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Abstract The paper gives a precise asymptotic relation between higher order
logarithmic difference and logarithmic derivatives for meromorphic functions
with order strictly less then one. This allows us to formulate a useful Wiman-
Valiron type estimate for logarithmic difference of meromorphic functions of
small order. We then apply this estimate to prove a classical analogue of Val-
iron about entire solutions to linear differential equations with polynomials
coefficients for linear difference equations.
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1 Introduction

It was shown by Ablowitz, Herbst and Halburd [1] and Halburd and Korho-
nen [12] (see also [13]) that the integrability of the discrete Painlevé equations
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in the complex plane can be characterised by the finite Nevanlinna order of
growth of meromorphic solutions. A crucial role is played in their Nevanlinna
theory approach is some difference versions of the logarithmic derivative es-
timates which were established in [11] and independently by us in [6]. Such
estimates were applied in a number of applications recently (see e.g. [17]). We
show in a subsequent paper [7] that given ε > 0, there exists a set E ⊂ (1,∞)
of |z| = r of finite logarithmic measure, so that

f(z + η)

f(z)
= eη

f′(z)
f(z)

+O(rβ+ε), (1)

holds for r 6∈ E ∪ [0, 1], where β = max{σ − 2, 2λ − 2} if λ < 1 and β =
max{σ−2, λ−1} if λ ≥ 1 and λ = max{λ′, λ′′}. We deduce from the equation
(1) that when the order σ(f) < 1, then for each given ε > 0, there is a set
E ⊂ (1, ∞) of finite logarithmic measure such that

∆nf(z)

f(z)
= ηn

f (n)(z)

f(z)
+O(r(n+1)(σ−1)+ε) (2)

holds for |z| = r /∈ E, where ∆f(z) = f(z + η)− f(z), ∆nf(z) = ∆
(
∆n−1f

)
.

The above results show the different behaviours for meromorphic functions of
order less than and greater than unity. Bergweiler and Langley [4, Lem. 4.2]
also obtained an asymptotic behaviour ∆nf(z) ∼ f (n)(z) as z → ∞ outside
an ε−set. However no precise error bounds were given.

If one adopts the symbolic operator D = d
dz , then it was discussed in [7,

§8] that we could write down the formal expression

∆nf =
(
ηnDn +

n

2!
ηn+1Dn+1 + · · ·

)
f.

This note has two purposes. We first establish rigorously that the above formal

expression is indeed valid for meromorphic functions of order strictly less than
one. This allows us to obtain a more precise difference Wiman-Valiron estimate
than that established in [7].

Before we can state our first main result, let us consider the well-known
formal expansion

∆nf(z) = n!

∞∑
k=n

S
(n)
k

k!
f (k)(z), (3)

where the S
(n)
k are Stirling numbers of the second kind [2, §24.1]. We recall

that Stirling number of the second kind S
(m)
n counts the number of different

ways to partition a set of n objects into m non-empty subsets. In particular,
it has the following generating function [2, §21.1.4]:

xn =

n∑
m=0

S(m)
n x(x− 1) · · · (x−m+ 1).
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We now give a rigorous justification of the formal expansion (3).

Theorem 1 Let f be a meromorphic function with order σ = σ(f) < 1. Then
for any positive integers n, N such that N ≥ n, and for each ε > 0, there is a
set E ⊂ [1, +∞) of finite logarithmic measure so that

∆nf(z)

f(z)
= n!

(
N∑
k=n

ηkS
(n)
k

k!

f (k)(z)

f(z)

)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε) (4)

for |z| = r /∈ E ∪ [0, 1]

A classical result states that entire solutions to linear differential equations
with polynomial coefficients have completely regular growth of rational order
(see Valiron [22, pp. 106-108]). The second purpose of this paper is to prove an
analogue to this result that entire solutions to linear difference equations with
polynomial coefficients of order strictly less than one must have completely
regular growth of rational order. Previously, Ishizaki and Yanagihara [18] es-
tablished the same result for entire solutions of order strictly less than 1/2
via a different method. In [7, Theorem 7.3] the authors extended the theorem
of Ishizaki and Yanagihara to include transcendental entire solutions of order
strictly less than unity must have rational order of growth, but they failed to
establish that the growth of these solutions must be completely regular.

