%Gﬁl < largu(z)/z| + larg(cu(z) + v(2))|

sed/2 . mneet’?
§sin"1< eZ >+sm_1<n+————~(1+q2) ¢ )g%,

argf/zl = iarg

and this estimate is exactly the same as (1) of Theorem 1. Hence we obtain

COROLLARY 1 Let f € N,0<a <1land |ay| =7 <sin(aw/2). If

sup[S(f, 2)i = 28(),
ZEA

where 5(n) satisfies the inequality (1), then |arg f(z)/z| < am /2.

6. PROOF OF THEOREM 2

We shall use the same idea as in the proof of Theorem 1. Since

u(z)

cu(z) +v(z)’

fz)=

it is easy to obtain
zf" _ cu'(z) +v'(z) (12)

Iz B ETIOR

1+
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We first prove that R(1+ zf"/f") > 0, for all z € A. In view of (12), it is sufficient
to prove that
cu'(z) +v'(z)
cu(z) + v(z)

1
5

We note that 7 + %(] +7)0e’/? < 1 since both 7 and §(n) satisfy (2). From (9), we
have the expression

cw(2) +v'(2) _ ¢ = [y AQOEu(Q) +v({))d¢

cu(z)+v(z)  1+cz+ 15 € = 2)A) (cu({) + v(¢))d(

Since | A(z)| < ¢ by hypothesis, we deduce from (10) (after applying Lemma C), that
J, z
ezt [ (- (e

< e+ (1+ c)/ (r—t)\A(te”")\e“l/zdr
JO

<_<7]+(1+T/)Oe“2/ (r-—-1t)di
0
<+ (14n)8e’?/2< 1, (13)

The last inequality follows trom assumption (2). Thus

_ €= Jg A () + v($)d(]

1+ ez + [(C—2)A)(cu(C) + v(())d(|
o e JF A eu(©) + vgy|
T 1oz + (¢ = DA (Cu() + v(())dS|

cu'(z) +v'(2)

| cu(z) + Lf(zf

< Q—/O A () + v<<>)d<D

cz+ /O (¢~ 2)AQ)(cu(C) + v(<>>dcy' )

o !

< (n+ (1+m)et?) (Z(r, +(1+ n)§e6/2/2)”)
0
n+(1+moe’? 2+ (1+n)0e’?)
(1+m)0e®r  2-2n—(1+1)de’/?’
S

-7
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The above geometric progression converges because of (13). Now R(1+zf"/f") >
0 follows from (2). Moreover

3‘}%(1+5]{7’—’> =§fe(1_zzc_”w>

cu(z) +v(z)

Y

1_2( 207 + (1 + m)se’’2)
2-2n—(14mn)set/?
26— 5(1+mn)se’’?
2-2n—(1+np)bed/?

If we now put —a; = ¢ = 0 in the above argument, it follows from (2) that
56exp(6/2) < 2,

where ¢ can be computed. Numerical calculation suggests that it suffices to assume
d < 0.3365. Hence |S(f,z)| < 0.6712 implies that [ is convex univalent. |

We summarize the above relations in terms of Schwarzian radii:

0.6712 < Q(N;K) < 2¢0 < Q(N;§*) < QUN;S8) = 72/2.

7. AN APPLICATION OF THE SECOND COEFFICIENT OF f

Theorem 2 is proved under the assumptions that both the Schwarzian derivative and
a, of f are small and are related by (2). Thus if we want to delete the assumption
(2) so that a bound imposed on |S(f,z)| alone is sufficient to guarantee that [ is
convex, more restrictions on f are expected. We shall show that if f has a quasi-
conformal extension, then the assumption (2) can be dropped. Let us recall that a
homeomorphism f defined on a domain D is a quasiconformal mapping if (1) [ 1s
absolutely continuous on almost all vertical and horizontal lines in D, and (ii) that
the complex dilatation u(z) of f(z) is less than 1. If in addition that || < k < 1, then
f is a k-quasiconformal mapping (see [7] Chapter 1). Note that we have not used
the standard notation for quasiconformal mappings here. Let Si(oo) be a subclass
of N if f is univalent in A and has a k-quasiconformal extension to C = CU {oc}
in C\A with f(o0) = oc. Note that we have used f again to denote the extension
of f(z) in C/A. We discuss the problem of Schwarzian radius of convexity of f in
Sk (>0). That is, we consider

Q(Sk(00):K) 1= sup{28 : g € Si(0); |S(g,2)| <26 = g(A) is convex}.
We find the following result if & is also suitably restricted.
THEOREM 3 Let f € Si(oc) where k < 0.108 and suppose that
51612 S(f,z)| = 26(n) <0.217.