This paper is organised as follows. Some preliminary results that are needed
for the proof of Theorem 1 are given in §2, followed by the proof of Theorem
1 in §4. We then formulate sharp difference-type Wiman-Valiron estimates
in §5 and apply them to prove a difference version of a result originally for
differential equations stated in Valiron [22] in the next section §6, which is the
second main purpose of this paper.

2 Lemmas

Theorem 2 Let f be a meromorphic function with order σ = σ(f) < 1. Then
for each positive integer k, and for each ε > 0, there exists an exceptional set
E(η) in C consisting of a union of disks centred at the zeros and poles of f(z)
such that when z lies outside of the E(η),

∆f

f
: =

f(z + η)− f(z)

f(z)

= η
f ′(z)

f(z)
+
η2

2!

f ′′(z)

f(z)
+ · · ·+ ηk

k!

f (k)(z)

f(z)
+O

(
ηk+1r(k+1)(σ−1)+ε). (5)

Moreover, the set πE(η) ∩ [1, +∞), where πE(η) is obtained from rotating the
exceptional disks of E(η) so that their centres all lie on the positive real axis,
has finite logarithmic measure.
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We recall that a subset E of R has finite logarithmic measure if

lm(E) =

∫
E∩(1,∞)

dr

r

is finite. The set E is said to have an infinite logarithmic measure if lm(E) =
+∞.

We need a uniformity estimate for the logarithmic derivatives and loga-
rithmic difference estimates that hold outside an exceptional set of |z| = r of
finite logarithmic measure simultaneously. So let us first review Gundersen’s
important logarithmic derivative estimate [9, Cor. 2] and our earlier difference
analogous estimate [6, Thm. 8.2].

Lemma 1 ([9] Lem. 8) Let f be a transcendental meromorphic function,
and let k be a positive integer. Let {cn} be the sequence of zeros and poles
of f , where {cn} is listed according to multiplicity and ordered by increasing
modulus. Let γ > 1 be a given real constant. Then there exist constants R0 > 0
and C = C(γ, k) > 0 such that for |z| ≥ R0 and f(z) 6= 0, ∞, we have∣∣∣f (k)(z)

f(z)

∣∣∣ ≤ C(T (γr, f)

r
+

∑
|ck|<γr

1

|z − ck|

)k
, (6)

where r = |z|.

Lemma 2 ([6] Eqn. (8.5)) Let f be a transcendental meromorphic function,
and let {cn} be the sequence of zeros and poles of f , where {cn} is listed
according to multiplicity and ordered by increasing modulus. Let γ > 1 and a
complex η be given, then there are constants R1 >

2
γ |η| > 0, β = β(γ) such

that for |z| ≥ R1, we have∣∣∣∣ log

∣∣∣∣f(z + η)

f(z)

∣∣∣∣∣∣∣∣ ≤ |η|β T
(
γr, f

)
r

+ |η| ·
∑
|dk|<γr

1

|z − dk|
(7)

holds, where |z| = r and (dk)k∈N = (ck)k∈N ∪ (ck − η)k∈N .

Lemma 3 Let f(z) be a meromorphic function of finite order σ, η a non-zero
complex number, and ε > 0 be a given real constant. Then there exists an
exceptional set E(3η) in C consisting of a union of disks centred at the zeros
and poles of f(z), as described in the Theorem 2, such that when z lies entirely
outside the E(3η), then we have
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∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|k(σ−1)+ε, (8)

and

exp
(
− |z|σ−1+ε

)
≤
∣∣∣∣f(z + tη)

f(z)

∣∣∣∣ ≤ exp
(
|z|σ−1+ε

)
(9)

hold simultaneously and uniformly in t ∈ [0, 1]. Moreover, the set πE(3η) ∩
(0, +∞), where πE(3η) is obtained from rotating the exceptional disks of E(3η)

so that their centres all lie on the positive real axis, has finite logarithmic
measure.

The above inequality (8) can be derived from (6) in [9, Lem. 8], while
the inequality (9) from (7) in [6, Eqn. (8.5)]. Both inequalities hold generally
under the finite order assumption on f , and both proofs require the Poisson-
Jensen formula and the classical Cartan lemma, except that we need to take
into the account of the uniformity assumption on t. However, in order to fulfill
our later application to establishing the Theorem 2, one needs more detailed
information concerning the exceptional set that arises from removing the zeros
and poles from applying the Cartan lemma (below) than quoting Gundersen
[9, §7] directly. So we judge it is appropriate to offer a full proof of the Lemma
3 based on that in [9] but tailored to our need here. In fact, our construction
of the exceptional disks which have larger radii than those constructed in [9]
by 3η. This is to guarantee the fact that we need below, namely that whenever
z lies outside E(3η), then the line segment [z, z + η] lies outside E(η).

Let us first recall Cartan’s theorem [5] which we adopt from [9].

Lemma 4 ([5]) Let a1, · · · , am be any finite collection of complex numbers,
and let d > 0 be any given positive number. Then there exists a finite collec-
tion of closed disks D(ak, rk) (1 ≤ k ≤ m) with corresponding radii that satisfy∑m
k=1 rk = 2d, and a permutation of the points a1, · · · , am, labeled by b1, · · · , bm,

say, such that for z 6∈
⋃m
k=1D(ak, rk),

|z − bk| >
k

m
d, 1 ≤ k ≤ m, (10)

where the permutation may depend on z.

Proof of Lemma 3

Proof Let us first choose γ > 1 and let us define the annulus

Γν := {z : γν ≤ |z| ≤ γν+1}, ν ∈ N. (11)

We let R = γν+2, dk(t) = (ck)∪(ck−tη), (0 ≤ t ≤ 1) so that (dk(0)) = (ck)
and (dk(1)) = (dk). Here the dk, ck are defined in the Lemma 2. Let m =
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n(R) = n(γν+2) so that |dm(1)| ≤ R and |dm+1(1)| > R. Let us now choose
an integer ν0 such that

γν0+2 ≥ |d1(1)| (12)

and
1 ≤ (γ − 1) log n(γν0+2). (13)

We choose

d3η :=
γν

[log(γν)]γ
+ 3|η|. (14)

Lemma 4 asserts that there is a finite collection of closed disks D(ak, rk) (1 ≤
k ≤ m) whose radii have a sum of 2d3η and that when z 6∈

⋃m
k=1D(ak, rk),

then there is a permutation of the points a1, · · · , am, re-labelled by b1, · · · , bm,
say, that, according to (10), satisfies

|z − bk| >
k

m

( γν

[log(γν)]γ
+ 3|η|

)
, 1 ≤ k ≤ m. (15)

Let us confine our z within the annulus (11). Because of the choice of ν0
as defined in (12) and (13), we deduce∑

|dk|<γr

1

|z − dk(1)|
≤

m∑
k=1

1

|z − bk|
≤ m[log(γν)]γ

γν + 3|η|

m∑
k=1

1

k

≤ n(R)[log(γν)]γ

γν + 3|η|
(1 + logm)

≤ n(γ2r) logγ r

γν + 3|η|
(
1 + log n(γ2r)

)
<
n(γ2r) logγ r

γν
(
1 + log n(γ2r)

)
≤ γ n(γ2r)

r
logγ r

(
1 + log n(γ2r)

)
≤ γ2n(γ2r)

r
logγ r log n(γ2r). (16)

So given an ε > 0, we deduce from the inequalities (6) and (7) and (16) that

there is an exceptional set E(3η) =
⋃∞
ν=1E

(3η)
ν where each E

(3η)
ν consists of the

union of closed disks D(ak, rk) (1 ≤ k ≤ m) whose centres lie in Γν defined
above such that for all z 6∈ E(3η), the (8) and (9) hold simultaneously and
uniformly for all t ∈ [0, 1]. So we can choose an R so large such that, when
|z| > R and z 6∈ E(3η), the inequalities (8), (9) and (16) hold simultaneously.

It remains to compute the size of the exceptional sets. According to Lemma
4 and (14) that the sum of the diameters of the disks

⋃m
k=1D(ak, rk) is

4 d3η = 4
( γν

[log(γν)]γ
+ 3|η|

)
. (17)
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We argue in the spirit of [9] that we revolve each of the disks D(ak, rk)
about the origin to form annuli centered about the origin. We then consider
the logarithmic measure of the union of the intersection of these annuli with
the positive real axis in Γν which we denote by πE(3η). Here we need to clarify
an exceptional situation, namely when one of those disks already contains the
origin, then we simply count the line segment [0, |ak|] part of the exceptional
set in the computation of the logarithmic measure. That is, we have