Then f(A) is a convex domain; Le., 0.217 < Q(S;(00); K), k < 0.108.
LEMMA D (Kithnau [6]) Suppose [ € Si(o<) then |az| < 2k. The bound is sharp.
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Proof of Theorem 3 'The first half of the proof is identical to that of Theorem 2.
We shall also use the same notations here as in Theorem 2. By our hypotheses.

(1= 127180/ 2)
It follows from the well-known criterion of Ahltors and Weill [1] that / adnuts a
d-quasiconformal extension to C. But since f(oc) = o¢, it follows from Lemma D

that [az| << 26. Now [ is convex if and only if (2) is valid. Replacing 7 by 26 in (2),
we have

< i18(f,2)| <26 <2 for all ze A.

61+ S(1+ n)dexp(8/2) < 126 + 5(1 + 28)bexp(8/2).

IHence we only need to solve the last inequahty tfor & so that it is less than 2. Nu-
merical calculations show that this is true if 26 < 0.217. So f is convex univalent
m A. [

8. A FURTHER EXAMPLE

Consider the function

]
o(z) = - ; 7).
g(z) V/Etm(_\/(_z)

It iy easy to show that S(f,z) = 20. Notice that we have g"(0) = 0. Now
2g'(2) vz
£(z)  sin(vdz)cos(V/6z)
26z
sin(2v/9z)
We require to show that R(zg'/g) = 0, for all z ¢ A when ¢ is small. This is equiv-
alent to finding the largest disc |w! < r such that R(sin(w)/w) > 0 where 2v/8z =

wo={¢+ .
Let

’

sinw\  Esinfcosh - pcosésinh
&+

H( )y =®R (

w

and
F(& ) =&sinécosh pp — jrcossinhp.

We apply the method of the Lagrange’s multiplier to F(&, 1) subject to €2 + pi° =
r* for some r > 0. So let

G& ) = F(Ep) + A& +p* 1Y),
We proceed to solve the resulting equations
¢¢ = coshp(Ecosé +sing) - psingsinhp + 2A{ =0, (14)
¢y = {singsinhp + cos{{jrcoshy + sinh ) + 2Ap = 0, (15)

o\ = §3 + ,u.2 rt =0
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Multiply (14) by p and (15) by £, and equating them. Then

2,2 # §
+ ot = 2
S tanhyp  tané (16)

Hence -
“;l I esing + cos€).

As sinhjt/p 18 an even function and so is always positive, we have H(, 1) < 0 if
and only if £siné + cos{ < 0. This is equivalent to finding the smallest positive root
of the equation £tanf = — 1. Substitute this into (16). We obtain

HEp) =

1,2 # § # 2
Tyt = - = + £
S tanh p (” l) tanh pt ¢

3
Hence the problem has been reduced to solving the following transcendental equa-
tions
ftang = —1,

and
ptanhjp = 1.

Numerical calculation gives
279 < <28

and
L1119 < p < 1.2,

So
3.037 < = (€ + p7)' ' < 3.046.

Thus R(sinw/w) will first become negative when w lies in the above annulus.
Hence if we require ¢ such that :2v/6z] = [w! < 3.037; i.e.,, 6 < 2.3, then g is a star-
like function.

We can similarly consider the convexity case. Now that

28" (2)
8'(2)
Again let w = +/8z, it is sufficient to find the largest r > 0 such that R(wtanw) >
—%—. We have

1+ =14+ 2VéztanVéz.

R(w tanw) = £tané() —tanh™ ) -7— /l.tanl:m(\l + tanﬁ‘
1+ tan“£tanh

Unlike the starlike case, this time it 1s more difficult to find out precisely the first
r >0 such that R(wtanw) > —%. But if we assume ¢ = 0 then it amounts to solve

—jitanhp = —é
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The approximate solution is 0.7715 < p < 0.773. Hence it u > (.7715, R(wtanw)
could be less than —%; Le., if § > 05952, g need not be a convex function.
Summarizing the above results, we deduce

PROPOSITION 4 Let g(z) = (1/\/§)tan(v/62). If
(i) S(g.2)| =20~ 46  Jorall zeA

where & = (x* + y2 /2 and x,y are the [irst positive roots of the transcendental equa-
tions

2V/éxtan(véx) = -1 and 2V/8y tanh(Vdy) = 1

respectively. Then f is a starlike function;
(ii) if for some zy € A such that |§(g,z0)| > 1.2, then g need not be convex univa-
lent.
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