Eν := [γν , γν+1] ∩ πE(3η)

and

E :=

∞⋃
ν=ν0

Eν . (18)

It follows from (17) that the linear measure of Eν does not exceed 4 d3η.
So ∫

E

dx

x
=

∞∑
ν=ν0

∫
Eν

dx

x
≤
∞∑
ν=ν0

{
log
(
γν +

4γν

[log(γν)]γ
+ 12|η|

)
− log γν

}
=

∞∑
ν=ν0

log
(

1 +
4

[log(γν)]γ
+

12|η|
γν

)
<∞

since γ > 1. This proves that the exceptional set (18) has finite logarithmic
measure.

Remark 1 We would like to emphasis that we take the exceptional set to be
E(η) in our application below. Since the E(η) is a subset of E(3η), so the set
E(η) also has finite logarithmic measure.

We will also require a complex form of Lagrange’s version of Taylor’s theo-
rem. Although we cannot find an exact reference for the result, one can easily
modify the argument in [3, p. 242] to obtain:

Lemma 5 Let f be an analytic function in a domain D. Let c ∈ D, then

f(z) = f(c)+f ′(c)(z−c)+
f ′′(c)

2!
(z−c)2 + · · ·+ f (n)(c)

n!
(z−c)n+Rn(z) (19)

where

Rn(z) =
1

n!

∫ z

c

(z − t)nf (n+1)(t) dt (20)

for each z ∈ D.
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3 Proof of Theorem 2

We apply the Lemma 3 with z 6∈ E(3η). Then the inequalities (8) and (9) both
hold. In fact, it is not difficult to see that the whole line segment [z, z+ η] lies
outside E(η) which also has finite logarithmic measure. So let us choose a path
in the complex plane that connects z and z + η and that does not intersect
with the z from the exceptional set E(η). We replace z by z + η and c by z in
(19), and divide through both sides of the Taylor expansion (19) by f(z) to
yield

f(z + η)− f(z)

f(z)
= η

f ′(z)

f(z)
+
η2

2!

f ′′(z)

f(z)
+ · · ·+ ηn

n!

f (n)(z)

f(z)
+
Rn(z + η)

f(z)

where Rn is the remainder given in (20). Hence

Rn(z + η)

f(z)
=

1

n!

∫ z+η

z

(z + η − t)n f
(n+1)(t)

f(z)
dt

=
ηn+1

n!

∫ 1

0

(1− T )n
f (n+1)(z + Tη)

f(z)
dT. (21)

Lemma 3 asserts that for each ε > 0, one can have an exceptional set
πE(η) of real numbers such that (8) and (9) hold simultaneous and uniformly
for t ∈ [0, 1] and for r = |z| outside of πE(η). Thus (21) becomes∣∣∣Rn(z + η)

f(z)

∣∣ =
∣∣∣ηn+1

n!

∫ 1

0

(1− T )n
f (n+1)(z + Tη)

f(z + Tη)

f(z + Tη)

f(z)
dT
∣∣∣

≤ |η|
n+1

n!
2n ·O

(
e|z+ηT |

σ−1+ε)
·O
(
|z + Tη|(n+1)(σ−1)+ε)

≤ O
(
|η|n+1|z|(n+1)(σ−1)+ε) (22)

as |z| → ∞ and outside of πE(η) which is a subset of E from (18). This proves
(5). ut

4 Proof of Theorem 1

Proof We shall also make use of the recurrence formula [2, p. 825](
m

r

)
S(m)
n =

n−r∑
k=m−r

(
n

k

)
S

(r)
n−kS

(m−r)
k , n ≥ m ≥ r. (23)

We first note that if n = 1, then because S
(1)
k = 1 for all k ∈ N [2, p. 825]

so the result (4) follows from (5) of Theorem 2. We apply induction on n. Let
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us suppose that the equation (4) holds and let F (z) = ∆nf(z). We now apply
Theorem 2 to F and the inductive hypothesis to obtain

∆n+1f(z)

f(z)
=
∆F (z)

F (z)

F (z)

f(z)

=
F (z)

f(z)

(
n!
( N∑
k=n

ηk

k!

F (k)(z)

F (z)

)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε))

= n!

N∑
k=1

ηk

k!

∆n(f(z))

f(z)

[∆n(f(z))](k)

∆n(f(z))
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

N∑
k=1

ηk

k!

∆n(f (k))(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

N∑
k=1

ηk

k!

f (k)(z)

f(z)

∆n(f (k))(z)

f (k)(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

N∑
k=1

ηk

k!

f (k)(z)

f(z)

( N∑
s=n

ηsS
(n)
s

s!

f (k+s)(z)

f (k)(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε))

+O
(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

N∑
k=1

ηk

k!

( N∑
s=n

ηsS
(n)
s

s!

f (k+s)(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε))

+O
(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

2N∑
k+s=t=n+1

( t∑
k=1

S
(n)
t−k

k!(t− k)!

)
ηt
f (t)(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

2N∑
k+s=t=n+1

( 1

t!

t∑
k=1

t!

k!(t− k)!
S

(1)
k S

(n)
t−k

)
ηt
f (t)(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

2N∑
k+s=t=n+1

(
1

t!

t∑
k=1

(
t

k

)
S

(1)
t−kS

(n)
k

)
ηt
f (t)(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

(24)

= n!

2N∑
t=n+1

1

t!

(
n+ 1

1

)
S

(n+1)
t ηt

f (t)(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= (n+ 1)!

2N∑
t=n+1

ηtS
(n+1)
t

t!

f (t)(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= (n+ 1)!

N∑
t=n+1

ηtS
(n+1)
t

t!

f (t)(z)

f(z)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε),
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where (24) follows from applying r = 1 from the recurrence formula (23). Each
manipulation of above argument is valid outside an exceptional set of |z| of
finite logarithmic measure. Since there is at most a finite union of such excep-
tional sets involved, so that the above argument is valid outside an exceptional
set of finite logarithmic measure. This completes the proof.

5 Sharp Difference Wiman-Valiron Estimates

Let f(z) =
∑∞
n=0 anz

n be an entire function defined in the complex plane. We
recall that M(r, f) = max|z|=r |f(z)| denotes the maximum modulus of f on
|z| = r > 0, and we use µ(r, f) = maxn≥0 |an|rn to denote the maximal term
of f . The central index ν(r, f) is the greatest exponent m such that

|am|rm = µ(r, f).

We note that ν(r, f) is a real, non-decreasing function of r.

It is well-known that for finite order σ function f that its central index
satisfies lim supr→∞ log ν(r, f)/log r = σ (see [19], [20] and [23], and also [8]).
We next quote the classical result of Wiman-Valiron (see also [15]) in the form

Lemma 6 [16, pp. 28–30] Let f be a transcendental entire function. Let
0 < ε < 1

8 and z (|z| = r) be such that

|f(z)| > M(r, f)(ν(r, f))−
1
8+ε (25)

holds. Then there exists a set E ⊂ (1,∞) of finite logarithmic measure, such
that

f (k)(z)

f(z)
=
(ν(r, f)

z

)k
(1 +Rk(z)), (26)

Rk(z) = O((ν(r, f))−
1
8+ε) (27)

holds for all k ∈ N and all r /∈ E ∪ [0, 1].

Suppose in addition that we assume σ(f) = σ < 1, 0 < ε < 1
8 hold, and

that |z| = r is chosen that satisfies (25). Then, we deduce, as we have done in
[7], that from (2), (26) and (27) that for each positive integer k, there exists a
set E ⊂ (1,∞) of finite logarithmic measure, such that for all r /∈ E ∪ [0, 1],

∆kf(z)

f(z)
=
(ν(r, f)

z

)k(
1 +O((ν(r, f))−

1
8+ε)

)
, if σ = 0,

∆kf(z)

f(z)
=
(ν(r, f)

z

)k
+O(rkσ−k−γ+ε), if 0 < σ < 1, (28)

where γ = min{ 18σ, 1− σ}.

The remainder in (28) is not sharp for entire functions of order less than
one but not completely regular growth. Equation (4) from Theorem 1 allows
us to remove this restriction and to establish a sharp error bound on (28).
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Theorem 3 Let f be a transcendental entire function of order σ(f) = σ < 1,
0 < ε < min{ 18 , 1− σ} and z satisfies (25). Then for each positive integer k,
there exists a set E ⊂ (1,∞) that has finite logarithmic measure, such that for
all r /∈ E ∪ [0, 1],

∆kf(z)

f(z)
=
(ν(r, f)

z

)k(
1 +Rk(z)

)
(29)

where Rk(z) = O
(
ν(r, f)−κ+ε

)
and κ = min{ 18 , 1− σ}.

Proof Let 0 < ε < min{ 18 , 1− σ} be given. We choose N so large such that

(n+N + 1)(σ − 1) < −n− 1/8. (30)

We also need

ν(r, f) = O(rσ+ε) = O(r), r−1 = O
(
ν(r, f)

−1
σ+ε
)

= O
(
ν(r, f)−1

)
. (31)

Substituting (26) into (4), applying (30) and (31) yield

∆nf

f
= n!

(
N∑
k=n

ηkS
(n)
k

k!

f (k)(z)

f(z)

)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

= n!

N∑
k=n

ηkS
(n)
k

k!

(ν(r, f)

z

)k(
1 +Rk(z)

)
+O

(
ηn+N+1r(n+N+1)(σ−1)+ε)

=
(ν(r, f)

z

)n[
1 +

N∑
k=n+1

n!
ηkS

(n)
k

k!

(ν(r, f)

z

)k−n](
1 +O(ν(r)−

1
8+ε)

)
+O

(
r(n+N+1)(σ−1)+ε)

=
(ν(r, f)

z

)n[
1 +O

(
ν(r f)−

1
8+ε
)

+O
(ν(r, f)

r

)]
+O(r−n−1/8+ε)

=
(ν(r, f)

z

)n[
1 +O

(
ν(r f)−

1
8+ε
)

+O
(
ν(r, f)1−

1
σ+ε
)]

=
(ν(r, f)

z

)n[
1 +O

(
ν(r f)−

1
8+ε
)

+O
(
ν(r, f)σ−1+ε

)]
as required. This completes the proof.

We now show that the estimate (29) is sharp in the sense that it is no
longer valid for order one entire functions in general. Let Φ(z) = 1/Γ (z) where
the Γ (z) denotes Euler-gamma function. Then it follows from the functional
equation Γ (z + 1) = zΓ (z) that

∆Φ(z)

Φ(z)
=

1

z
− 1 ∼ −1

as z →∞. However, the function Φ(z) has order equal to one.
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6 Applications to Difference Equations

We considered linear difference equations

an(z)∆nf(z) + · · ·+ a1(z)∆f(z) + a0(z)f(z) = 0 (32)

in [7], where a0(z), · · · , an(z) are polynomials. We have shown that any entire
solution f to (32) with order of growth less than one has a positive rational
order of growth and that the rational order χ can be calculated explicitly
from the gradients of the corresponding Newton-Puiseux diagram of the equa-
tion. This falls short of showing these entire solutions have completely regular
growth as is well-known for entire solutions to linear differential equations
(i.e., replacing the ∆kf in (32) by f (k) for k = 1, · · · , n). We shall strengthen
our earlier result that the growth order χ of entire solutions to (32) with χ < 1
is indeed completely regular. This also improves an earlier result of Ishizaki
and Yanagihara [18] where they have proved the following result for solutions
under the assumption of growth order < 1/2 by developing a Wiman-Valiron
theory based on binomial series. We mention in passing that Ramis considered
the corresponding problems for q−difference equations [21].

Theorem 4 Let a0(z), · · · , an(z) be polynomial coefficients of the difference
equation (32), and let f be an entire solution with order σ(f) = χ < 1. Then
χ is a rational number which can be determined from a gradient of the corre-
sponding Newton-Puisseux diagram equation (32). In particular,

logM(r, f) = Lrχ
(
1 + o(1)

)
where L > 0, χ > 0 and M(r, f) = max|z|=r |f(z)|. That is, the solution has
completely regular growth.

The original proof of the corresponding result for linear differential equa-
tions is based on an application of (26). Thus the form of our estimate (29)
allows us to modify Valiron’s argument [22] simply by replacing the differential
operators with difference operators and the rest of the proof follows exactly
the same pattern. So we omit the details. Wittich [23, pp. 65–68] and Gunder-
sen, Steinbart and Wang [10] discussed if the possible rational order for the
entire solutions of linear differential equations with polynomial coefficients ob-
tained by the Newton-Puiseux diagram ([19, §22]) method could be attained.
It would be interesting to ask this question for difference equation (32).
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